ProbStats L15a
Hypothosis Testing
Tea Tosting (Fisher's Exent Trst)

April 6, 2023

Ronald Fisher

Lady tea + milk : tea first milt first
8 cops : 4 cops tee first
4 cops multi first

Lady Guess
Milts Rust Tea First

Tach

Goal get hish scose
$\mathrm{scos}^{\mathrm{O}^{2}}$

L_{1}	0	1	2	3	4	5	6
$P(152)$	$2 / 10$	$1 / 20$	$2 / 10$	$2 / 10$	$2 / 60$	$1 / 20$	$1 / 10$
$P_{1}(x \geq 12)$	1	$16 / 20$	$15 / 20)$	$1 / 20$	$7 / 20$	$3 / 20$	$1 / 10$
$[12=5]=1 / 20$							

$$
\operatorname{Tr}[k \geq 5]
$$

Summasy of Hypotlesis Test

1. Define Noll Hypothests
2. Assoming Null Hypo is true
\rightarrow determitip probability of sotcomec.
3. Collect Data
4. Computo Probabilits data outcome or somithick more extreme.

Quiz Review

$$
\bar{x}_{n}=\frac{1}{n} \sum_{c=1}^{n} x_{i}
$$

Samplt $\quad x . \ldots x_{n}$ 就 $f(\theta)=N\left(\mu, \sigma^{2}\right)$
$\tau_{\text {estincte }}$
statistic $T\left(x, \ldots x_{n}\right)$ R.V. eg. $\alpha=0.05 \Rightarrow 95 \%$
$(1-\alpha) 100 \%$ - confodence interval
$\left[L_{n}, R_{n}\right]$ so $\operatorname{Pr}\left(L_{n} \leq \mu \leq R_{n}\right)=1-\alpha$
$L_{n}=\bar{x}_{n}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$ if we $k_{\text {now }} \sigma^{2}$

$$
\left.z_{\alpha / 2} \pm \alpha / 2-8 \cdot+\ldots, 1\right) \omega N(1,1)
$$

$\bar{x}_{n}-t_{\alpha / 2} \frac{S_{n}}{\sqrt{n}}$ if we $\underset{\operatorname{don}_{\alpha / 2}=1-\alpha / 2-\text { quont }^{n o t} l}{ }$ know σ^{2} t.d/s

$$
\begin{aligned}
& S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \quad \text { Samplo } \\
& \sqrt{S_{n}^{2}}=S_{n}=\text { scmple std. dev. } \\
& \text { t-distribotion } \quad x_{i} \sim t(n-1) \\
& \uparrow \text { degreas of } \\
& \text { frerdom } \\
& Z_{\alpha / z}=1-\alpha \text { quantile of } N(0.1) \\
& t_{\alpha / 2}=1-\alpha \text { quandile of } t \text {-distribution }
\end{aligned}
$$

pof $f_{\mu, \sigma^{2}}$ from $N\left(\mu, \sigma^{2}\right.$

$$
f_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(x \cdot \mu)^{2}}{2 \sigma^{2}}}
$$

