ProbStats L/4c
Confidence lntervals t-Distribution

April y_{1}
2023

Statisties
sample $X_{1}, X_{2}, \ldots X_{n}$ iid $f(\sigma)$
What can we sag (probabilistrlls) about $f(0), \ldots$ about a
a statestic $\hat{O}=T\left(x_{1}, x_{2}, \ldots x_{0}\right)$

$$
\begin{aligned}
& \text { estimotos } b \text { b } \\
& \operatorname{bias}(\hat{\theta})=E[\hat{\theta}]-\theta
\end{aligned}
$$

$\left.\begin{array}{c}\text { (1-a) } 1000 \text { - conlidence intaul. } \\ \text { confidence intis }\end{array} \ln (\hat{\theta}), R_{n}(\hat{\theta})\right]$
contidence intion $\operatorname{Pr}_{s}\left(\ln _{n} \leq \theta \leq R_{n}\right)=1-\alpha$

s'. chance distance

$$
\geq \text { Lentance }=z_{\alpha r_{2}} \frac{\sigma}{\sqrt{n}}
$$

What if $x_{1}, \ldots x_{1}-N\left(\mu, \sigma^{2}\right)$
and we do not knou σ^{2}
first estimete varionce wis somple varianes

$$
S_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}
$$

$$
\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-E\left[x_{i}\right]\right)^{2}
$$

$(1-a)(100 \%$

$x_{i=1,0} N\left(\mu, \sigma_{2}\right)$
σ^{2} unknown Student's z-distribution
t-distribution

$$
T_{n} \sim t\left(\frac{(n-1)}{\text { degrees of freedom }}\right.
$$

Similar $\quad x \sim N(0,1)$ us $n \rightarrow \infty$ approades $N(0,1)$

Compare

$$
\begin{aligned}
& \bar{x}_{n} \pm \underbrace{z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}}_{\text {holf leng th }} \\
& \begin{array}{ll}
\bar{x}_{n} \pm=\frac{t_{\alpha / z} \frac{\sqrt{s_{n}}}{\sqrt{n}}}{L^{t}} \quad t \text { half senstin ribatoon } \\
& t_{\alpha / 2}>z_{\alpha / 2}
\end{array}
\end{aligned}
$$

t-half lenath is bigger then th z-half lensth probably mashe $\sqrt{S_{n}}$ is to small

$$
\frac{P_{r}\left(L_{n} \leq \mu \leq R_{n}\right)=1-\alpha}{L_{n}=\bar{X}_{n}-t_{\alpha \alpha / 2} \frac{\sqrt{s_{n}}}{\sqrt{n}}}
$$

$n=40$ soow stations
$\bar{x}_{n}=620$ in \quad (betore $\sigma^{2}=36$ in 2)
95% - corridence intesval

$$
\begin{aligned}
& S_{n}=34 i^{2} \\
& \bar{x}_{n} \pm \frac{1}{n-1} \sum_{i=1}^{r}\left(x_{i}-\bar{x}_{n}\right)_{b 20}^{2} \\
& t_{0.025} \frac{\sqrt{3_{n}}}{\sqrt{40}} \\
& 620 \pm(2.02) \frac{\sqrt{34}}{\sqrt{40}}=620 \pm 1.86
\end{aligned}
$$

