Set Laws \& Probability

CS 3130/ECE 3530:
Probability and Statistics for Engineers

Jan 17, 2023

Sets
Sample Space Ω
subsets $A \subseteq \Omega$
\uparrow event
A, B : union $A \cup B$ "orictubit
intersection $A \wedge B$ "ora"

Commutative Law

For two sets A, B the Commutative Law holds that

$$
\begin{aligned}
& A \cup B=B \cup A \\
& A \cap B=B \cap \mathbb{A} \\
& A \cap B=B \cap A
\end{aligned}
$$

$$
A-B \neq B-A
$$

Associative Law

For three sets A, B, C the Associative Law holds that

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

Associative Law

For three sets A, B, C the Associative Law holds that

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

Example:
$A=\{3,4,5,6\}$

$$
B=\{1,3,6\}
$$

$$
C=\{3,5\}
$$

$$
\begin{aligned}
& A \cup B=\{1,3,4,5,6\} \\
& (A \cup B) \cup C=\{1,3,4,5,6\} \\
& (B \cup C)=\{1,3,5,6\}
\end{aligned}
$$

What is $(A \cup B) \cup C$?

$$
A \cup(B, C)=\{1,3,4,5,6\}
$$

Associative Law

For three sets A, B, C the Associative Law holds that

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& A=\{3,4,5,6\} \\
& B=\{1,3,6\} \\
& C=\{3,5\}
\end{aligned}
$$

What is $(A \cup B) \cup C$?
What is $(A \cap B) \cap C$?
? $(A \cup B) \cap C=$

Distributive Law

For three sets A, B, C the Distributive Law holds that

Distributive Law

For three sets A, B, C the Distributive Law holds that

$$
\begin{aligned}
& (A \cup B) \cap C=(A \cap C) \cup(B \cap C) \\
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{aligned}
$$

Example:
$A=\{3,4,5,6\}$
$B=\{1,3,6\}$
$C=\{3,5\}$
What is $(A \cup B) \cap C$?

Distributive Law

For three sets A, B, C the Distributive Law holds that

$$
\begin{aligned}
& (A \cup B) \cap C=(A \cap C) \cup(B \cap C) \\
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{aligned}
$$

Example:
$A=\{3,4,5,6\}$
$B=\{1,3,6\}$
$C=\{3,5\}$
What is $(A \cup B) \cap C$?
What is $(A \cap B) \cup C$?

DeMorgan's Law

Complement of union or intersection:

$$
(A \cup B)^{c}=A^{c} \cap B^{c}
$$

$$
(A \cap B)^{c}=A^{c} \cup B^{c}
$$

DeMorgan's Law

Complement of union or intersection:

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

What is the English translation for both sides of the
equations above?
If something is not in both A and B
then it either not in A or not in B.

Exercises

Check whether the following statements are true or false. (Hint: you might use Venn diagrams.)

- $A-B \subseteq A$ True
- $(A-B)^{c}=A^{c} \cup B$ True
- $A \cup B \subseteq B$ Not always, unless A
- $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$ True

Probability

$$
P:\{A \leq \Omega\} \rightarrow[0,1]
$$

Definition

A probability function on a finite sample space Ω assigns every event $A \subseteq \Omega$ a number in $[0,1]$, such that

1. $P(\Omega)=\underline{1}$
2. $P(A \cup B)=P(A)+P(B)$ when $A \cap B=\emptyset$ $P(A)$ is the probability that event A occurs.

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.

$$
\begin{gathered}
\text { casdinalits of } A:|A| \\
\text { "si } z c \text { " os }
\end{gathered}
$$

\# elements in A

Equally Likely Outcomes
 $|A| \leq|\Omega|$
 $|A| \geq 0$

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
\begin{aligned}
P(A) & =\frac{|A|}{|\Omega|} ? \frac{2}{10}=0.2 \\
& \in[0,1]
\end{aligned}
$$

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Example: Rolling a 6 -sided die

$$
|\Omega|=6
$$

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Example: Rolling a 6 -sided die

- $P(\{1\})=1 / 6$

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Example: Rolling a 6 -sided die

- $P(\{1\})=1 / 6$
- $P(\{1,2,3\})=1 / 2=\frac{3}{6}$

Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$
\Omega \times \Omega=\{(x, y): x \in \Omega, y \in \Omega\}
$$

Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$
\Omega \times \Omega=\{(x, y): x \in \Omega, y \in \Omega\}
$$

The element $(x, y) \in \Omega \times \Omega$ is called an ordered pair.

Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$
\Omega \times \Omega=\{(x, y): x \in \Omega, y \in \Omega\}
$$

The element $(x, y) \in \Omega \times \Omega$ is called an ordered pair.
Properties:
Order matters: $(1,2) \neq(2,1)$
Repeats are possible: $(1,1) \in \mathbb{N} \times \mathbb{N}$

More Repeats

Repeating an experiment n times gives the sample space

$$
\begin{aligned}
\Omega^{n} & =\Omega \times \cdots \times \Omega \quad(n \text { times }) \quad v=(y \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \Omega \text { for all } i\right\}
\end{aligned}
$$

More Repeats

Repeating an experiment n times gives the sample space

$$
\begin{aligned}
\Omega^{n} & =\Omega \times \cdots \times \Omega(n \text { times }) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \Omega \text { for all } i\right\}
\end{aligned}
$$

The element $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an n-tuple.

More Repeats

Repeating an experiment n times gives the sample space

$$
\begin{aligned}
\Omega^{n} & =\Omega \times \cdots \times \Omega \quad(n \text { times }) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \Omega \text { for all } i\right\}
\end{aligned}
$$

The element $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an n-tuple.
If $|\Omega|=k$, then $\left|\Omega^{n}\right|=k^{n}$.

Probability Rules

Probability Rules

Complement of an event A :

$$
P\left(A^{c}\right)=1-\underbrace{P(A)}
$$

$$
\in[0,1]
$$

Probability Rules

Complement of an event A :

$$
P\left(A^{c}\right)=1-P(A)
$$

Union of two overlapping events $A \cap B \neq \emptyset$:

$$
P(A \cup B)=\underline{P(A)}+\underline{P(B)}=P(A \cap B)
$$

Exercise

You are picking a number out of a hat, which contains the numbers 1 through 100. What are the following events and their probabilities?

- The number has a single digit 9/100
- The number has two digits $\frac{90}{100}=\frac{9}{10}$
- The number is a multiple of $4=\frac{25}{100}=\frac{1}{4}$
- The number is not a multiple of $4=\frac{3}{4}=P_{5}\left(A^{c}\right)=$
- The sum of the number's digits is 5

$$
\frac{6}{700}=\frac{\left|\{5,12 \mid, 23,32,91,\}_{0}\right|}{100}
$$

Permutations

A permutation is an ordering of an n-tuple. For instance, the n-tuple ($1,2,3$) has the following permutations:

$$
\begin{aligned}
& (1,2,3),(1,3,2),(2,1,3) \\
& (2,3,1),(3,1,2),(3,2,1)
\end{aligned}
$$

decte o cards
finish order of race.
anagram
$\log \sim \operatorname{god}$
$\sim \operatorname{og} d$

Permutations

A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1,2,3)$ has the following permutations:

$$
\begin{aligned}
& (1,2,3),(1,3,2),(2,1,3) \\
& (2,3,1),(3,1,2),(3,2,1)
\end{aligned}
$$

The number of unique orderings of an n-tuple is n factorial:

$$
\underline{n!}=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1
$$

Permutations

$$
\frac{n \cdot(n-1) \cdot(n-2) \cdots(n / 2)}{n / 2+1}(n / 2-1) \cdots 1
$$

A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1,2,3)$ has the following permutations:

$$
\begin{aligned}
& (1,2,3),(1,3,2),(2,1,3) \\
& (2,3,1),(3,1,2),(3,2,1)
\end{aligned} \frac{\sqrt{n!}}{\text { larges }\left(\frac{n}{2}\right)^{\left(\frac{n}{2}\right)}}
$$

The number of unique orderings of an n-tuple is n factorial:

$$
\left(\frac{n}{z}\right)^{(n / z)}<n!\leq n^{n}
$$

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 2
$$

How many ways can you rearrange ($1,2,3,4$)?

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Exercise

Consider 4 balls in an urn, with labels A, B, C, and D.
Consider I select them out of the urn (without replacement) one at a time.

- What is the probability I pick them out in order $(A, B, C, D) ? \Rightarrow \operatorname{Pr}(.)=.{ }^{\prime} r_{24}=\frac{1}{4!}$

Exercise

Consider 4 balls in an urn, with labels A, B, C, and D.
Consider I select them out of the urn (without replacement) one at a time.

- What is the probability I pick them out in order (A, B, C, D) ?
- What is the probability I pick them out in order $(B, C, A, D) ?=\frac{1}{24}$

Exercise

Consider 4 balls in an urn, with labels A, B, C, and D.
Consider I select them out of the urn (without replacement) one at a time.

- What is the probability I pick them out in order (A, B, C, D) ?
- What is the probability I pick them out in order (B, C, A, D) ?
- What is the probability that the last element chosen is A ?

$$
? \frac{1}{24}
$$

Exercise

Consider 4 balls in an urn, with labels A, B, C, and D.
Consider I select them out of the urn (without replacement) one at a time.

- What is the probability I pick them out in order (A, B, C, D) ?
- What is the probability I pick them out in order (B, C, A, D) ?
- What is the probability that the last element chosen is A ?
- What is the probability that the last element chosen is D ?

