Sample Spaces, Events, Probability

CS 3130/ECE 3530: Probability and Statistics for Engineers

Jan 12, 2023 Prof Phellips

pronoons he (him

Definition

A set is a collection of unique objects.

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

$$A = \{3, 8, 31\}$$

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

$$A = \{3, 8, 31\}$$

B = {apple, pear, orange, grape}

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

$$A = \{3, 8, 31\}$$

$$B = \{\text{apple, pear, orange, grape}\}$$

Not a valid set definition:
$$C = \{1, 2, 3, 4, 2\}$$

$$m_{0} \mid 1 \leq k \leq k$$

$$(1, 7, 3) \neq (3, 1, 2)$$

Order in a set does not matter!

$$\{1,2,3\} = \{3,1,2\} = \{1,3,2\}$$

Order in a set does not matter!

$$A = \{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\}$$

▶ When *x* is an element of *A*, we denote this by:

$$x \in A$$
. $\in in$

• Order in a set does not matter! $\{1,2,3\} = \{3,1,2\} = \{1,3,2\}$

▶ When *x* is an element of *A*, we denote this by:

$x \in A$.

▶ If *x* is not in a set *A*, we denote this as:

$$x \notin A$$
.

• Order in a set does not matter! $\{1,2,3\} = \{3,1,2\} = \{1,3,2\}$

▶ When *x* is an element of *A*, we denote this by:

$$x \in A$$
.

▶ If *x* is not in a set *A*, we denote this as:

$$x \notin A$$
.

The "empty" or "null" set has no elements:

$$\emptyset = \{ \}$$

Integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Natural Numbers:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Natural Numbers:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Real Numbers:

 $\mathbb{R}=$ "any number that can be written in decimal form"

Integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Natural Numbers:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Real Numbers:

 $\mathbb{R}=$ "any number that can be written in decimal form"

$$5 \in \mathbb{R}, \quad 17.42 \in \mathbb{R}, \quad \pi = 3.14159 \ldots \in \mathbb{R}$$

Alternate way to define natural numbers:

$$\mathbb{N} = \{x \in \mathbb{Z} : x \ge 0\}$$

Alternate way to define natural numbers:

$$\mathbb{N} = \{ x \in \mathbb{Z} : x \ge 0 \}$$

Set of even integers:

$$\{x \in \mathbb{Z} : x \text{ is divisible by } 2 \}$$

Alternate way to define natural numbers:

$$\mathbb{N} = \{ x \in \mathbb{Z} : x \ge 0 \}$$

e= Z.71 ...

Set of even integers:

$$\{x \in \mathbb{Z} : x \text{ is divisible by } 2\}$$

Rationals:

$$\mathbb{Q} = \{ p/q : p,q \in \mathbb{Z}, q
eq 0 \}$$

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

Examples:

• $\{1,9\} \subseteq \{1,3,9,11\}$

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

- $\{1,9\} \subseteq \{1,3,9,11\}$
- $\blacktriangleright \mathbb{Q} \subseteq \mathbb{R}$

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

- $\{1,9\} \subseteq \{1,3,9,11\}$
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{R}$
- ► $\{apple, pear\} \not\subseteq \{apple, orange, banana\}$

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

- $\{1,9\} \subseteq \{1,3,9,11\}$
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{R}$
- $\{apple, pear\} \nsubseteq \{apple, orange, banana\}$
- $\emptyset \subseteq A$ for any set A

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

no bas

2 strict

Some REB S. f XEA

ACR

ACB

- $\{1,9\} \subseteq \{1,3,9,11\}$
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{R}$
- $\{apple, pear\} \nsubseteq \{apple, orange, banana\}$
- $\emptyset \subseteq A$ for any set A
- $A \subseteq A$ for any set A (but $A \not\subset A$)

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

Examples: • Coin flip: $\Omega = \{H, T\}$

Definition

A **sample space** is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Definition

A **sample space** is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Pick a ball from a bucket of red/black balls: $\Omega = \{R, B\}$

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

4 × 6 - sidrd dia 6⁴ ordcomes

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Pick a ball from a bucket of red/black balls: $\Omega = \{R, B\}$
- Tossing 2 coins? $\Sigma H H + TT + H T + TH$ 10 coins size $(-\Sigma) = 2^{10}$

Definition

A **sample space** is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Pick a ball from a bucket of red/black balls: $\Omega = \{R, B\}$
- Tossing 2 coins?
- Shuffling deck of 52 cards?
 The second second

Definition

An event is a subset of a sample space.

Events

Definition

An event is a subset of a sample space.

Examples:

• You roll a die and get an <u>even number</u>: $\{2,4,6\} \subseteq \{1,2,3,4,5,6\}$

Events

Definition

An event is a subset of a sample space.

- You roll a die and get an even number: $\{2,4,6\} \subseteq \{1,2,3,4,5,6\}$
- You flip a coin and it comes up "heads": $\{H\} \subseteq \{H, T\}$

Events

Definition

An event is a subset of a sample space.

Examples:

• You roll a die and get an even number: $\{2,4,6\} \subseteq \{1,2,3,4,5,6\}$

Set Operations: Union

Definition

The **union** of two sets *A* and *B*, denoted $A \cup B$ is the set of all elements in either *A* or *B* (or both).

Set Operations: Union

Definition

The **union** of two sets *A* and *B*, denoted $A \cup B$ is the set of all elements in either *A* or *B* (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Set Operations: Union

Definition

The **union** of two sets *A* and *B*, denoted $A \cup B$ is the set of all elements in either *A* or *B* (or both).

When *A* and *B* are events, $A \cup B$ means that event *A* or event *B* happens (or both).

Example: $A = \{1, 3, 5\}$ "an odd roll" $B = \{1, 2, 3\}$ "a roll of 3 or less" $A \cup R = \{2, 1, 2, 3\}$

Set Operations: Union

Definition

The **union** of two sets *A* and *B*, denoted $A \cup B$ is the set of all elements in either *A* or *B* (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example: $A = \{1, 3, 5\}$ "an odd roll" $B = \{1, 2, 3\}$ "a roll of 3 or less" $A \cup B = \{1, 2, 3, 5\}$ Set Operations: Intersection $U = \bigwedge c u p$ DefinitionThe intersection of two sets A and B, denoted $A \cap B$ is
the set of all elements in both A and B.

1 1 COMP

Definition

The **intersection** of two sets *A* and *B*, denoted $A \cap B$ is the set of all elements in both *A* and *B*.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Definition

The **intersection** of two sets *A* and *B*, denoted $A \cap B$ is the set of all elements in both *A* and *B*.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

 $A = \{1, 3, 5\}$

"an odd roll"

 $B = \{1, 2, 3\}$ "a roll of 3 or less"

$$A \cap B = \{1, 3\}$$

Definition

The **intersection** of two sets *A* and *B*, denoted $A \cap B$ is the set of all elements in both *A* and *B*.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

 $A = \{1, 3, 5\}$ "an odd roll" $B = \{1, 2, 3\}$ "a roll of 3 or less" $A \cap B = \{1, 3\}$

Definition

The **intersection** of two sets *A* and *B*, denoted $A \cap B$ is the set of all elements in both *A* and *B*.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

 $A = \{1, 3, 5\}$ "an odd roll" $B = \{1, 2, 3\}$ "a roll of 3 or less" $A \cap B = \{1, 3\}$

Note: If $A \cap B = \emptyset$, we say A and B are **disjoint**.

Definition

The **complement** of a set $A \subseteq \Omega$, denoted A^c , is the set of all elements in Ω that are not in A.

Definition

The **complement** of a set $A \subseteq \Omega$, denoted A^c , is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.

Definition

The **complement** of a set $A \subseteq \Omega$, denoted A^c , is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.

Example: $A = \{1, 3, 5\}$ "an odd roll"

Definition

The **complement** of a set $A \subseteq \Omega$, denoted A^c , is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.

Example: $A = \{1,3,5\} \quad \text{``an odd roll''} \\ A^c = \{2,4,6\} \quad \text{``an even roll''}$

Set Operations: Difference

Definition

The **difference** of a set $A \subseteq \Omega$ and a set $B \subseteq \Omega$, denoted A - B, is the set of all elements in Ω that are in A and are not in B.

Example: $A = \{3, 4, 5, 6\}$ $B = \{3, 5\}$ $A - B = \{4, 6\}$

