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Sets

Definition
A set is a collection of unique objects.

Here “objects” can be concrete things (people in class,
schools in PAC-12), or abstract things (numbers, colors).

Examples:

A = {3, 8, 31}
B = {apple, pear, orange, grape}
Not a valid set definition: C = {1, 2, 3, 4, 2}
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Sets
I Order in a set does not matter!

{1, 2, 3} = {3, 1, 2} = {1, 3, 2}

(1.2,3)7(3,1,2)
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Some Important Sets
I Integers:

Z = {. . . ,�3,�2,�1, 0, 1, 2, 3, . . .}

I Natural Numbers:

N = {0, 1, 2, 3, . . .}

I Real Numbers:

R = “any number that can be written in decimal form”

5 2 R, 17.42 2 R, ⇡ = 3.14159 . . . 2 R
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Building Sets Using Conditionals

I Alternate way to define natural numbers:

N = {x 2 Z : x � 0}

I Set of even integers:

{x 2 Z : x is divisible by 2}

I Rationals:

Q = { p/q : p, q 2 Z, q 6= 0}
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I Alternate way to define natural numbers:
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I Alternate way to define natural numbers:
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Subsets

Definition
A set A is a subset of another set B if every element of
A is also an element of B, and we denote this as A ✓ B.

Examples:

I {1, 9} ✓ {1, 3, 9, 11}
I Q ✓ R
I {apple, pear} * {apple, orange, banana}
I ; ✓ A for any set A

I A ✓ A for any set A (but A 6⇢ A)
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Sample Spaces

Definition
A sample space is the set of all possible outcomes of an
experiment. We’ll denote a sample space as ⌦.

Examples:
I Coin flip: ⌦ = {H, T}
I Roll a 6-sided die: ⌦ = {1, 2, 3, 4, 5, 6}
I Pick a ball from a bucket of red/black balls:
⌦ = {R,B}

I Tossing 2 coins?
I Shuffling deck of 52 cards?
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Sample Spaces

Definition
A sample space is the set of all possible outcomes of an
experiment. We’ll denote a sample space as ⌦.
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Sample Spaces

Definition
A sample space is the set of all possible outcomes of an
experiment. We’ll denote a sample space as ⌦.
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Events

Definition
An event is a subset of a sample space.

Examples:

I You roll a die and get an even number:
{2, 4, 6} ✓ {1, 2, 3, 4, 5, 6}

I You flip a coin and it comes up “heads”:
{H} ✓ {H, T}

I Your code takes longer than 5 seconds to run:
(5,1) ✓ R
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Set Operations: Union

Definition
The union of two sets A and B, denoted A [ B is the set
of all elements in either A or B (or both).
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Set Operations: Union

Definition
The union of two sets A and B, denoted A [ B is the set
of all elements in either A or B (or both).

When A and B are events, A [ B means that event A or
event B happens (or both).

Example:
A = {1, 3, 5} “an odd roll”
B = {1, 2, 3} “a roll of 3 or less”
A [ B = {1, 2, 3, 5}
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Set Operations: Intersection

Definition
The intersection of two sets A and B, denoted A \ B is
the set of all elements in both A and B.

When A and B are events, A \ B means that both event
A and event B happen.

Example:
A = {1, 3, 5} “an odd roll”
B = {1, 2, 3} “a roll of 3 or less”
A \ B = {1, 3}

Note: If A \ B = ;, we say A and B are disjoint.
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Set Operations: Intersection

Definition
The intersection of two sets A and B, denoted A \ B is
the set of all elements in both A and B.

When A and B are events, A \ B means that both event
A and event B happen.
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Set Operations: Complement

Definition
The complement of a set A ✓ ⌦, denoted A

c, is the set
of all elements in ⌦ that are not in A.
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c, is the set
of all elements in ⌦ that are not in A.
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c means that the event A does not

happen.
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Set Operations: Difference

Definition
The difference of a set A ✓ ⌦ and a set B ✓ ⌦,
denoted A � B, is the set of all elements in ⌦ that are in
A and are not in B.

Example:
A = {3, 4, 5, 6}
B = {3, 5}
A � B = {4, 6}

Note: A � B = A \ B
c
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