Sample Spaces, Events, Probability

CS 3130/ECE 3530:
Probability and Statistics for Engineers

$$
\begin{aligned}
& \text { Prof Rallips } \\
& \text { pronouns he (him } 2023
\end{aligned}
$$

Sets

Definition

A set is a collection of unique objects.

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:

$$
A=\{3,8,31\}
$$

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:

$$
\begin{aligned}
& A=\{3,8,31\} \\
& B=\{\text { apple, pear, orange, grape }\}
\end{aligned}
$$

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:

$$
\begin{aligned}
& A=\{3,8,31\} \\
& B=\{\text { apple, pear, orange, grape }\} \\
& \text { Not a valid set definition: } C=\{1,2,3,4,2\} \\
& \text { multisct }
\end{aligned}
$$

Sets

$$
(1,2,3) \neq(3,1,2)
$$

- Order in a set does not matter!

$$
\{1,2,3\}=\{3,1,2\}=\{1,3,2\}
$$

Sets

- Order in a set does not matter!

$$
A=\{1,2,3\}=\{3,1,2\}=\{1,3,2\}
$$

- When x is an element of A, we denote this by:

$$
x \in A . \quad \in \operatorname{in}
$$

Sets

- Order in a set does not matter!

$$
\{1,2,3\}=\{3,1,2\}=\{1,3,2\}
$$

- When x is an element of A, we denote this by:

$$
x \in A .
$$

- If x is not in a set A, we denote this as:

$$
x \notin A .
$$

Sets

- Order in a set does not matter!

$$
\{1,2,3\}=\{3,1,2\}=\{1,3,2\}
$$

- When x is an element of A, we denote this by:

$$
x \in A .
$$

- If x is not in a set A, we denote this as:

$$
x \notin A .
$$

- The "empty" or "null" set has no elements:

$$
\emptyset=\{ \}
$$

Some Important Sets

- Integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Some Important Sets

- Integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Natural Numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

Some Important Sets

- Integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Natural Numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

- Real Numbers:
$\mathbb{R}=$ "any number that can be written in decimal form"

Some Important Sets

- Integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Natural Numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

- Real Numbers:
$\mathbb{R}=$ "any number that can be written in decimal form"

$$
5 \in \mathbb{R}, \quad 17.42 \in \mathbb{R}, \quad \pi=3.14159 \ldots \in \mathbb{R}
$$

Building Sets Using Conditionals

Building Sets Using Conditionals

- Alternate way to define natural numbers:

$$
\begin{aligned}
& \mathrm{y} \text { to define natural numbers: } \\
& \left.\underline{\mathbb{N}}=\frac{\{x \in \mathbb{Z}: \leq x \geq 0\}}{\{0,1,7, \ldots}\right\}
\end{aligned}
$$

Building Sets Using Conditionals

- Alternate way to define natural numbers:

$$
\mathbb{N}=\{x \in \mathbb{Z}: x \geq 0\}
$$

- Set of even integers:
$\{x \in \mathbb{Z}: x$ is divisible by 2$\}$
$\{\ldots,-4,-2,0,2,4,6 \ldots$

Building Sets Using Conditionals

$$
e=2.71 \ldots
$$

- Alternate way to define natural numbers:

$$
\mathbb{N}=\{x \in \mathbb{Z}: x \geq 0\}
$$

- Set of even integers:

$$
\{x \in \mathbb{Z}: x \text { is divisible by } 2\}
$$

- Rationals:

$$
\mathbb{Q}=\{p / q: p, q \in \mathbb{Z}, q \neq 0\}
$$

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Subsets

Definition
 A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

$$
\text { - }\{1,9\} \subseteq\{1,3,9,11\}
$$

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

$$
\begin{aligned}
& \text { - }\{1,9\} \subseteq\{1,3,9,11\} \\
& -\mathbb{Q} \subseteq \mathbb{R}
\end{aligned}
$$

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1,9\} \subseteq\{1,3,9,11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- \{apple, pear $\} \nsubseteq\{$ apple, orange, banana $\}$

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1,9\} \subseteq\{1,3,9,11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- \{apple, pear $\} \nsubseteq\{$ apple, orange, banana $\}$
- $\emptyset \subseteq A$ for any set A

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1,9\} \subseteq\{1,3,9,11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
no bars
- \{apple, pear $\} \nsubseteq\{$ apple, orange, banana $\}$ Some $x \in T$
- $\emptyset \subseteq A$ for any set A
- $A \subseteq A$ for any set A (but $A \not \subset A)$

$$
A \subseteq B
$$

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Omega

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:
heods

- Coin flip: $\Omega=\{H, T\}$ tails

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega=\{H, T\}$
- Roll a 6-sided die: $\Omega=\{1,2,3,4,5,6\}$

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega=\{H, T\}$
- Roll a 6-sided die: $\Omega=\{1,2,3,4,5,6\}$

- Pick a ball from a bucket of red/black balls:
$\Omega=\{R, B\}$

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:

$$
\begin{array}{r}
4 \times 6 \text {-sided die } \\
6^{4} \text { outcomes }
\end{array}
$$

- Coin flip: $\Omega=\{H, T\}$
- Roll a 6-sided die: $\Omega=\{1,2,3,4,5,6\}$
- Pick a ball from a bucket of red/black balls:
$\Omega=\{R, B\}$
- Tossing 2 coins?

10 coin h

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega=\{H, T\}$
- Roll a 6-sided die: $\Omega=\{1,2,3,4,5,6\}$
- Pick a ball from a bucket of red/black balls:
$\Omega=\{R, B\}$
- Tossing 2 coins?
- Shuffling deck of 52 cards? $=\prod_{i=1}^{s^{2}} i$

$$
52!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot 31 \cdot 52
$$

Events

Definition

An event is a subset of a sample space.

Events

Definition

An event is a subset of a sample space.

Examples:

- You roll a die and get an even number:

$$
\{2,4,6\} \subseteq\{\underline{1}, 2,3,4, \underline{5}, \underline{6}\}
$$

Events

Definition

An event is a subset of a sample space.

Examples:

- You roll a die and get an even number:

$$
\{2,4,6\} \subseteq\{1,2,3,4,5,6\}
$$

- You flip a coin and it comes up "heads":

$$
\{H\} \subseteq\{H, T\}
$$

Events

Definition

An event is a subset of a sample space.

Examples:

- You roll a die and get an even number:

$$
\{2,4,6\} \subseteq\{1,2,3,4,5,6\}
$$

- You flip a coin and it comes up "heads":

$$
\text { lounges of equal to } 5 \mathrm{sec}
$$ $[5, \infty)$

-5 Your code takes longer than 5 seconds to run:
$\partial_{(5, \infty)} \subseteq \mathbb{R}$
$(5, \infty) \cup \infty$

Set Operations: Union

Definition

The union of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

Set Operations: Union

Definition

The union of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Set Operations: Union

Definition

The union of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example:

$$
\begin{array}{ll}
A=\{1,3,5\} & \text { "an odd roll" } \\
B=\{1,2,3\} & \text { "a roll of } 3 \text { or less" }
\end{array}
$$

$$
A \cup B=\{1,2,3,5\}
$$

Set Operations: Union

Definition

The union of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$B=\{1,2,3\} \quad$ "a roll of 3 or less"
$A \cup B=\{1,2,3,5\}$

Set Operations: Intersection
 $U=\lambda c u p$

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$B=\{1,2,3\} \quad$ "a roll of 3 or less"

$$
A \cap B=\{1,3\}
$$

Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$B=\{1,2,3\} \quad$ "a roll of 3 or less"
$A \cap B=\{1,3\}$

Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

$$
\begin{aligned}
& A=\{1,3,5\} \quad \text { "an odd roll" } \\
& B=\{1,2,3\} \quad \text { "a roll of } 3 \text { or less" } \\
& A \cap B=\{1,3\}
\end{aligned}
$$

Note: If $A \cap B=\emptyset$, we say A and B are disjoint.

Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^{c}, is the set of all elements in Ω that are not in A.

Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^{c}, is the set of all elements in Ω that are not in A.

When A is an event, A^{c} means that the event A does not happen.

Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^{c}, is the set of all elements in Ω that are not in A.

When A is an event, A^{c} means that the event A does not happen.

Example:
$A=\{1,3,5\} \quad$ "an odd roll"

Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^{c}, is the set of all elements in Ω that are not in A.

When A is an event, A^{c} means that the event A does not happen.

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$A^{c}=\{2,4,6\} \quad$ "an even roll"

Set Operations: Difference

Definition

The difference of a set $A \subseteq \Omega$ and a set $B \subseteq \Omega$, denoted $A-B$, is the set of all elements in Ω that are in A and are not in B.

Example:
$A=\{3,4,5,6\}$
$B=\{3,5\}$
$A-B=\{4,6\}$
Note: $A-B=A \cap B^{c}$

$$
A \cap B^{C}
$$

