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The Lady Tasting Tea
Many of the modern principles used today for designing experiments and testing hypotheses were
introduced by Ronald A. Fisher in his 1935 book The Design of Experiments. As the story goes, he
came up with these ideas at a party where a woman claimed to be able to tell if a tea was prepared
with milk added to the cup first or with milk added after the tea was poured. Fisher designed an
experiment where the lady was presented with 8 cups of tea, 4 with milk first, 4 with tea first, in
random order. She then tasted each cup and reported which four she thought had milk added first.
Now the question Fisher asked is, “how do we test whether she really is skilled at this or if she’s
just guessing?”

To do this, Fisher introduced the idea of a null hypothesis, which can be thought of as a “default
position” or “the status quo” where nothing very interesting is happening. In the lady tasting tea
experiment, the null hypothesis was that the lady could not really tell the difference between teas,
and she is just guessing. Now, the idea of hypothesis testing is to attempt to disprove or reject the
null hypothesis, or more accurately, to see how much the data collected in the experiment provides
evidence that the null hypothesis is false.
The idea is to assume the null hypothesis is true, i.e., that the lady is just guessing. Under this
assumption and given the outcome of the experiment, we can now compute the probability of her
performing as well as she did or better. Let’s see how this works with an example outcome. Let’s
assume the lady gets all 8 cups correct. We can build a table of this outcome (this is called a
contingency table):

Lady’s Answer
Milk First Tea First

Truth
Milk First 4 0

Tea First 0 4

Under the null hypothesis assumption (that she is guessing), what is the probability of this out-
come? The lady knows there are exactly 4 cups of each, so she is essentially choosing 4 cups at
random out of 8. There are “8 choose 4” ways to do this, so her probability is

P (“all correct”) =
1

“number of ways to guess”
=

1(
8
4

) =
1

70
≈ 0.014.

So, if she is guessing, there is only a 1.4% chance that she will get all cups correct. Now, let’s look
at the general situation. Notice that if we set how many cups with milk first that she gets correct,
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this determines the entire table. This is because she knows to choose 4 cups in each category, and
thus each row and each column must sum to 4. The table for the general outcome looks like this:

Lady’s Answer
Milk First Tea First

Truth
Milk First k 4 - k

Tea First 4 - k k

First, notice that correct answers are on the diagonal. So, a value of k means that the lady actually
has 2k answers correct. Here the counting problem to compute the probability of a general outcome
is more difficult, but it follows what is called a hypergeometric distribution. (We won’t cover
this distribution in detail, but see the Wikipedia article if you want to learn more about it.) The
probability becomes:

p(k) =

(
4
k

)(
4

4−k

)(
8
4

) =
1

70

(
4

k

)2

.

Now, this is the probability of the lady getting exactly 2k answers correct. What we originally
wanted to ask is “what is the probability of her getting this outcome or better?” To get this, we
need to sum over all values k or greater (up to the max of 4). Letting X be the total number of
correct answers, this is:

P (“2k correct or better”) = P (X ≥ 2k) =
4∑
i=k

p(i).

Here are the probabilities of the 5 possible outcomes for the experiment:

p(0) =
1

70
, p(1) =

16

70
, p(2) =

36

70
, p(3) =

16

70
, p(4) =

1

70
.

Notice the symmetric in the probabilities. It is just as hard to get all wrong as it is to get all correct!
Finally, the probabilities for getting 2k correct answers or better are

P (X ≥ 0) = 1, P (X ≥ 2) =
69

70
, P (X ≥ 4) =

53

70
, P (X ≥ 6) =

17

70
, P (X ≥ 8) =

1

70
.

By the way, according to the legend, the lady got all 8 cups correct!

Summary of General Hypothesis Test Procedure:

1. Define the null hypothesis, which is the uninteresting or default explanation.

2. Assume that the null hypothesis is true, and determine the probability rules for the
possible outcomes of the experiment.

3. After collecting data, compute the probability of the final outcome or even more
extreme outcomes.
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Further reading:
Ronald Fisher: http://en.wikipedia.org/wiki/Ronald_A._Fisher
Fisher’s Exact Test: http://en.wikipedia.org/wiki/Fisher’s_exact_test
Hypergeometric Distribution: http://en.wikipedia.org/wiki/Hypergeometric_
distribution

Hypothesis Testing Procedure
We will now formalize this hypothesis testing procedure so we can use it more generally.

Step 1: hypothesis formulation.
This is to analyze a process, or an algorithm, or an ongoing natural phenomenon. It does not start
with data, the data will come later. Like the lady’s ability to detect milk or tea first. The first step
is to make a hypothesis about that algorithm; often we actually ask for two hypotheses. The null
hypothesis H0 is a bland or boring hypothesis (e.g., the lady will guess at random). This one will
need to be more precise, and will require a probability distribution. The alternative hypothesis
H1 can be a bit less precise, but is where the real conjecture lies; it needs to specify a way that we
think the real algorithm is distinct from the null hypothesis (that the lady can distinguish milk first
from tea first).

Lets now consider another example. One where we think UU students are taller than the national
average. We look up reports on heights, and model this as a normal distribution N(67, 25), so
mean of 67 inches and variance of 25 inches squared. This is our null distribution for heights
of UU students. For our alternative hypothesis, we can assume the variance is the same, but as-
sume that the mean µUU > 67. Note that we do not need to specify the actually guess for µUU here.

Step 2: Design experiment.
We now want to design an experiment that will evaluate if we should deviate from the null hypoth-
esis. So we typically take a random sampleX1, X2, . . . , Xn and analyze a statistic T (X1, . . . , Xn).
This generically will be called a test statistic T . In the Utah height example, we use our usual
sample mean statistic X̄n.

Next we need to decide on a confidence threshold for how much evidence we would need to devi-
ate from our simple null hypothesis. This is formulated in terms of probability that our test statistic
(or something more extreme) happens less than some fraction α of the time. A typical choice for
α is 0.05 or 0.01, but there is no one right value. In particular, we define a critical value at α, that
is a threshold tα so that Pr(T ≤ tα) = 1 − α.

WhenXi ∼ N(µ, σ2), then we have that the distribution of X̄n is according toN(µ, σ2/n) and that
Zn = X̄n−µ

σ/
√
n
∼ N(0, 1). In this case we can define tα = µ+ zα

σ√
n

, where zα is the (1−α)-quantile
of the normal distribution.

Step 3: Run Experiment.
Now finally, we can collect the data x1, x2, . . . , xn. These are the realizations of the random vari-
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ables X1, . . . , Xn. We compute the realization of the test statistic t = T (x1, . . . , xn), and compare
t to tα.

If t > tα, then we can reject the null hypothesis. That is, we say there is sufficient evidence
that an alternative hypothesis is sufficiently more likely. In particular, under our null hypothe-
sis, the data we found (or less extreme data) is unlikely to occur under that hypothesis more than
(1−α)100% of the time. This does not mean the alternative hypothesis correct, but basically there
is an alternative hypothesis of the form we consider that is sufficiently more likely than the one we
chose as null, given the evidence we found.

If t ≤ tα, then we do not reject the null hypothesis. That is, we did not find evidence that an
alternative hypothesis, for the forms we consider, is significantly more likely (at a (1 − α)100%
critical value) than the null hypothesis. This case does not confirm the null hypothesis, it just does
not show sufficient evidence against it.

Sometimes we also compute a p-value. This is the value p such that Pr(T ≤ t) = 1 − p. That
is, it is the probability under the null hypothesis, that a test statistic T would be as larger or larger
than the one we found t.

Modified example without known variance.
In the above height example, we assumed a null distribution of N(67, 25). But what if we only
have a null guess of the average height, not the standard deviation? That is if we only want to
assume N(67, σ2) for some unknown σ2, what should we do?
Use a t distribution/statistic instead of a normal one.

The test statistic is now T = X̄n−µ
Sn/
√
n

where µ = 67 inches, Sn is the sample standard deviation, and
n is the number of samples we drew. We can then set the critical value at α as tα, which recall is
the 1 − α quantile for the t-distribution t(n− 1). Then on real data realizations x1, . . . , xn we can
compute x̄n and then S2

n and finally a realization of the test statistic as t = x̄n−67
Sn/
√
n

. With this we can
compare to tα to see if it is above or below the critical value at α. We can also compute its p-value
as 1 −

∫∞
a=t

t(a, df = n− 1) or in R as
p = 1-pt(t, df=n-1).
Paired sample t-test.
The paired sample t-test is used to determine whether the mean difference between two sets of
observations of the same subjects is zero. In a paired sample t-test, each subject or object is
measured twice, resulting in pairs of observations. Statistics are done on the difference of these
observations (per sample), and statistics on done on the means of those differences. The null
hypothesis is typically “no effect”, in which case the mean of the differences would be zero.
This analysis would come up, for instance, in examining if/how a particular set of individuals
responds to a treatment. Are their symptoms better or worse after treatment?
The procedure is typically as follows:

1. Subtract the two measurements for each individual – across, for instance, n subjects.

2. Compute the sample mean and variance, X̄n and S2
n respectively.

3. Build the statistic T = X̄n−µ
Sn/
√
n

, where µ is the mean of the null hypothesis (zero if “no effect”).
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4. Identify a critical value for the alternative hypothesis (either left tailed, right tailed, or double
tailed – depending on the alternative hypothesis).

5. Reject or not reject the null hypothesis based on the comparison of T to the critical value.

Below is an example of R code that runs this paired t-test on a set of data.
rawdata = c(1, 90.563, 110.642,
2, 94.816, 101.588,
3, 109.56, 120.607,
4, 90.222, 83.2217,
5, 97.598, 109.272,
6, 91.167, 115.806,
7, 96.65, 99.8958,
8, 97.616, 117.94,
9, 88.845, 106.052,
10, 90.817, 82.8229,
11, 89.294, 116.639,
12, 115.83, 128.61,
13, 121.29, 119.665,
14, 87.872, 108.383,
15, 93.793, 96.3738)

data = array(rawdata, dim = c(3,15))
print(data)
df = data.frame(t(data))
colnames(df) = c("ID", "Before", "After")
diff = df$After - df$Before
print(diff)
s = sqrt(var(diff))
x d = mean(diff)
print("Here is the critical value")
print(qt(0.95, df = length(diff)-1))
stat = x d/(s/sqrt(length(diff))) print("Here is our test statistic")
print(stat)
print("P-value is")
print(1- pt(stat, length(diff)-1))

5



0 1 2 3 4-4 -3 -2 -1

t↵ = qt(1-↵, df=20)

P (T  t↵) = 1 � ↵

T ⇠ t-dist(df = 20)

T = X̄n�µ
Sn/

p
n

random variable about “data”

t

realization of data

critical value at ↵

p = 1 - pt(t, df = 20)

Pr(T  t) = 1 � p

p-value

df = 20 = n � 1
dt(x,df=20)

x

H0: Xi ⇠ N(µ, �), � unknown
H1: Xi ⇠ N(µ0, �), µ0 > µ
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