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Independent, Identically Distributed
RVs
Definition
The random variables X1,X2, . . . ,Xn are said to be
independent, identically distributed (iid) if they share
the same probability distribution and are independent of
each other.

Independence of n random variables means

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi(xi).
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Random Samples

Definition
A random sample from the distribution F of length n is
a set (X1, . . . ,Xn) of iid random variables with
distribution F. The length n is called the sample size.

• A random sample represents an experiment where
n independent measurements are taken.
• A realization of a random sample, denoted

(x1, . . . , xn) are the values we get when we take
the measurements.
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Statistics
Definition
A statistic on a random sample (X1, . . . ,Xn) is a
function T(X1, . . . ,Xn).

Examples:
• Sample Mean

X̄n =
1
n

n∑
i=1

Xi

• Sample Variance

S2
n =

1
n− 1

n∑
i=1

(Xi − X̄)2
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Order Statistics

Given a sample X1,X2, . . . ,Xn, start by sorting the list
of numbers.
• The median is the center element in the list if n is

odd, average of two middle elements if n is even.
• The ith order statistic is the ith element in the list.
• The empirical quantile qn(p) is the first point at

which p proportion of the data is below.
• Quartiles are qn(p) for p = 1

4 ,
1
2 ,

3
4 , 1. The

inner-quartile range is
IQR = qn(0.75)− qn(0.25).
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Realizations of Statistics

Remember, a statistic is a random variable! It is not a
fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our
sample (x1, x2, . . . , xn). Plugging these numbers into
the formula for our statistic gives a realization of the
statistic, t = T(x1, x2, . . . , xn).

Example: given realizations xi of a random sample, the
realization of the sample mean is x̄n = 1

n

∑n
i=1 xi.

Upper-case = random variable, Lower-case = realization
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Statistical Plots

(See example code “StatPlots.r”)
• Histograms
• Empirical CDF
• Box plots
• Scatter plots
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Sampling Distributions

Given a sample (X1,X2, . . . ,Xn). Each Xi is a random
variable, all with the same pdf.

And a statistic T = T(X1,X2, . . . ,Xn) is also a random
variable and has its own pdf (different from the Xi pdf).
This distribution is the sampling distribution of T .

If we know the distribution of the statistic T , we can
answer questions such as “What is the probability that T
is in some range?” This is P(a ≤ T ≤ b) – computed
using the cdf of T .
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Sampling Distribution of the Mean

Given a sample (X1,X2, . . . ,Xn) with E[Xi] = µ and
Var(Xi) = σ2,

What do we know about the distribution of the sample
mean, X̄n?

• It’s expectation is E[X̄n] = µ

• It’s variance is Var(X̄n) = σ2

n
• As n get’s large, it is approximately a Normal

distribution with mean µ and variance σ2/n.
• Not much else! We don’t know the full pdf/cdf.
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When the Xi are Normal

When the sample is Normal, i.e., Xi ∼ N(µ, σ2), then
we know the exact sampling distribution of the mean X̄n
is Nornal:

X̄n ∼ N(µ, σ2/n)
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Chi-Square Distribution

The chi-square distribution is the distribution of a sum
of squared Normal random variables. So, if
Xi ∼ N(0, 1) are iid, then

Y =
k∑

i=1

X2
i

has a chi-square distribution with k degrees of
freedom. We write Y ∼ χ2(k).

Read the Wikipedia page for this distribution!!
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Sampling Distribution of the Variance

If Xi ∼ N(µ, σ) are iid Normal RV’s, then the sample
variance is distributed as a scaled chi-square random
variable:

n− 1
σ2 S2

n ∼ χ2(n− 1)

Or, a slight abuse of notation, we can write:

S2
n ∼

σ2

n− 1
· χ2(n− 1)

This means that the S2
n is a chi-square random variable

that has been scaled by the factor σ2

n−1 .
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How to Scale a Random Variable

Let’s say I have a random variable X that has pdf fX(x).

What is the pdf of kX, where k is some scaling constant?

The answer is that kX has pdf

fkX(x) =
1
k

fX
(x

k

)
See pg 106 (Ch 8) in the book for more details.
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Central Limit Theorem

Theorem
Let X1,X2, . . . be iid random variables from a distribution
with mean µ and variance σ2 <∞. Then in the limit as
n→∞, the statistic

Zn =
X̄n − µ
σ/
√

n

has a standard normal distribution.

Recall X̄n = 1
n

∑n
i=1 Xi.
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Importance of the Central Limit
Theorem

• Applies to real-world data when the measured
quantity comes from the average of many small
effects.
• Examples include electronic noise, interaction of

molecules, exam grades, etc.
• This is why a Normal distribution model is often

used for real-world data.
• Also, this “concentration of measure” effect is the

basis for all of machine learning (more data, more
accuracy).
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