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Expectation of Joint Random Variables. When we have two random variables
X, Y described jointly, we can take the expectation of functions of both random
variables, g(X, Y ). This is defined how you think it would be.

For discrete:

E[g(X, Y )] =
∑
i

∑
j

g(ai, bj)P (X = ai, Y = bj)

For continuous:

E[g(X, Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dx dy

Linearity of expectation revisited. We’ve already stated expectation was linear;
now we show why. Let g(X, Y ) = rX + sY , where r, s are constants. Plugging
this into the formulas above, we can see that E[rX+sY ] = rE[X]+sE[Y ]. Here
we run through the discrete case (continuous case works exactly the same):

E[rX + sY ] =
∑
i

∑
j

(rai + sbj)P (X = ai, Y = bj)

= r
∑
i

∑
j

aiP (X = ai, Y = bj) + s
∑
i

∑
j

bjP (X = ai, Y = bj)

= r
∑
i

ai

(∑
j

P (X = ai, Y = bj)

)
+ s

∑
j

bj

(∑
i

P (X = ai, Y = bj)

)
= r

∑
i

aiP (X = ai) + s
∑
j

bjP (Y = bj)

= rE[X] + sE[Y ]
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Covariance. The covariance of two random variables X, Y is defined as

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])].

Notice the similarity to the variance definition. In fact, Cov(X,X) = Var(X).
Covariance is a measure of how related X and Y are. If Cov(X, Y ) is posi-
tive, it means that “X and Y tend to go in the same direction”. If Cov(X, Y )
is negative, it means that “X and Y tend to go in opposite directions.” As an
example, let Y = X . Now X and Y really go in the same direction! In this
case Cov(X, Y ) = Var(X), which is always positive. Now consider the case that
Y = −X . So, X and Y are really going in opposite directions. You can check
that Cov(X, Y ) = −Var(X), which is always negative.

Just like variance, we have an alternate definition for covariance:

Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Exercise: Prove these two formulas for Cov(X, Y ) are equal.

So, E[X + Y ] = E[X] + E[Y ] holds for expectation. Does it also hold for
variance? In other words, does Var(X + Y ) = Var(X) + Var(Y )?

Var(X + Y ) = E[(X + Y )2]− E[X + Y ]2

= E[X2 + 2XY + Y 2]− (E[X] + E[Y ])2

= E[X2] + 2E[XY ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

= (E[X2]− E[X]2) + (E[Y 2]− E[Y ]2) + 2(E[XY ]− E[X]E[Y ])

= Var(X) + Var(Y ) + 2(E[XY ]− E[X]E[Y ])

= Var(X) + Var(Y ) + 2Cov(X, Y )

So, Var(X + Y ) = Var(X) + Var(Y ) if and only if Cov(X, Y ) = 0.

Notation: Remember we had the notation σ2X = Var(X). We will also use the
notation σX,Y = Cov(X, Y ).

Important Fact: If X and Y are independent, then Cov(X, Y ) = 0 (see book for
proof). This matches our intuition that independence means that X and Y are not
related and that Cov(X, Y ) is a numerical measure of how related X and Y are.
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Tricky Important Fact: If Cov(X, Y ) = 0, this does not necessarily mean that X
and Y are independent!

Correlation. One problem with covariance is that it scales with the random vari-
ables X and Y . That is, Cov(rX, sY ) = rsCov(X, Y ). (This follows directly
from the linearity of expectation.) Therefore, if we change the units of X and Y ,
we will scale their covariance. This makes it really difficult to know how strongly
two random variables are based on how large their covariance is. For example,
let’s think about X and Y variables that are given in meters. If we were to rewrite
them in terms of centimeters, then each variable will scale by 100, and the covari-
ance will scale by 1002 = 10,000. However, these are really just the same random
variables, and their larger covariance does not mean they are more strongly related
to each other.

To overcome this problem, the correlation is defined to remove these scale factors:

ρ(X, Y ) =
Cov(X, Y )√
Var(X)Var(Y )

=
σX,Y

σXσY

Notice that scaling cancels out in the numerator and denominator, so ρ(rX, sY ) =
ρ(X, Y ). So, correlation is invariant to the units in which we write X and Y .

Bivariate Gaussian Distribution. One of the most important examples of a con-
tinuous joint distribution is the bivariate Gaussian distribution. Let’s begin with
understanding what it looks like when we combine two indepdendent Gaussian
random variables X ∼ N(µx, σx) and Y ∼ N(µy, σy). Because of independence,
the joint pdf is given by

f(x, y) = f(x)f(y) =
1√
2πσx

exp

(
−(x− µx)

2

2σ2x

)
1√
2πσy

exp

(
−(y − µy)

2

2σ2y

)
=

1

2πσxσy
exp

(
−1
2

[
(x− µx)2

2σ2x
+

(y − µy)2

2σ2y

])
Now, if we allow X and Y to be correlated with ρ = ρ(X, Y ), we get a more
general form of the bivariate Gaussian pdf:

f(x, y) =
1

2πσxσy
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(x− µx)2

2σ2x
+

(y − µy)2

2σ2y
− 2ρ(x− µx)(y − µy)

σxσy

])
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See the R source code that we covered in class for some plots of what these joint
pdf’s look like.

Summary of important formulas:

Covariance:

Cov(X, Y ) = E[XY ]− E[X] E[Y ]

Correlation:

ρ(X, Y ) =
Cov(X, Y )√
Var(X)Var(Y )

Variance of Addition:

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )
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