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Commutative Law

For two sets A,B the Commutative Law holds that

A ∪ B = B ∪ A

A ∩ B = B ∩ A
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Associative Law

For three sets A,B,C the Associative Law holds that

(A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C)

Example:
A = {3, 4, 5, 6}
B = {1, 3, 6}
C = {3, 5}
What is (A ∪ B) ∪ C?
What is (A ∩ B) ∩ C?
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Distributive Law

For three sets A,B,C the Distributive Law holds that

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)
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DeMorgan’s Law

Complement of union or intersection:

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

What is the English translation for both sides of the
equations above?
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Exercises

Check whether the following statements are true or false.
(Hint: you might use Venn diagrams.)
• A− B ⊆ A
• (A− B)c = Ac ∪ B
• A ∪ B ⊆ B
• (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
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Probability

Definition
A probability function on a finite sample space Ω
assigns every event A ⊆ Ω a number in [0, 1], such that

1. P(Ω) = 1
2. P(A ∪ B) = P(A) + P(B) when A ∩ B = ∅

P(A) is the probability that event A occurs.
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Equally Likely Outcomes

The number of elements in a set A is denoted |A|.

If Ω has a finite number of elements, and each is equally
likely, then the probability function is given by

P(A) =
|A|
|Ω|

Example: Rolling a 6-sided die

• P({1}) = 1/6
• P({1, 2, 3}) = 1/2
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Repeated Experiments

If we do two runs of an experiment with sample space Ω,
then we get a new experiment with sample space

Ω× Ω = {(x, y) : x ∈ Ω, y ∈ Ω}

The element (x, y) ∈ Ω× Ω is called an ordered pair.

Properties:
Order matters: (1, 2) 6= (2, 1)
Repeats are possible: (1, 1) ∈ N× N
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More Repeats

Repeating an experiment n times gives the sample
space

Ωn = Ω× · · · × Ω (n times)

= {(x1, x2, . . . , xn) : xi ∈ Ω for all i}

The element (x1, x2, . . . , xn) is called an n-tuple.

If |Ω| = k, then |Ωn| = kn.
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Probability Rules

Complement of an event A:

P(Ac) = 1− P(A)

Union of two overlapping events A ∩ B 6= ∅:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Exercise

You are picking a number out of a hat, which contains
the numbers 1 through 100. What are the following
events and their probabilities?
• The number has a single digit
• The number has two digits
• The number is a multiple of 4
• The number is not a multiple of 4
• The sum of the number’s digits is 5
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Permutations

A permutation is an ordering of an n-tuple. For instance,
the n-tuple (1, 2, 3) has the following permutations:

(1, 2, 3), (1, 3, 2), (2, 1, 3)

(2, 3, 1), (3, 1, 2), (3, 2, 1)

The number of unique orderings of an n-tuple is
n factorial:

n! = n× (n− 1)× (n− 2)× · · · × 2

How many ways can you rearrange (1, 2, 3, 4)?
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Exercise

Consider 4 balls in an urn, with labels A, B, C, and D.
Consider I select them out of the urn (without
replacement) one at a time.

• What is the probability I pick them out in order
(A,B,C,D)?

• What is the probability I pick them out in order
(B,C,A,D)?
• What is the probability that the last element chosen

is A?
• What is the probability that the last element chosen

is D?
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