Set Laws \& Probability

CS 3130/ECE 3530:
Probability and Statistics for Engineers

Jan 17, 2023

Commutative Law

For two sets A, B the Commutative Law holds that

$$
\begin{aligned}
& A \cup B=B \cup A \\
& A \cap B=B \cap A
\end{aligned}
$$

Associative Law

For three sets A, B, C the Associative Law holds that

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

Associative Law

For three sets A, B, C the Associative Law holds that

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

Example:
$A=\{3,4,5,6\}$
$B=\{1,3,6\}$
$C=\{3,5\}$
What is $(A \cup B) \cup C$?

Associative Law

For three sets A, B, C the Associative Law holds that

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

Example:
$A=\{3,4,5,6\}$
$B=\{1,3,6\}$
$C=\{3,5\}$
What is $(A \cup B) \cup C$?
What is $(A \cap B) \cap C$?

Distributive Law

For three sets A, B, C the Distributive Law holds that

$$
\begin{aligned}
& (A \cup B) \cap C=(A \cap C) \cup(B \cap C) \\
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{aligned}
$$

Distributive Law

For three sets A, B, C the Distributive Law holds that

$$
\begin{aligned}
& (A \cup B) \cap C=(A \cap C) \cup(B \cap C) \\
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{aligned}
$$

Example:
$A=\{3,4,5,6\}$
$B=\{1,3,6\}$
$C=\{3,5\}$
What is $(A \cup B) \cap C$?

Distributive Law

For three sets A, B, C the Distributive Law holds that

$$
\begin{aligned}
& (A \cup B) \cap C=(A \cap C) \cup(B \cap C) \\
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{aligned}
$$

Example:
$A=\{3,4,5,6\}$
$B=\{1,3,6\}$
$C=\{3,5\}$
What is $(A \cup B) \cap C$?
What is $(A \cap B) \cup C$?

DeMorgan's Law

Complement of union or intersection:

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

DeMorgan's Law

Complement of union or intersection:

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

What is the English translation for both sides of the equations above?

Exercises

Check whether the following statements are true or false. (Hint: you might use Venn diagrams.)

- $A-B \subseteq A$
- $(A-B)^{c}=A^{c} \cup B$
- $A \cup B \subseteq B$
- $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$

Probability

Definition

A probability function on a finite sample space Ω assigns every event $A \subseteq \Omega$ a number in $[0,1]$, such that

1. $P(\Omega)=1$
2. $P(A \cup B)=P(A)+P(B)$ when $A \cap B=\emptyset$
$P(A)$ is the probability that event A occurs.

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Example: Rolling a 6-sided die

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Example: Rolling a 6 -sided die

- $P(\{1\})=1 / 6$

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Example: Rolling a 6 -sided die

- $P(\{1\})=1 / 6$
- $P(\{1,2,3\})=1 / 2$

Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$
\Omega \times \Omega=\{(x, y): x \in \Omega, y \in \Omega\}
$$

Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$
\Omega \times \Omega=\{(x, y): x \in \Omega, y \in \Omega\}
$$

The element $(x, y) \in \Omega \times \Omega$ is called an ordered pair.

Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$
\Omega \times \Omega=\{(x, y): x \in \Omega, y \in \Omega\}
$$

The element $(x, y) \in \Omega \times \Omega$ is called an ordered pair.
Properties:
Order matters: $(1,2) \neq(2,1)$
Repeats are possible: $(1,1) \in \mathbb{N} \times \mathbb{N}$

More Repeats

Repeating an experiment n times gives the sample space

$$
\begin{aligned}
\Omega^{n} & =\Omega \times \cdots \times \Omega(n \text { times }) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \Omega \text { for all } i\right\}
\end{aligned}
$$

More Repeats

Repeating an experiment n times gives the sample space

$$
\begin{aligned}
\Omega^{n} & =\Omega \times \cdots \times \Omega(n \text { times }) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \Omega \text { for all } i\right\}
\end{aligned}
$$

The element $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an n-tuple.

More Repeats

Repeating an experiment n times gives the sample space

$$
\begin{aligned}
\Omega^{n} & =\Omega \times \cdots \times \Omega(n \text { times }) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \Omega \text { for all } i\right\}
\end{aligned}
$$

The element $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an n-tuple.
If $|\Omega|=k$, then $\left|\Omega^{n}\right|=k^{n}$.

Probability Rules

Probability Rules

Complement of an event A :

$$
P\left(A^{c}\right)=1-P(A)
$$

Probability Rules

Complement of an event A :

$$
P\left(A^{c}\right)=1-P(A)
$$

Union of two overlapping events $A \cap B \neq \emptyset$:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Exercise

You are picking a number out of a hat, which contains the numbers 1 through 100. What are the following events and their probabilities?

- The number has a single digit
- The number has two digits
- The number is a multiple of 4
- The number is not a multiple of 4
- The sum of the number's digits is 5

Permutations

A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1,2,3)$ has the following permutations:

$$
\begin{aligned}
& (1,2,3),(1,3,2),(2,1,3) \\
& (2,3,1),(3,1,2),(3,2,1)
\end{aligned}
$$

Permutations

A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1,2,3)$ has the following permutations:

$$
\begin{aligned}
& (1,2,3),(1,3,2),(2,1,3) \\
& (2,3,1),(3,1,2),(3,2,1)
\end{aligned}
$$

The number of unique orderings of an n-tuple is n factorial:

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 2
$$

Permutations

A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1,2,3)$ has the following permutations:

$$
\begin{aligned}
& (1,2,3),(1,3,2),(2,1,3) \\
& (2,3,1),(3,1,2),(3,2,1)
\end{aligned}
$$

The number of unique orderings of an n-tuple is n factorial:

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 2
$$

How many ways can you rearrange ($1,2,3,4$)?

Exercise

Consider 4 balls in an urn, with labels A, B, C, and D. Consider I select them out of the urn (without replacement) one at a time.

- What is the probability I pick them out in order (A, B, C, D) ?

Exercise

Consider 4 balls in an urn, with labels A, B, C, and D. Consider I select them out of the urn (without replacement) one at a time.

- What is the probability I pick them out in order (A, B, C, D) ?
- What is the probability I pick them out in order (B, C, A, D) ?

Exercise

Consider 4 balls in an urn, with labels A, B, C, and D. Consider I select them out of the urn (without replacement) one at a time.

- What is the probability I pick them out in order (A, B, C, D) ?
- What is the probability I pick them out in order (B, C, A, D) ?
- What is the probability that the last element chosen is A ?

Exercise

Consider 4 balls in an urn, with labels A, B, C, and D. Consider I select them out of the urn (without replacement) one at a time.

- What is the probability I pick them out in order (A, B, C, D) ?
- What is the probability I pick them out in order (B, C, A, D) ?
- What is the probability that the last element chosen is A ?
- What is the probability that the last element chosen is D ?

