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Sets

Definition
A set is a collection of unique objects.

Here “objects” can be concrete things (people in class,
schools in PAC-12), or abstract things (numbers, colors).

Examples:

A = {3, 8, 31}
B = {apple, pear, orange, grape}
Not a valid set definition: C = {1, 2, 3, 4, 2}
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Sets
• Order in a set does not matter!

{1, 2, 3} = {3, 1, 2} = {1, 3, 2}

• When x is an element of A, we denote this by:

x ∈ A.

• If x is not in a set A, we denote this as:

x /∈ A.

• The “empty” or “null” set has no elements:

∅ = { }
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Some Important Sets
• Integers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

• Natural Numbers:

N = {0, 1, 2, 3, . . .}

• Real Numbers:

R = “any number that can be written in decimal form”

5 ∈ R, 17.42 ∈ R, π = 3.14159 . . . ∈ R
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Building Sets Using Conditionals

• Alternate way to define natural numbers:

N = {x ∈ Z : x ≥ 0}

• Set of even integers:

{x ∈ Z : x is divisible by 2}

• Rationals:

Q = { p/q : p, q ∈ Z, q 6= 0}
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Subsets

Definition
A set A is a subset of another set B if every element of
A is also an element of B, and we denote this as A ⊆ B.

Examples:

• {1, 9} ⊆ {1, 3, 9, 11}
• Q ⊆ R
• {apple, pear} * {apple, orange, banana}
• ∅ ⊆ A for any set A
• A ⊆ A for any set A (but A 6⊂ A)
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Sample Spaces

Definition
A sample space is the set of all possible outcomes of an
experiment. We’ll denote a sample space as Ω.

Examples:
• Coin flip: Ω = {H,T}
• Roll a 6-sided die: Ω = {1, 2, 3, 4, 5, 6}
• Pick a ball from a bucket of red/black balls:

Ω = {R,B}
• Tossing 2 coins?
• Shuffling deck of 52 cards?
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Events

Definition
An event is a subset of a sample space.

Examples:

• You roll a die and get an even number:
{2, 4, 6} ⊆ {1, 2, 3, 4, 5, 6}
• You flip a coin and it comes up “heads”:
{H} ⊆ {H,T}
• Your code takes longer than 5 seconds to run:

(5,∞) ⊆ R
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Set Operations: Union

Definition
The union of two sets A and B, denoted A ∪ B is the set
of all elements in either A or B (or both).

When A and B are events, A ∪ B means that event A or
event B happens (or both).

Example:
A = {1, 3, 5} “an odd roll”
B = {1, 2, 3} “a roll of 3 or less”
A ∪ B = {1, 2, 3, 5}
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Set Operations: Intersection

Definition
The intersection of two sets A and B, denoted A ∩ B is
the set of all elements in both A and B.

When A and B are events, A ∩ B means that both event
A and event B happen.

Example:
A = {1, 3, 5} “an odd roll”
B = {1, 2, 3} “a roll of 3 or less”
A ∩ B = {1, 3}

Note: If A ∩ B = ∅, we say A and B are disjoint.
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Set Operations: Complement

Definition
The complement of a set A ⊆ Ω, denoted Ac, is the set
of all elements in Ω that are not in A.

When A is an event, Ac means that the event A does not
happen.

Example:
A = {1, 3, 5} “an odd roll”
Ac = {2, 4, 6} “an even roll”
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Set Operations: Difference

Definition
The difference of a set A ⊆ Ω and a set B ⊆ Ω,
denoted A− B, is the set of all elements in Ω that are in
A and are not in B.

Example:
A = {3, 4, 5, 6}
B = {3, 5}
A− B = {4, 6}

Note: A− B = A ∩ Bc
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DeMorgan’s Law

Complement of union or intersection:

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

What is the English translation for both sides of the
equations above?
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Exercises

Check whether the following statements are true or false.
(Hint: you might use Venn diagrams.)
• A− B ⊆ A
• (A− B)c = Ac ∪ B
• A ∪ B ⊆ B
• (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
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Exercise

A survey of 200 recent travelers reveals the
following:

• 142 visited England
• 95 visited Italy
• 65 visited Germany
• 70 visited both England and Italy
• 50 visited both England and Germany
• 30 visited both Italy and Germany
• 20 visited all three of these countries

How many travelers visited only England (England,
but not Germany or Italy)?
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Probability

Definition
A probability function on a finite sample space Ω
assigns every event A ⊆ Ω a number in [0, 1], such that

1. P(Ω) = 1
2. P(A ∪ B) = P(A) + P(B) when A ∩ B = ∅

P(A) is the probability that event A occurs.
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Equally Likely Outcomes

The number of elements in a set A is denoted |A|.

If Ω has a finite number of elements, and each is equally
likely, then the probability function is given by

P(A) =
|A|
|Ω|

Example: Rolling a 6-sided die

• P({1}) = 1/6
• P({1, 2, 3}) = 1/2
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likely, then the probability function is given by
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Repeated Experiments

If we do two runs of an experiment with sample space Ω,
then we get a new experiment with sample space

Ω× Ω = {(x, y) : x ∈ Ω, y ∈ Ω}

The element (x, y) ∈ Ω× Ω is called an ordered pair.

Properties:
Order matters: (1, 2) 6= (2, 1)
Repeats are possible: (1, 1) ∈ N× N
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More Repeats

Repeating an experiment n times gives the sample
space

Ωn = Ω× · · · × Ω (n times)

= {(x1, x2, . . . , xn) : xi ∈ Ω for all i}

The element (x1, x2, . . . , xn) is called an n-tuple.

If |Ω| = k, then |Ωn| = kn.
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Probability Rules

Complement of an event A:

P(Ac) = 1− P(A)

Union of two overlapping events A ∩ B 6= ∅:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Exercise

You are picking a number out of a hat, which contains
the numbers 1 through 100. What are the following
events and their probabilities?
• The number has a single digit
• The number has two digits
• The number is a multiple of 4
• The number is not a multiple of 4
• The sum of the number’s digits is 5
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Permutations

A permutation is an ordering of an n-tuple. For instance,
the n-tuple (1, 2, 3) has the following permutations:

(1, 2, 3), (1, 3, 2), (2, 1, 3)

(2, 3, 1), (3, 1, 2), (3, 2, 1)

The number of unique orderings of an n-tuple is
n factorial:

n! = n× (n− 1)× (n− 2)× · · · × 2

How many ways can you rearrange (1, 2, 3, 4)?
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