Homework 1: Getting Started with Probability

Reminder: Give partial credit for answers that show work that is partially correct. Default is $1 / 2$ credit, but you can make it more or less in drastic cases. Don't count off for arithmetic mistakes, and don't take off twice when an incorrect number is used in a later answer.

1. (25 points total / 5 points each part / no work needed)
(a) B^{c}
(b) $B \cap G^{c}=B-G$
(c) $B \cup G$
(d) $B^{c} \cap G^{c}=(B \cup G)^{c}$ (DeMorgan's Law)
(e) $(B \cup G)-(B \cap G)=(B-G) \cup(G-B)$
2. (25 points total / 5 points each part / 1 point each for showing work, which should include stating the rule)
(a)

$$
\begin{aligned}
\operatorname{Pr}(A \cup B) & =\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) \quad \text { (Inclusion-Exclusion or Union Rule) } \\
& =0.3+0.5-0.25 \\
& =0.55
\end{aligned}
$$

(b)

$$
\begin{array}{rlr}
\operatorname{Pr}\left(A^{c}\right) & =1-\operatorname{Pr}(A) \quad \text { (Complement Rule) } \\
& =1-0.3 \\
& =0.7
\end{array}
$$

(c)

$$
\begin{array}{rlr}
\operatorname{Pr}\left(A^{c} \cup B^{c}\right) & =\operatorname{Pr}\left((A \cap B)^{c}\right) & \text { (DeMorgan's Law) } \\
& =1-\operatorname{Pr}(A \cap B) & \text { (Complement Rule) } \\
& =1-0.25 & \\
& =0.75 &
\end{array}
$$

(d)

$$
\begin{aligned}
\operatorname{Pr}\left(A \cap B^{c}\right) & =\operatorname{Pr}(A)-\operatorname{Pr}(A \cap B) \quad \text { (Difference Rule) } \\
& =0.3-0.25 \\
& =0.05
\end{aligned}
$$

(e)

$$
\begin{array}{rlr}
\operatorname{Pr}\left(A^{c} \cap B^{c}\right) & =\operatorname{Pr}\left((A \cup B)^{c}\right) & \text { (DeMorgan's Law) } \\
& =1-\operatorname{Pr}(A \cup B) & \text { (Complement Rule) } \\
& =1-0.55 & \text { (from part (a)) } \\
& =0.45 &
\end{array}
$$

3. (25 points total)

(a) (5 points total / no work needed)

$$
\Omega=\{(1,2),(1,3),(2,3),(2,1),(3,1),(3,2)\}
$$

(b) (8 points total / 2 points each / no work needed)

$$
\begin{aligned}
& A=\{(1,2),(2,3),(2,1),(3,2)\} \\
& B=\{(1,2),(2,1)\} \\
& C=\{(1,3),(2,3),(3,1),(3,2)\} \\
& D=\{(1,3),(3,1)\}
\end{aligned}
$$

(c) (12 points total / 3 points for the event +1 point for the probability)

$$
\begin{array}{rlrl}
A^{c} & =\{(1,3),(3,1)\} ; & \operatorname{Pr}\left(A^{c}\right)=\frac{2}{6}=\frac{1}{3}=0.3 \overline{3} \\
A \cup(C \cap D) & =\{(1,2),(1,3),(2,3),(2,1),(3,1),(3,2)\} ; & \operatorname{Pr}(A \cup(C \cap D))=\frac{6}{6}=1 \\
A \cup D^{c} & =\{(1,2),(2,3),(2,1),(3,2)\} ; & & \operatorname{Pr}\left(A \cup D^{c}\right)=\frac{4}{6}=\frac{2}{3}=0.6 \overline{6}
\end{array}
$$

$$
\left(D^{c} \subset A \rightarrow A \cup D^{c}=A\right)
$$

4. (25 pts total)
(a) (10 pts total / $1 \mathbf{p t}$ for each number in the tree)
$B 1, W 1$ is "black top" or "white top", $B 2, W 2$ is "black bottom" or "white bottom" First Level, Top Second Level, Bottom

First-level	Second-level	Joint Probabilities
$\operatorname{Pr}(B 1)=\frac{11}{36}$	$\operatorname{Pr}(B 2 \mid B 1)=\frac{6}{11}$	$\operatorname{Pr}(B 1 \cap B 2)=\frac{6}{36}=\frac{1}{6}$
	$\operatorname{Pr}(W 2 \mid B 1)=\frac{5}{11}$	$\operatorname{Pr}(B 1 \cap W 2)=\frac{5}{36}$
$\operatorname{Pr}(W 1)=\frac{25}{36}$	$\operatorname{Pr}(B 2 \mid W 1)=\frac{5}{25}$	$\operatorname{Pr}(W 1 \cap B 2)=\frac{5}{36}$
	$\operatorname{Pr}(W 2 \mid W 1)=\frac{20}{25}=\frac{4}{5}$	$\operatorname{Pr}(W 1 \cap W 2)=\frac{20}{36}=\frac{5}{9}$

(b) (5 pts / no work needed) $\operatorname{Pr}(W 1)=\frac{25}{36}$
(c) (5 pts / no work needed) $\operatorname{Pr}(W 2 \mid B 1)=\frac{5}{11}$
(d) (5 pts / 1 pt for showing work)
$\operatorname{Pr}(B 2)=\operatorname{Pr}(B 2 \cap B 1)+\operatorname{Pr}(B 2 \cap W 1)=\frac{1}{6}+\frac{5}{36}=\frac{11}{36}$ (Total Probability) OR
$\operatorname{Pr}(B 2)=\operatorname{Pr}(B 1)=\frac{11}{36}$ (symmetry argument - top and bottom are same)

