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Motivation

Faster weather physics for operational Navy 

Environmental Prediction sysTem Utilizing the 

NUMA corE (NEPTUNE)

Target architectures: Micro-acrchitectures

Intel Knights Landing (KNL), 

Intel Haswell

Portability with OpenMP
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NEPTUNE

NEPTUNE

Dynamics Physics

WSM6GFS
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Physics Optimization Challenges

Water vapor

Cloud water Cloud ice

Rain Snow

Grauple

WRF single-moment 6-class 
Microphysics Scheme (WSM6)

Large loops with 

many conditional not 

favorable for 

parallelism.

Difficult to optimize 

with transition between 

many regimes.
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Vertical Physics Advantage

Vertical Physics  representation

Dependencies within 

columns.

No dependencies 

between columns.
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Identify 

Bottlenecks

Apply Findings 

to Physics 

Schemes

Standalone 

Experiments

Identify bottlenecks

Wall Clock, Vtune.

Advisor, optrpt.

Standalone experiments

Apply findings to physics

Methodology
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Transpose

!$OMP DO

do j=1,km

do i=1,im

a(i,k)=b(i,k)-c(i,k)

end do

end do 

!$OMP DO

do i=1,im

do j=1,km

a(k,i)=b(k,i)-c(k,i)

end do

end do 

j →

Thread id = j

i→

Thread id = i
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Vectorization

!$OMP DO

do j=1,km

!$OMP SIMD

do i=1,im

a(i,k)=b(i,k)-c(i,k)

end do

end do 

!$OMP DO

do i=1,im

!$OMP SIMD

do j=1,km

a(k,i)=b(k,i)-c(k,i)

end do

end do 

j →

Thread id = j

i→

Thread id = i
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j →j →

SOA 1 SOA 2

Chunk size = multiple of vector length

A B

Structures of Arrays (SOA)
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1 socket  

64 cores

4 threads per core

2VPU per core (AVX-512)

Clock of 1.5 Ghz

L1 32k 

L2 1024k 

MCDRAM 16GB

Architectures

4 sockets 

18 cores per socket

2 threads per core

VPU (AVX-2)

Clock of 2.5 Ghz

L1 32k 

L2 256K 

L3 46MB

Intel Knights Landing(KNL) Intel Xeon CPU E-7-8890 

(Haswell)
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Threads

Speed-up

Transpose vs 

SOA

Identify suitable 

chunk size.

Thread-local SOA 

2x faster than 

transpose.

T
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Threads
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GFS Rad. 

Results

Scale up to 30x 72 

threads on Haswell.

Scale up to 23x 64 

threads on KNL.

Dynamics 

scheduling performs 

better.
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Discussion

Better runtimes with haswell because more cores 

and faster clock.
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Discussion

Better runtimes with haswell because more cores 

and faster clock.

Better speed-ups with KNL because better 

utilization of threads.
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Conclusion and Future Work

Code modification to use thread-local SOA.

Identifying the appropriate chunk size to maximize 

work per thread and locality.

Future Directions

Better understanding of how to improve peak 

performance.

Study of MPI+OpenMP on larger test cases in context of 

NEPTUNE.
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Thank you!! 

Questions?

E-mail: touermi@sci.utah.edu
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Dynamic scheduling 

better in both cases.

70x on KNL and 

26x on Haswell.

FLAT better results 

than CACHE on KNL. 

Haswell peak at 32 

threads and KNL at 

64 threads

WSM6 Results

Threads
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GFS Phys. 

Results

Scale up to 18x with 

72 threads on 

Haswell.

Scale up to 27x with 

128 threads on KNL.

Static scheduling 

performs better than 

dynamics.
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Structure of Arrays (SOA)

...

SOA chunk size. 

Corresponds to parts of i 

loop.

- Simple example of SOA.

- Figure to the right shows actual SOA used in WSM6 optimization.

- Chunk size is chosen to be multiple of vector unit length.

- Top down optimization approach = From “high-level” to “low-level”

Basic AOS to SOA

Physics column

Transpose example
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Complex Loop Parallelization

•No conditional 9.7x

•No function calls 30x

•Vectorization 41x

do k=kte,kts-1

do i=its,ite

…

if(t(i,k).gt.t0c)then

…

w(i,k) = venfac(p(i,k), t(i,k), den(i,k))

if(qrs(i,k,2).gt.0)then

…

psmlt(i,k)=xka(t(i,k), den(i,k)…

end if 

if(qrs(i,k,2).gt.0)then

psmlg(i,k)=xka(t(i,k), den(i,k)…

…

end if

end if

end do

end do 

Loop 12 from WSM6 20



1D Arrays Experiments

!$OMP SIMD

do j=2,je-1

a(j)=0.1+c(j)/d(j)

b(j)=(0.2+c(j-1)-c(j))/(c(j)-c(j-1)+0.5)

end do 

1D case

Number of threads

Speed-up
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1D Arrays Experiments

!$OMP SIMD

do j=2,je-1

a(j)=0.1+c(j)/d(j)

b(j)=(0.2+c(j-1)-c(j))/(c(j)-c(j-1)+0.5)

end do 

1D case with large array sizes 

Number of threads

Speed-up
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2D Arrays Experiments

2D case

Number of threads

Speed-up

do j=2,je-1

!$OMP SIMD

do i=1,ie

a(i,j)=0.1+c(i,j)/d(i,j)

b(i,j)=(0.2+c(i,j-1)-c(i,j))/(c(i,j)-c(i,j-1)+0.5)

end do 
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2D Arrays Experiments

2D case with large array sizes

Number of threads

Speed-up

do j=2,je-1

!$OMP SIMD

do i=1,ie

a(i,j)=0.1+c(i,j)/d(i,j)

b(i,j)=(0.2+c(i,j-1)-c(i,j))/(c(i,j)-c(i,j-1)+0.5)

end do 
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Chunk Size

Number of threads

Time(ms)

25



KNL Architecture

•MCDRAM:16GB, High BW

•Peak 3 teraflops double 

precision

•512 bit vectors

Tile
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MCDRAM & Configurations

Cores+L2
MCDRAM

(as cache)
DDR

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space

MCDRAM

(as cache)

● Cache Mode

○ No source changes needed

○ Misses are expensive (higher 

latency)

● Flat Mode

○ MCDRAM mapped to physical 

address

■ use numactl -- for 

configuration

○ Exposed as NUMA node

● Hybrid Mode

○ Combination of flat and cache 

mode

■ eg: 8GB cache and  8GB flat
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