
Performance Optimization

Techniques for Accelerating

WRF Physics Codes on Intel

Micro-architectures

Intel Parallel

Computing Center

Presented by:

T.A.J.Ouermi, Mike Kirby, Martin Berzins

1

Motivation

Faster weather physics for operational Navy

Environmental Prediction sysTem Utilizing the

NUMA corE (NEPTUNE)

Target architectures: Micro-acrchitectures

Intel Knights Landing (KNL),

Intel Haswell

Portability with OpenMP

2

NEPTUNE

NEPTUNE

Dynamics Physics

WSM6GFS

3

Physics Optimization Challenges

Water vapor

Cloud water Cloud ice

Rain Snow

Grauple

WRF single-moment 6-class
Microphysics Scheme (WSM6)

Large loops with

many conditional not

favorable for

parallelism.

Difficult to optimize

with transition between

many regimes.

4

Vertical Physics Advantage

Vertical Physics representation

Dependencies within

columns.

No dependencies

between columns.

5

Identify

Bottlenecks

Apply Findings

to Physics

Schemes

Standalone

Experiments

Identify bottlenecks

Wall Clock, Vtune.

Advisor, optrpt.

Standalone experiments

Apply findings to physics

Methodology

6

Transpose

!$OMP DO

do j=1,km

do i=1,im

a(i,k)=b(i,k)-c(i,k)

end do

end do

!$OMP DO

do i=1,im

do j=1,km

a(k,i)=b(k,i)-c(k,i)

end do

end do

j →

Thread id = j

i→

Thread id = i

7

Vectorization

!$OMP DO

do j=1,km

!$OMP SIMD

do i=1,im

a(i,k)=b(i,k)-c(i,k)

end do

end do

!$OMP DO

do i=1,im

!$OMP SIMD

do j=1,km

a(k,i)=b(k,i)-c(k,i)

end do

end do

j →

Thread id = j

i→

Thread id = i

8

j →j →

SOA 1 SOA 2

Chunk size = multiple of vector length

A B

Structures of Arrays (SOA)

9

1 socket

64 cores

4 threads per core

2VPU per core (AVX-512)

Clock of 1.5 Ghz

L1 32k

L2 1024k

MCDRAM 16GB

Architectures

4 sockets

18 cores per socket

2 threads per core

VPU (AVX-2)

Clock of 2.5 Ghz

L1 32k

L2 256K

L3 46MB

Intel Knights Landing(KNL) Intel Xeon CPU E-7-8890

(Haswell)

10

Threads

Speed-up

Transpose vs

SOA

Identify suitable

chunk size.

Thread-local SOA

2x faster than

transpose.

T
im

e
(s

e
c
)

Threads

11

KNL

KNL

GFS Rad.

Results

Scale up to 30x 72

threads on Haswell.

Scale up to 23x 64

threads on KNL.

Dynamics

scheduling performs

better.

S
p
e
e
d
-u

p
s

Threads

S
p
e
e
d
-u

p
s

Threads 12

Haswell

KNL

Discussion

Better runtimes with haswell because more cores

and faster clock.

13

Discussion

Better runtimes with haswell because more cores

and faster clock.

Better speed-ups with KNL because better

utilization of threads.
14

Conclusion and Future Work

Code modification to use thread-local SOA.

Identifying the appropriate chunk size to maximize

work per thread and locality.

Future Directions

Better understanding of how to improve peak

performance.

Study of MPI+OpenMP on larger test cases in context of

NEPTUNE.

15

Thank you!!

Questions?

E-mail: touermi@sci.utah.edu
16

Acknowledgements:

Intel Parallel Computing Center.

Alex Reinecke, Kevin Viner (NRL), John Michelakes

(UCAR)

mailto:touermi@sci.utah.edu

Dynamic scheduling

better in both cases.

70x on KNL and

26x on Haswell.

FLAT better results

than CACHE on KNL.

Haswell peak at 32

threads and KNL at

64 threads

WSM6 Results

Threads

S
p
e
e
d

-u
p
s

Threads

S
p
e
e
d
-u

p
s

17

Haswell

KNL

GFS Phys.

Results

Scale up to 18x with

72 threads on

Haswell.

Scale up to 27x with

128 threads on KNL.

Static scheduling

performs better than

dynamics.

S
p
e
e
d
-u

p
s

Threads

S
p
e
e
d
-u

p
s

Threads
18

Haswell

KNL

Structure of Arrays (SOA)

...

SOA chunk size.

Corresponds to parts of i

loop.

- Simple example of SOA.

- Figure to the right shows actual SOA used in WSM6 optimization.

- Chunk size is chosen to be multiple of vector unit length.

- Top down optimization approach = From “high-level” to “low-level”

Basic AOS to SOA

Physics column

Transpose example

19

Complex Loop Parallelization

•No conditional 9.7x

•No function calls 30x

•Vectorization 41x

do k=kte,kts-1

do i=its,ite

…

if(t(i,k).gt.t0c)then

…

w(i,k) = venfac(p(i,k), t(i,k), den(i,k))

if(qrs(i,k,2).gt.0)then

…

psmlt(i,k)=xka(t(i,k), den(i,k)…

end if

if(qrs(i,k,2).gt.0)then

psmlg(i,k)=xka(t(i,k), den(i,k)…

…

end if

end if

end do

end do

Loop 12 from WSM6 20

1D Arrays Experiments

!$OMP SIMD

do j=2,je-1

a(j)=0.1+c(j)/d(j)

b(j)=(0.2+c(j-1)-c(j))/(c(j)-c(j-1)+0.5)

end do

1D case

Number of threads

Speed-up

21

1D Arrays Experiments

!$OMP SIMD

do j=2,je-1

a(j)=0.1+c(j)/d(j)

b(j)=(0.2+c(j-1)-c(j))/(c(j)-c(j-1)+0.5)

end do

1D case with large array sizes

Number of threads

Speed-up

22

2D Arrays Experiments

2D case

Number of threads

Speed-up

do j=2,je-1

!$OMP SIMD

do i=1,ie

a(i,j)=0.1+c(i,j)/d(i,j)

b(i,j)=(0.2+c(i,j-1)-c(i,j))/(c(i,j)-c(i,j-1)+0.5)

end do
23

2D Arrays Experiments

2D case with large array sizes

Number of threads

Speed-up

do j=2,je-1

!$OMP SIMD

do i=1,ie

a(i,j)=0.1+c(i,j)/d(i,j)

b(i,j)=(0.2+c(i,j-1)-c(i,j))/(c(i,j)-c(i,j-1)+0.5)

end do
24

Chunk Size

Number of threads

Time(ms)

25

KNL Architecture

•MCDRAM:16GB, High BW

•Peak 3 teraflops double

precision

•512 bit vectors

Tile

26

MCDRAM & Configurations

Cores+L2
MCDRAM

(as cache)
DDR

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space

MCDRAM

(as cache)

● Cache Mode

○ No source changes needed

○ Misses are expensive (higher

latency)

● Flat Mode

○ MCDRAM mapped to physical

address

■ use numactl -- for

configuration

○ Exposed as NUMA node

● Hybrid Mode

○ Combination of flat and cache

mode

■ eg: 8GB cache and 8GB flat
27

