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Abstract— Accurate object shape knowledge provides impor-
tant information for performing stable grasping and dexterous
manipulation. When modeling an object using tactile sensors,
touching the object surface at a fixed grid of points can be
sample inefficient. In this paper, we present an active touch
strategy to efficiently reduce the surface geometry uncertainty
by leveraging a probabilistic representation of object surface. In
particular, we model the object surface using a Gaussian process
and use the associated uncertainty information to efficiently
determine the next point to explore. We validate the resulting
method for tactile object surface modeling using a real robot
to reconstruct multiple, complex object surfaces.

I. INTRODUCTION

As robots move from laboratories to domestic environ-
ments, they will be required to perform manipulation tasks
in unstructured environments. Such robots must be able to
achieve sophisticated interactions with the environment and
to perform complex tasks such as grasping objects with arbi-
trary unknown shapes [1], and avoiding slip while applying
minimal force to the grasped objects [2]. Object surface
property reconstruction plays a vital role in allowing robots
to implement these tasks. For instance, shape information is
often important for stable grasping as robots can adjust the
grasping pose accordingly if shape of the object is known [1].
Surface roughness is closely related to the minimal force
applied on the object to counteract slip events [2].

Surface property reconstruction from photos, especially
shape reconstruction, has extensively been investigated by
the computer vision community [3]–[5]. However, vision-
based methods suffer from limitations such as the available
illumination and are not applicable when the object is not
visible or occluded. In this case, the sense of touch becomes
a particularly valuable and complementary sensation to sur-
face property modelling. Compared to vision-based methods,
tactile-based approaches are always local [6], i.e., during
each touch, only a small part of the object surface can be
touched. Thus a robot must touch a given object at several
locations along its surface to recover the shape.

State-of-the-art tactile sensors show similar sensing capa-
bilities such as dynamic tactile sensing [7] when compared to
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Fig. 1. A BioTac finger mounted on a Mitsubishi PA-10 robot arm equipped
with a Schunk force torque sensor. The steel container is fixed to a vertical
surface in order to ensure the surface data alignment during each touch. Its
front surface is to be reconstructed. The red coordinate frame denotes the
axis direction of the world reference frame that is located at the base of the
robot.

humans. In particular, for detecting vibrations, these sensors
are more sensitive and accurate than humans [8]. A number
of approaches have explored these enhanced capabilities to
perform tactile-based object shape reconstruction [6], [9]–
[12]. These methods commonly begin with touching the
object at a grid of points, which can be sample inefficient
for real robot systems. For example, a grid of 50 hand poses
is necessary to cover the entire surface of an object when
using the Schunk hand in [6]. However, grid search might
not be the best solution for object surface reconstruction
as adjacent points on the object surface tend to be highly
correlated in terms of local geometrical features. In this
article, we represent the tactile-based object surface models
using Gaussian processes. Based on these models, an active
touch strategy is used to reduce the number of sampling
iterations necessary for reconstructing the object surface.
We demonstrate this approach is capable of achieving faster
reconstruction rates when compared to random sampling.

II. RELATED WORK
Shape is one of the most important surface properties

of an object. It can be decomposed into global and local
shape [13]. The global shape emphasizes the form of an
object, while the local shape is linked to local features such
as curvatures and edges.

Montana [9], used the kinematics of contact to estimate
the local curvature of an unknown object. The kinematics
of contact could be employed in contour following as well
under the assumption that the end-effector velocity relative
to the immobilized object was measurable by proprioceptive
sensors. Jia and Tian [12], presented a method for surface
patch reconstruction using “one-dimensional” tactile data.



The tactile data was obtained by a two-axis joystick sensor.
By simply sliding the fingers over the object surface and
using contour tracking techniques, the problem of probing
the surface at a grid of points is alleviated. Moll and
Erdmann [14], used two tactile sensors to reconstruct an
unknown smooth convex planar shape without requiring
object immobilization. A closed-form solution regarding the
relationship between curvature at the contact points and the
rotational speed of the object was provided. Reznik and
Lumelsky [15], assumed that every point of the robot hand
surface was endowed with the capability of tactile sensing.
Based on this assumption, the robot hand was expected to
be able to manipulate objects with arbitrary unknown shapes.
However, this assumption is quite unrealistic and unfeasible
with current technology. Allen and Michelman [11], made
an attempt to represent the object surface geometry as
a superquadric surface. Dragiev et al. [16], presented a
tactile exploration strategy based on Gaussian process im-
plicit shape potential (GPISP) for grasping. The uncertainty
aware grasping method improved the performance of tactile
exploration. However, this strategy was not implemented
on a real robot. Inspired by the method used in mobile
robot navigation, Bierbaum et al. [17], presented a tactile
exploration strategy with an anthropomorphic five-finger
hand. This approach was able to guide the robotic hand along
the surface of previously unknown objects.

Traditionally, visual information is prefered for object
reconstruction. Li et al. [18], developed a novel tactile sensor
known as Gelsight. With this sensor, they were able to
reconstruct the 3-D surface geometry of several objects with
the aid of photometric stereo algorithms. This new tactile
sensing technique was shown to be highly accurate during
small parts manipulation and insertion of a USB connector
into its socket. Another vision-based tactile sensor was
developed to estimate the irregularity of object surfaces [19].
The intensity of the traveling light produced by a LED carries
the geometrical information of the touchpad surface. Bjork-
man et al. [10] poposed a probabilistic approach based on
Gaussian process regression to enhance visual perception of
shape. Tactile measurements iteratively improved the object
surface model that was initialized with visual features. Ilonen
et al. [20], proposed a method for optimally fusing visual
and tactile measurements for symmetrical objects. The visual
information was captured by an RGB-D sensor, and tactile
information from grasping the unknown object in varying
angles was employed to refine the object model.

In this paper, we solely focus on object surface modelling
with tactile information. The main contribution is an active
touch strategy to reduce the surface geometry uncertainty
using a probabilistic representation of the object surface. In
particular, we use a Gaussian process in conjunction with
the acquisition function to efficiently find the next points to
explore.

III. ACTIVE TACTILE OBJECT MODELLING AND
EXPLORATION

We now focus our attention on our approach for efficiently
reconstructing an object surface model. We first describe how
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Fig. 2. Example objects (left) and registered tactile point clouds (right) of
the front surface of a steel container and the face of a porcelain bird. The
rectangular zones are to be reconstructed. The point cloud of the porcelain
bird with side view and the point cloud of the front surface of the steel
container with top view. Tactile point clouds are obtained with a BioTac
tactile sensor.

to convert our raw tactile measurements into a consistent
reference frame. Subsequently, we give a detailed description
of estimating an object surface model using a Gaussian
process. We then show how we use uncertainty estimates
to drive our active tactile data exploration strategy.

A. Point Cloud Registration with Tactile Sensing

In our experiments to explore the object surface geometry,
the BioTac sensor is used for acquiring the necessary tactile
data. The BioTac tactile sensor is a multimodal tactile sensor
that pressure, vibration, and temperature [21]. It contains
Ne = 19 impedance sensing electrodes, which measure the
local deformation on the finger surface. We combine these
readings into an estimate of a single point of contact (PoC).
This estimate is calculated by a weighted average of the
Cartesian coordinates of all electrodes. The weights are the
impedance values from each of the electrodes. The point of
contact (xc, yc, zc) is given by

(xc, yc, zc) =

∑Ne

i=1 |ei∗ |2(xi, yi, zi)∑Ne

i=1 |ei∗ |2
, (1)

where ei∗ is the normalized value of the electrodes, and
(xi, yi, zi) is the Cartesian coordinate of each electrode on
the finger surface. The obtained PoC is in a coordinate frame
attached locally to the BioTac. In order to use these PoC
estimates for surface reconstruction, we must transform the
position mn = (xc, yc, zc) into the our world coordinate
frame using the robot’s forward kinematics. We denote the
transformed point xn. Fig. 2 depicts the two objects we used
in experiments along with registered point clouds built from
tactile data samples.

B. Gaussian Processes as Surface Models

Gaussian processes (GPs) [22] are a powerful tool for re-
gression problems. In this paper, we use Gaussian processes
to model object surfaces. These models are a probabilis-
tic representation of the surface geometry. While implicit
surface models have been proposed using GPs [10], [23],
we elect to use an explicit representation in order to avoid



the need of creating artificial interior and exterior boundary
points to stabilize the surface model. However, the active
touch approach we present is still valid for the implicit
GP model, as long as some care is taken to account for
these artificial points. Our explicit model of the surface takes
the form yn = f(xn, zn), with (xn, yn, zn) defined as the
contact coordinate, xn, in the world reference frame (refer
to Fig. 1).1

A GP is fully specified by mean function µ(x̃) and
covariance function k(x̃i, x̃j). Where x̃i = (xi, zi). We
choose as covariance function the squared exponential

k(x̃i, x̃j) = σ2
fe−

1
2 (x̃i−x̃j)

T Λ−1(x̃i−x̃j) + σ2
wδij , (2)

where Λ is a diagonal matrix and δij is the Kronecker delta.
The prior mean function µ(x̃) is specified by µ(x̃) = 0. We
define the training data set as T = [(x̃1, y1), . . . , (x̃N , yN )].
For a new observation x̃∗, the predictive distribution of a GP
is Gaussian with the mean µ(x̃∗) and the variance σ2(x̃∗)

µ(x̃∗) = kT
∗ K−1y, σ2(x̃∗) = k∗∗ − kT

∗ K−1k∗, (3)

where k∗ is a vector with N entries k(x̃i, x̃∗), K is the
matrix with Kij = k(x̃i, x̃j) and k∗∗ = k(x̃∗, x̃∗). The
posterior mean defines an estimate of the object’s shape and
the posterior variance defines the uncertainty regarding the
unexplored area.

C. Action Selection

Due to the inherent locality of tactile sensing, a robot must
touch an object at multiple locations in order to cover the
entire surface of the object. Performing many touch actions
can be sample inefficient. We devise an efficient strategy
for deciding the next touch action in order to reduce the
total number of object probes. By updating the probabilistic
representation given in Equation 3 after each touch, we can
employ a straightforward strategy for exploring the object.

We draw our inspiration from Bayesian optimization (BO),
which uses different “acquisition functions” to address the
choice of which point to sample from a target object function
when performing black-box optimization in an iterative man-
ner [24]. BO has been used in various robotic applications
such as gait optimization [25], grasp optimization [26], and
policy search [27]. In the literature, a number of acquisition
functions α(x̃) have been proposed, such as upper confidence
bound (UCB) [28], probability of improvement (PI) [29]
and expected improvement (EI) [30]. All of these proposed
acquisition functions implicitly handle the exploration versus
exploitation trade-off. Our active touch approach focuses on
exploration of uncertain surface regions and thus does not
need to account for exploitation of well-known surface areas.
We base our acquisition function on the predicted standard
deviation, σ(x̃), as it can be seen as a measures of surface
uncertainty at a given location. The surface point with highest
uncertainty serves as a good candidate for the next touch
location, as it is either far from any recorded measurements

1The choice of predicting the y-component instead of x or z is arbitrary.
We have selected y as it was the direction the robot arm moves in our
experimental setup.

Algorithm 1 Active Tactile Exploration with GPs
Initialize:

Store N initial points T = [(x̃1, y1), . . . , (x̃N , yN )].
Loop:

1) Train a GP surface model based on T.
2) Calculate acquisition function,

α(x̃) = σ(x̃).

3) Find the optimal value x̃∗ of α(x̃),

x̃∗ = argmax
x̃

α(x̃).

4) Evaluate x̃∗ and obtain y∗ from the robot.
5) Add (x̃∗, y∗) to data set T.

or near areas of large surface variation. We thus define our
acquisition function as α(x̃) = σ(x̃). Our active tactile
exploration approach is outlined in Algorithm 1, and it will
be subsequently referred to as the “active touch method”. To
find the global optima of the acquisition function, we use
DIRECT [31] to find the approximately optimal solution,
which is subsequently refined by LBFGS [32].

IV. EXPERIMENTS AND RESULTS

We evaluate our active touch method on a benchmark task
and realistic experiments. First, we validate the proposed
method on a 1-D toy example. Second, we apply the active
tactile exploration approach to the task of object surface re-
construction using a real robot. As a baseline, we compare to
a method which chooses touch locations uniformly randomly.

A. Proof of Concept: A Toy Example

The toy example is a 1-D function which consists of a
curved part and a flat part. It is defined as

f(x) =

{
sin(ωx) + 1 if− 1 ≤ x ≤ 1

1 if− 2 ≤ x < −1 or 1 < x ≤ 2,
(4)

where ω = 4π.
The active exploration process for an unknown 1-D func-

tion is illustrated in Fig. 3. The top and bottom row represent
the optimization process with the random and active touch
approaches respectively. The green curve shows the true
function. The shaded area (red and blue) represents the
95% confidence bound of the GP model. The exploration
process is initialized with five random points (shown as blue
crosses). These points are also used to initialize the GP
models. The maximum of the acquisition function determines
the next points (i.e. the red crosses) to be explored by
the active exploration method. The GP models are updated
after each sampling iteration. After a few iterations, the GPs
could accurately model the true function. We conclude that
the active touch method is more accurate at reconstructing
the unknown 1-D curve while using fewer points than the
random touch method. In this experiment, we quantify the
similarity between the true function and the reconstructed
function by measuring the correlation coefficient between
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Fig. 3. A toy example of the active exploration process for reconstructing an unknown 1-D surface (green curve). The 95% confidence of the model
prediction is represented by the shaded area. The red (top) and blue area (bottom) represent optimization based on random touch, and on active touch
respectively. The surface model is initialized with 3 random points (blue crosses). The subsequent points to explore are marked with red crosses. At each
iteration, the model is updated using all the obtained points (both blue and red crosses). After a few iterations, the active touch method is able to reconstruct
the unknown 1-D curve more accurately.

Fig. 4. The correlation coefficient over 50 evaluations for both the random
and active touch. Both methods are initialized with 3 random touches.
The shaded areas represent the standard error. The correlation coefficient
between the real function and reconstructed function almost reaches 1 after
23 touches with the active touch approach.

the two, defined by:

R =

∫
f(x)f̂(x)dx√∫

f(x)2dx
∫
f̂(x)2dx

, (5)

where f(x) and f̂(x) are the true function and reconstruct-
ed function respectively. The integrals in Equation 5 are
approximated as sums over the test set. Fig. 4 shows the
average correlation coefficient between the real and predicted
function over ten trials for both the active and the random
touch method. As expected, the correlation coefficient almost
converges to 1 much faster when using the active touch
approach. The random approach obtains a higher correlation
coefficient initially up until about 15 samples. We attribute
this to the hyperparemeter estimation being overly-confident,
causing the system to select a larger characteristic length-
scale than the true function. We could potentially fix this
by bounding the length scale to some maximum value,
proportional to the desired resolution of our result. We leave
this to future work.

B. Tactile Object Surface Modelling
We explain how we perform tactile object surface mod-

eling using a real robot. Starting with a description of the
experimental robot platform, we follow with a detailed ex-
planation of the tactile data collection procedure. Finally, we
present the results of the tactile object surface reconstruction.
Experimental Setup: The experiments were conducted on
a Mitsubishi PA-10, a robot arm with seven degrees of

freedom. A BioTac tactile sensor, used to touch the object,
is rigidly attached to a force-torque sensor. The force-torque
sensor is mounted to the end effector of the robot arm. It
allows the robot to perceive the force exerted on the object,
and is used in order to avoid any unexpected collisions. An
inverse Jacobian controller is implemented to drive the robot
end effector to the desired task space locations. The objects
used include the steel container and porcelain bird shown in
Figure 2. We affix the objects to a vertical surface in order
to ensure that the surface data remains aligned during the
entire data collection procedure. The complete setup can be
seen in Fig. 1. In addition to the signals from 19 electrical
impedance electrodes, the BioTac sensor produces another
four types of tactile signals: absolute fluid pressure (PDC)
signal, dynamic fluid vibration (PAC) signal, temperature
(TDC) and heat flow (TAC). In our experiments, a contact
between the BioTac finger and touched objects is considered
to occur if a change in the absolute fluid pressure passes a
small threshold.

Data Collection: The area to be reconstructed for both the
steel container and the porcelain bird is constrained to a
predefined rectangular zone (refer to Fig. 2). For both the
random and active touch approaches, the first several touches
are randomly performed. Specifically, a random value of
(x, z) in the world reference frame is uniformly sampled
from the predefined zone, and then the end effector moves in
the negative y-axis direction until it detects contact and stops.
The actual contact position between the BioTac finger and
the object surface is computed using the 19 electrodes and
is registered after the homogeneous transformation described
in Section III-A. After obtaining these random tactile surface
samples, the end effector will move back concluding the
random sampling phase. It is worth mentioning that the
contact position computed from the BioTac may not have
the same (x, z) components as the point chosen by the
acquisition functions. This can easily occur since the BioTac
will likely make contact with the object at some location
other than the commanded position for the finger center.
These initial samples are used to initialize the Gaussian
process surface model. Subsequent touch locations (x, z)
are calculated differently for the active touch and random



Fig. 5. Evolution of the steel container model as function of the number of touches. The optimization is initialized with 5 random touches (blue points).
The subsequent points to explore are marked with red points. The top row represents the model build from random samples. The bottom row shows results
for the active touch method. The columns from left to right represent the models after (a) 5, (b) 10, and (c) 15 additional touches. (d) The real object for
comparison. Each predicted surface is the mean of the GP computer over the test set. The active touch method more accurately reconstructs the object
surface for a given number of samples compared to the random touch approach.
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Fig. 6. An example of the active touch method for determining a new
touch location. The acquisition function is high where the Gaussian process
predicts a high uncertainty (left). The position with the maximum acquisition
function value defines the next touch location (right).

touch approaches. The active touch approach is based on
Algorithm 1, while the random touch approach continues to
randomly sample from the predefined zone. The GP model is
updated after each sampling iteration. This iterative sampling
procedure is repeated by both approaches until a reasonable
tactile data set is collected.
Surface Estimation Results: The active exploration process
for the steel container is illustrated in Fig. 5. The top and
bottom row represent the optimization process of random
touch and active touch respectively. The exploration process
is initialized with five random touch points (i.e. the blue
points). The GP models are initially trained on those random
touches and iteratively determine subsequent touch points
(i.e. the red points) to explore. The predicted surfaces are the
means of GPs computed over the test set. It is shown that
the GP models based on active touch accurately model the
surface using only ten additional touches. Fig. 6 illustrates
an example of using the active touch method to determine
the next touch location. We see that the GP models a
larger characteristic length-scale of the covariance function
in the Z−dimension compared to the X−dimension. This
characteristic was automatically learned by the GP and is
consistent with the real object.

Fig. 7 depicts the active exploration process for the porce-
lain bird. The top and bottom rows represent the exploration

(a) 100 touches

Random Touch Active Touch

X

Y

Z
X

Z

(b) Real object

Fig. 7. (a) The porcelain bird models for both the random and active touch
approaches with 20 randomly selected initial touches (blue points) and 100
additional touches (red points). (b) The real object for comparison. The
predicted surfaces are the means of GPs over the test set. After 100 touches,
the active method could model the bird face more accurately, particularly
at the edge of the explored zone.

strategies of random touch and active touch respectively.
Each exploration process is initialized with 20 random touch
points (i.e. the blue points). The figure represents the models
after 100 additional touches. The active touch method better
reconstructs the face of the porcelain bird. In particular, it
more accurately models the boundaries of the reconstruction
zone. However, both methods fail to model the nose of the
porcelain bird. Several factors lead to this issue. First it may
be caused either by the smoothness limitations imposed by
the covariance function or samples being averaged out in
computing the maximum a posteriori (MAP) estimate. This
problem arises from data being difficult to collect near the
edge of the nose, because of the relatively large size of the
BioTac sensor compared to the nose.

V. CONCLUSIONS
Tactile object surface reconstruction is a complex task. In

this paper, we circumvent exhaustively touching the object
in a grid by presenting an active exploration approach.
We validate our method on a toy example and on tactile



object surface modeling using a real robot. The toy example
successfully shows that our active touch approach can recon-
struct an unknown 1-D surface more accurately while using
fewer points compared to the random touch method. For the
tactile object modeling task, our robot strategically chooses
the point to be touched. This approach makes a reasonable
estimate of an object’s shape, while dramatically reducing
the exploration time. The reconstructed object features have
great promise for a number of applications, such as object
recognition and stable grasping. A limiting assumption of
our method is, that the object has to be rigid and must be
immobilized during the entire data collection procedure.

The presented work can be extended in several directions.
We will further incorporate visual perception to facilitate the
surface reconstruction. Another interesting direction involves
incorporating active contour following, a natural form of
exploration used by human beings. Finally, we would like to
combine the shape information provided by reconstruction
with our previous work [33] on tactile object recognition.
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