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ABSTRACT
This paper focuses on the assembly planning process for

constructing polygonal furniture (such as cabinets, speakers,
bookshelves, etc.) using robotic arms and manipulators. An
algorithm is described that utilizes easily-implemented and
generally-accepted motion planning algorithms to take advan-
tage of the polygonal nature of the furniture, which reduces the
complexity of the assembly planner. In particular, the algorithm
disassembles a given CAD model in simulation to find a valid
assembly order and disassembly path, then implements that as-
sembly order with two robotic arms, using the disassembly path
as the finishing path of the part into the assembly. Additionally,
it finds a collision-free plan developed for each of the arms in the
correct assembly order with the final result being the assembly
of the model.

INTRODUCTION
Robotics-based automation of the assembly process for var-

ious products including furniture has attracted significant atten-
tion for improving throughput and lowering production costs [1].
For this reason, the field of Assembly Planning (AP) has received
substantial attention in recent years [2]. With furniture such as
cabinets, speakers, bookshelves, or boxes, an assembly planner
can take advantage of the polygonal nature of furniture, for ex-
ample, to reduce the complexity of the assembly. Described
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herein is an easily-implemented algorithm that enables the as-
sembly of polygonal furniture when given the computer-aided
design (CAD) file of the desired furniture. Robotics-based con-
struction of polygonal furniture is common [3, 4], likewise for
assembling printed circuit boards [5], in the automotive man-
ufacturing sector [6], and many other manufacturing environ-
ments [7]. This algorithm is well suited for different manufactur-
ing processes which require assembly planning to produce fully
autonomous robotic assembly systems.

The field of Assembly Sequence Planning (ASP) is a subdi-
vision of AP and significant research has been done to improve
current assembly sequence planners. Work by Belhadj et al. [8],
Morato et al. [9], and others [10, 11] focus on finding solutions
for this assembly sequence problem. Other researchers such
as Dogar et al. [12, 13] assume that the sequence of assembly
has been performed previously and therefore focus on the chal-
lenges faced in the physical assembly of the product. Knepper
et al. [4] propose a solution which combines these two areas of
research and offer one process that answers both issues. The al-
gorithm proposed in this paper fits into this last category in that it
both discovers an assembly sequence and also an assembly plan
which can be implemented by robotic arms. At the same time,
it uses easily-implemented and generally-accepted algorithms to
accomplish this task, which decreases the complexity of imple-
menting this algorithm in a real-world scenario.

The proposed approach involves two main steps: (1) dis-
covery of a viable assembly order and (2) assembly of the work
piece. The contribution of the technique proposed is twofold:
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1. uses the disassembly path in the assembly path, which fol-
lows the assembly by the disassembly philosophy [14, 15]
and

2. offers a novel, “start-to-finish” assembly algorithm which
employs easily-implemented and generally-accepted motion
planning techniques.

In particular, the algorithm finds a path to remove each part from
the assembly, called the disassembly path, which is then used to
“reassemble” the product as a part of the robot’s assembly path.
Concerning contribution number two, the proposed algorithm
uses an iterative-deepening depth-first search (IDDFS) [16] to
search through possible assembly sequences and uses a rapidly-
exploring random tree (RRT) [17, 18] to assess the plausibility
of the motion of parts and robotic arms through the workspace.
Both of these methods of search are widely accepted and gener-
ally used [16–23].

The proposed algorithm is designed for polygonal furniture,
but may be expanded to other polygonal assemblies. Further-
more, the algorithm was designed such that parts would be cut
from a flat piece of material, such as Medium Density Fiberboard
(MDF), then moved to an assembly area, where two robots could
assemble the pieces into their proper positions, based on the pro-
vided CAD model.

This algorithm was tested using the UR5 robot arm in the
3D simulation software, VREP, but it can be adapted for use with
any robot arm in any simulation software or other environment.

RELATED WORK
Several assembly planners have been created for different

tasks. Wang et al. [24] applied ideas from the food-tracking abil-
ities of ant colonies. In this work, Wang et al. present a method
of assembly planning that mimics the ability of the colony to
find food (the assembly plan), then find the shortest path to that
food. Using the positive feedback process, distributed compu-
tation, and the greedy constructive heuristic search, Wang et al.
present a method to finding assembly sequences that are “optimal
or near-optimal”.

Morato et al. [9] use assembly geometry and part proxim-
ity to define part clusters within the assembly, then apply a mo-
tion planning algorithm to determine which part clusters can be
removed from the assembly without collision with other parts.
Specifically, Morato et al. use a variation of RRT to assess the
feasibility of removing each part. The work presented in this
paper builds on that of Morato et al. by using the path found
while assessing assembly sequence feasibility as a forward path
for the part during assembly. This is referred to as the disas-
sembly path. This paper also uses motion planning to generate
plans for robot arms to assemble the work piece in a simulated in-
dustrial environment, where possible collision with robotic arms
and parts must be addressed. The work presented by Morato et

al. assumes that each part or part subassembly is a free-flying
object, thus grasping and robotic arm movement is not consid-
ered. Therefore, this paper addresses a more direct connection
between ASP and AP, using knowledge gained during ASP to
decrease the computation time of the assembly plan, while also
including a more complete presentation of the entire problem of
AP, from individual parts to assembled product.

Knepper et al. [4] use a geometric planner to create a sen-
sible assembly of the parts given only the parts as a guide. This
geometric planner aligns holes in each part with holes in other
parts, finding which plan uses all of the holes to connect parts to-
gether in the end assembly. The planning space is searched depth
first through all plausible mating of the pieces until a final form
is reached. This is then translated into a large set of small ma-
nipulation actions by a second planner. The paper also discusses
several interchangeable tool sets for performing all operations.
Finally, an algorithm is developed and presented for stringing
the entire plan together and determining success or failure.

Knepper et al. [11] use this same method to create several
possible assembly orders from one set of parts. The algorithm
proposed in this paper addresses assemblies of parts where the
method of attachment can be arbitrary, meaning the parts can be
assembled using glue, screws, nails, or other methods, and thus
is not restricted by using dowels to assemble the part.

Research performed by Dogar et al. [13] proposed modeling
the assembly problem in much the same way humans do. During
operation, the robots must decide whether it is more advanta-
geous to maintain a grasp and transfer the entire work piece to
the next operation, or to let go and grasp at a new location ad-
vantageous to the next step. This problem can be formulated as
a constraint satisfaction problem (CSP) [25] where they take as
inputs, the set of state variables, the domain of the variables and
the set of constraints. Using this process Dogar et al. propose an
algorithm for planning the sequences of grasps and carries neces-
sary to complete the assembly. Additionally, this paper outlines
previous work done to determine how to place delicate members
such as pegs and nails, which could be implemented into the al-
gorithm proposed in this paper to secure the pieces assembled by
the robots.

Wan et al. [10] focus mostly on 3D manipulations and algo-
rithms for obtaining the best motion plan to fit all components
together, taking into account the different grasping situations de-
pending on the component. The work also presents a method to
check the stability of the assembly as parts are placed within it.

Dogar et al. also cover various stages of assembly [12], start-
ing with moving a part to a different area of the manufacturing
floor, then aligning several pieces and using fasteners to attach
the parts. Specifically, Dogar et al. used perception to coordinate
the movements of several robots and the position of the parts to
be assembled. This paper discusses multi-scale perception, or
planning on large scales to move the part from location to loca-
tion, then on a smaller scale to align the parts for fastening.

2 Copyright c© 2019 by ASME



This paper addresses a“start-to-finish” algorithm which can
be used as a structure for implementation of much of the work
proposed above. However, the algorithm proposes a novel
method of finding a path for each part into the assembly by using
the disassembly path as part of the assembly path, which moves
the parts away from the assembly using the geometric center.
This method helps prevent using high-cost, precise movements
that could be necessary for placing a part in an exact pose with-
out collision with other parts in the assembly. Other parts of
the algorithm proposed here use standard methods in series with
one another, which methods have been proven effective in many
other applications [16–23].

TECHNICAL APPROACH
The goal of this algorithm is to allow a system of two robotic

manipulators to assemble a work piece based on a blueprint pro-
vided by the user. The plan should be generated and returned to
the user in a reasonable amount of time. If the algorithm cannot
generate a plan it should return “No Plan Possible”. The first step
in this process is to consider the simulated assembly environment
used build the work piece, which is described next.

Assembly Environment
The first consideration is the limitation of the simulation.

The simulation used to test the algorithm does not include the
physics of movement of the pieces. This means that the robotic
arm can manipulate any piece without regard to dropping, slip-
ping, or shifting work pieces. Each robot is equipped with a
vacuum gripper to hold each piece, which means the work piece
is assumed to be non-porous. This algorithm also does not con-
sider the weight of the piece to be moved and if the arm used in
the simulation is physically capable to manipulate the piece.

Now that the limitations of the simulation are defined, the
assembly area must be defined as well. This algorithm was im-
plemented in a large, open area in which the robots can move
without fear of collision to random objects, which is a similar
environment to the industrial robots that use fences surround-
ing their workspace. Furthermore, it is important to assume that
the individual pieces needed for assembly are readily accessible
to the robots. This could be accomplished by a specific layout
of all the pieces on a table or a conveyor belt system that brings
each piece into reach of the arm when requested. In the described
workspace, a central point in this area was selected to act as the
global coordinate system origin. From here, a reference to x =
0 m, y = 0 m, z = 0 m or (0, 0, 0) m will refer to this point.

With the workspace clearly established, the next step is to
establish a pose for the desired assembly. For convenience, the
assembly was centered at (0, 0, 0) m. From this point, the robotic
arms should be positioned in the workspace. Placing the arms in
the correct locations is a balance between several factors. The

most important factor is accessibility to any part in the assembly,
however, if the arms are placed too close, they are more likely to
collide with one another while moving through the area. This im-
plies that the arms chosen for the assembly task will be a major
factor in choosing placement. For this implementation, the arms
chosen were the Universal Robots UR 5 model. These arms were
chosen for the open source nature of the arm and their long reach
of 850 mm, offering potential to assemble larger pieces of fur-
niture. They were placed at (0.5, 0, 0.25) m and (-0.5, 0, 0.25)
m. The inverse kinematics were generated by Ryan Keating at
Johns Hopkins University [26].

Interpreting the Blueprint of the Assembly

The next piece in the process is the input of a blueprint.
The assembly planner was implemented in Python 2.7 using the
numpy-stl 2.8.0 library. This format was chosen for ease of use
with a wide variety of systems. The system will prompt the user
for a folder containing any number of STL files describing the
part. These parts should be generated by exporting an assembly
from any commercial CAD program. Exporting from an assem-
bly places all files in the correct position and orientation for the
final configuration so the planner can parse the data. The STL
files are then parsed by the algorithm and information about the
center of mass, point cloud data, etc. are stored as objects in
Python.

Disassembly Planner

Once the blueprint has been uploaded, the algorithm begins
by planning a disassembly of the blueprint. The STL objects are
passed as a list into a modified version of IDDFS to determine the
correct order to take apart the assembly. In this setup, the states
are defined as the individual parts present in the assembly after
any given action. Actions are defined as part numbers to be re-
moved. Because the goal is defined as removing all pieces from
the assembly, the initial and maximum depth of the search are set
to the number of pieces that must be removed from the assembly,
or the total number of parts. This step reduces computation by
excluding iterative searching for goals at smaller depths, where
no goals exist. This knowledge of the depth of the goal increases
the speed of the IDDFS.

The complexity of an IDDFS is O(bd) [22], where b is the
branching factor of the tree and d is the depth of the tree. The
average branching factor used for b is the number of non-root
nodes divided by the number of non-leaf nodes. For now, as-
sume that any action, or removing any part from the assembly,
is possible. For this case of disassembly of furniture, where the
number of possible actions and states are limited by the number
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of total parts, b is found using the equation,

b =
∑

n
i=1

n!
(i−1)!

1+∑
n−1
i=1

n!
i!

, (1)

where the numerator is the number of non-root nodes and the
denominator is the number of non-leaf nodes in the search tree
of an assembly with n parts. This equation can be simplified to

b =
∑

n−1
i=0

1
i!

−1+∑
n−1
i=0

1
i!

, (2)

where, as the number of parts approaches infinity, the summation
in the numerator and the denominator can be substituted by the
Taylor series approximations for the exponential function.Thus,
the branching factor of the disassembly search tree converges to

b =
e

e−1
(3)

as the number of parts approaches infinity. Because the num-
ber of nodes increases as a function of n!, the branching factor
rapidly converges to the value in Eq. (3). Hence the branching
factor is bounded, making the depth of the tree, d, or the number
of parts that can be removed from the assembly, the main con-
tributing factor when assessing the complexity of the IDDFS.
In summary, the complexity of the IDDFS can be simplified to
OIDDFS(bn), where b is the bounded branching factor seen in
Eq. (3) and n is the number of parts in the assembly.

To determine whether a part can be removed it must pass
through two checkpoints, contact checking and possibility of re-
moval. This contact checking determines if, after the selected
part is removed from the assembly, all other parts in the assem-
bly are in contact with at least one other part. To do this, the al-
gorithm takes the entire assembly and examines the point cloud
data to check for collision with other parts. Because the parts are
all polygonal, the vertex of the one part needs to lie inside the
bounded plane made by three vertexes on another part. The al-
gorithm stores a list of which parts in the assembly are in contact
and uses this to check if the part can be removed and still leave
all remaining in contact with another part. When there are two
parts or less remaining in the assembly, this contact checking is
ignored.

The complexity of this contact checking for an assembly
with n parts isOcon(n log(n)) because the algorithm must search
for connection between part 1 to parts 2 through n, but part 2
must only check for a connection between parts 3 through n and
so on.

The algorithm has now determined that removing the part
leaves all other parts in contact with at least one other part, but

the algorithm must decide if is possible to physically remove the
part without collisions with other parts. To determine this, the
algorithm uses an RRT planner with the selected piece as the
moving object and the rest of the assembly as obstacles. The
piece is given a goal location away from the assembly and a col-
lision checker is utilized at each time step to determine if the
piece can be removed. The complexity of the RRT algorithm for
an assembly with n parts is Odis(n) because this RRT planner
must be performed once per part to be removed from the assem-
bly. Research about the complexity of the RRT algorithm with
n vertexes was performed by Svenstrup et al. [27], but this com-
plexity is not based on the number of parts in the assembly, so it
is not included here.

The goal for that piece is computed by finding the geometric
centroid of the assembly and of the specific part using

x =
∑

n
i=1 xiVi

∑
n
i=1 Vi

; y =
∑

n
i=1 yiVi

∑
n
i=1 Vi

; z =
∑

n
i=1 ziVi

∑
n
i=1 Vi

, (4)

where Vi is the volume of the ith part, n is the number of parts in
the assembly, and xi, yi, and zi are the Cartesian coordinates of
the centroid of each part.

The algorithm then finds a unit vector from the assembly
centroid to the part centroid. Using the largest dimension of the
assembly as a scalar distance multiplier, the algorithm sets the
goal position of this part to be that distance away along the unit
vector, making the goal a specified distance away from the cen-
troid of the assembly. If the resulting z-dimension is below the
floor, i.e. less than zero, the absolute value of the z-dimension is
used for the goal. This process is shown in Alg. 1 and in Alg. 2
and has a linear complexity ofOgoal(n) because the computation
of the centroid of the part and assembly, as well as the goal lo-
cation are computed once per part in the assembly. If the RRT is
unable to find a way to remove a part to the computed goal, the
whole check fails and the next action must be selected in the ID-
DFS. An example of this process could entail something like an
internal shelf that provides no support, but could not be removed
until the higher shelves or the top are first moved out of the way.

The result of this step is an order in which the work piece can
be safely disassembled and a motion path provided by the RRT
planner for how to remove each part. With this information, the
algorithm reverses the order of disassembly and the part motion
paths, creating a forward path to assembly referred to as the dis-
assembly path. The initial state of each piece then becomes the
goal location for the next planning segment, the arm planner.

Motion Planning of Each Arm
To plan the motion of each arm, the algorithm uses another

implementation of the RRT algorithm. Because it already knows
the path to remove parts without collision, which is a reversed
version of the path to move the parts into their final poses in the
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FIGURE 1. Invalid movement found in removing the table top from
the table assembly. The collision checker rejects this movement because
table top collides with the table legs.

Algorithm 1 Remove Part from Assembly
1: procedure REMOVE PART(part, partsremaining, partsall)
2: distance = max(dimensionsassembly)
3: start = positionpart
4: goal = generateGoal(part, partsall , distance)
5: plan = RRTConnect(start, goal, partsremain)
6: if plan is not “Empty” then
7: “Plan found”
8: else
9: “No plan found”

10: end if
11: return plan
12: end procedure

assembly, the algorithm only needs to plan from where the parts
are sitting in the workspace to where the disassembly path be-
gins. The complexity of this RRT planner is the linear, Oarm(n),
as explained previously. The starting poses of all the parts must
be passed to the algorithm, which can then plan a path from this
pose to the beginning of the disassembly path. Figure 2 shows
how these two paths, the disassembly path and the arm plan,
work together to create the motion from the starting pose to the
final pose in the assembly.

Even though no collisions were found when removing the
work piece, collisions can still occur between the robotic arms
and the assembly, so a collision checker must be used in this step
in the algorithm. The robotic arms must be added to the environ-
ment using 3D models. As a first step, Arm 1 will be selected
as the movable, assembly arm. It will pick up the first part and

Algorithm 2 Generate Goal for Part
1: procedure GENERATE GOAL(part, partsall , distance)
2: for pt in partsall do
3: sum += volumept × centroidpt
4: volumetotal += volumept
5: end for
6: centroidall parts = sum/volumetotal
7: vectorcentroid = centroidpart − centroidall parts
8: direction = normalize(vectorcentroid)
9: goalvect = direction×distance

10: goal = centroidpart + goalvect
11: if zpositiongoal < 0 then
12: zpositiongoal = | zpositiongoal |
13: end if
14: return goal
15: end procedure

FIGURE 2. The arm motion planner uses the disassembly path found
from a previous section of the algorithm as part of the full path of each
part. The red path shown is a representation of a path found by the
arm planner and the blue path represents a disassembly path found by
the disassembly planner. The transparent part on the left side of the
assembly shows the goal position of the part in the assembly.

move it into place. Once this has been accomplished, Arm 1 will
switch into a “hold” mode where it remains stationary to secure
the work piece while Arm 2 is put into “assemble” mode and
places the second part into position. Once Arm 2 has placed its
part it switches into “hold” mode while Arm 1 reverts to “assem-
ble” mode and acquires the next piece. This process continues
until the entire assembly is completed. During each assembly
phase for each arm the RRT utilizes a collision checker to de-
termine if its movement to each step is allowed. This checker
compares the point cloud data of the arm in question with every
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other object in the workspace. If a collision is detected the state
is rejected and planning continues. Pseudocode for this part of
the algorithm can be read in Alg. 3 and Alg. 4.

Algorithm 3 Assemble Parts in the Given Order
1: procedure ASSEMBLE PARTS(orderassembly)
2: for part in orderassembly do
3: result = placePart(part, locationpart , goalpart )
4: if result is “Order Failed” then
5: return “Assembly Order Failed”
6: else
7: continue
8: end if
9: end for

10: return “Assembly Order Succeeded”
11: end procedure

Algorithm 4 Place Part in Assembly
1: procedure PLACE PART(part, location, goal)
2: plan = RRT(part, location, goal)
3: if plan is “Empty” then
4: return “Order Failed”
5: else
6: return “Part Placed”
7: end if
8: end procedure

One issue that may arise with this process is that the arm in
“hold” mode may make it impossible to place the desired piece
for the arm in “assemble” mode. If it is determined that there is
no collision-free path to assemble the selected part, the algorithm
knows this must be due to a collision with the arm in “hold”
mode because the algorithm has already found a collision-free
plan for assembling each piece into the assembly. For this rea-
son, the collision cannot be caused by two parts colliding with
each other; it must be from collision with the arm. If this is the
case, the arm in “hold” mode is passed to a new planner that will
determine a plausible way to grasp the assembly in a different lo-
cation to allow the arm in “assemble” mode to continue its work.
This grasp planner is not implemented in the current algorithm
and will be left for future work.

Once the assembly RRT has completed, the algorithm will
output a complete plan comprising of a list of states for each arm
to construct the desired blueprint. A diagram of the full assembly
algorithm can be seen in Fig. 3.

One important simplification to this process is the absence of
fasteners. It is currently assumed that once a piece is in the cor-
rect location it will stay fixed. This is obviously not true for real-
world application, but this problem could be solved by adding a

FIGURE 3. Flow chart of the assembly algorithm discussed in this
paper. The algorithm starts with a blueprint or CAD file of the piece to
be assembled, and outputs the assembly plan or that no assembly plan
is possible.

third arm whose task is to move across joints and add fasteners
such as nails, screws or glue in between each phase of switching
between “hold” and “assemble” modes for the arms.

IMPLEMENTATION OF ALGORITHM
To prove the validity of the algorithm presented in this pa-

per, the process was tested using simple geometric CAD models,
such as a simple table and box. Using these models as test work
pieces, the algorithm could be shown to be working properly or
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FIGURE 4. A representation of the positions used as goals in the dis-
assembly algorithm. If the part can move to this goal without colliding
with other parts of the assembly, then the algorithm knows the part can
be removed from the assembly.

not. As stated previously, the tests happened in simulation where
there would be space provided for all components. The compo-
nents were also assumed to be in locations where the arms could
easily reach them, and that the weight of each component was
negligible such that any part could be lifted by the robotic arm
using a suction cup gripper.

The first phase of the algorithm, disassembling the assem-
bly, was the most important as it provided the crucial informa-
tion of the assembly order. As stated previously, this was done in
Python using .stl files and assemblies exported from CAD mod-
eling software (SolidWorks 2017). When disassembling the box,
one assumption made was that it did not matter which side was
the bottom as the box could be physically assembled indepen-
dent of the orientation. With the table, however, this is not the
case. In the case of two robot arms performing the assembly
task, the table top cannot be placed in the assembly without the
table legs falling over. Because of this, the table’s assembly ori-
entation was with the table top on the ground. Using IDDFS,
the assembly was disassembled as explained previously and then
plotted to show the final disassembly in Fig. 4. The assembly
order planned by the algorithm can be seen in Fig. 5 and 6.

The second phase was the arm planner, which put the pieces
into the assembly. A composite of primitive shapes [16] was used
to check for collisions with the other arms and parts held by each
arm. Using this collision checker, the algorithm found paths to
get the parts into their locations in the assembly. Because the dis-
assembly planner assured no collision occurred while removing
the parts from the assembly, no collision checker was necessary
to check for collision between the part in motion and the other
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FIGURE 5. This simple box was used to test the success of the
method described. The assembly order as found by the algorithm is
as follows: Bottom, Left, Front, Back, Right, Top.
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FIGURE 6. This table was used to test the success of this method.
The assembly order as found by the algorithm is as follows: Table Top,
Back Left Leg, Front Left Leg, Back Right Leg, Front Right Leg, Left
Trim, Right Trim, Back Trim, Front Trim.

parts in the assembly. Once the first part was set into the as-
sembly, the “place and hold” system described previously was
implemented to keep the assembly stable while a new part was
moved into the assembly.

During implementation in the VREP environment, the algo-
rithm successfully followed the disassembly path, which always
placed the part in its correct position in the assembly.
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RESULTS AND ANALYSIS
Overall, the two phases in the algorithm worked well to-

gether. The total complexity of the algorithm can be found by
summing the complexities of the IDDFS, contact checking, dis-
assembly RRT planner, goal generation, and RRT arm planner,
which yields

(5)O(bn) ≈ OIDDFS(bn) +Ocon(n log(n))

+Odis(n) +Ogoal(n) +Oarm(n)

making the IDDFS the most complex part of the algorithm in
terms of number of parts. However, as explained previously, the
constant b is bounded by Eq. (3). By using the preliminary dis-
assembly steps to quickly verify whether the object can be taken
apart, the algorithm uses this knowledge to avoid more precise
movements to place the part in the exact orientation without col-
lision with the adjoining pieces.

The algorithm presented has room for improvement. Work-
ing with simply shaped parts reduces the possible issues that may
appear from more complicated parts or assemblies. Some exam-
ples are: CAD models that must be rotated to place components
(i.e. the table in Fig.6), models with many pieces inside an outer
structure, and parts that must be slid sideways into place. This
algorithm is currently limited to moving only one part at a time,
so more complex movements, such as multiple pieces needing to
be placed at once, are not possible.

A number of steps can be taken to increase the performance
of the RRT used to find paths in both the disassembly and as-
sembly phases of this algorithm. The RRT’s implemented in this
research are complete, as they will find a path between the initial
and goal poses if a path is possible. However, they do not find an
optimal solution in terms of path length. Utilization of RRT∗ [21]
or RRT# [19] can provide an asymptotically optimal solution for
the path of the robot arms. One other motion planning algorithm,
called Lazy-RRG∗ [20], implements a “lazy collision checker”
which does not check for collision until after a path to the goal is
found, which decreases computation time. These algorithms can
be implemented in the disassembly planner to remove parts from
the assembly, as well as in the arm motion planner to connect
parts from their initial positions to the end of the disassembly
path. These algorithms mentioned will find an asymptotically
optimal disassembly path in less time [19–21].

Another limitation of the algorithm addressed in this paper
occurs when a robot arm or part is found to intersect with another
arm. If this case is encountered, the algorithm would need to
replan its motion, or possibly return to the disassembly planner
to receive a new assembly order.

CONCLUSIONS AND FUTURE WORK
Through the assembly by disassembly philosophy, the algo-

rithm presented in this paper finds an appropriate assembly order,
then assembles the polygonal furniture using two robotic arms.
The graph searching method of IDDFS is used to find an appro-
priate disassembly order. If the algorithm can remove a piece
from the assembly, the part must not collide with other parts in
the assembly and each part in the assembly must remain in con-
tact with at least one other part. After the part is successfully
removed from the assembly, the algorithm saves the disassembly
path as illustrated by the blue path found in Fig. 2 for use in the
assembly process. Once the assembly order is found, an RRT
is employed to find a collision free path to the end of the disas-
sembly path, which is then followed to position the part in the
assembly. This assembly path is illustrated by the red path found
in Fig. 2. Success of this portion of the algorithm is determined
by its ability to assemble the part without collision. If collision
does occur, the algorithm returns to the disassembly order por-
tion to find a new disassembly order, then re-enters the assembly
planning portion.

The success of this algorithm is in its ability to break down
the assembly task into two parts. The first part is to find an order
in which to assemble the parts. The second part of the algorithm
is to plan the motion of the two arms.

Overall, the algorithm described in this paper is effective in
finding an assembly order and planning the path to place each
part in the assembly. This paper offers a novel method to finding
a path to place each part in the assembly, using the disassembly
path as a reversed, finishing assembly path.

One direction for future work is to implement a more accu-
rate collision checker for the movement of the robotic arms. The
primitive shapes used in this implementation can be conservative
in calculating collision, so other methods might more accurately
predict collision. These improved methods of collision detection
could increase the ability to plan the motion of the arms, which
would increase the overall performance of the algorithm.

As another area of future work, the researcher could add a
third arm to insert fasteners into the joints of the work pieces.
This would allow the process to become fully automated, rather
than relying on human interaction to fix the pieces together. This
objective could be reached by adding this fastener planner as an
intermediate step between placing a part in the assembly, then
moving to place the next part in the assembly. This fastener plan-
ner would create a more comprehensive assembly plan, which
would remove simplifying assumptions made in this work.
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