
Northern Bites 2009 Team Report

Tucker Hermans, Johannes Strom, George Slavov
Jack Morrison, Andrew Lawrence, Elise Krob

Prof. Eric Chown
Department of Compute Science

Bowdoin College
8650 College Station

Brunswick, Maine, 04011 USA
echown@bowdoin.edu

http://robocup.bowdoin.edu

February 26, 2010

1

echown@bowdoin.edu
http://robocup.bowdoin.edu

Contents

1 Introduction 3

2 Vision 4

3 Localization 5

4 Locomotion 5
4.1 Step Planning . 6
4.2 ZMP Preview Control . 7
4.3 Inverse Kinematics . 7
4.4 Gait Tuning and Optimization . 9
4.5 Motion Metrics . 9

5 Behaviors 9
5.1 Finite State Automaton . 10

5.1.1 Player . 11
5.1.2 Tracking . 14
5.1.3 Navigation . 15

5.2 Coordinated Behaviors . 15
5.2.1 Strategies . 15
5.2.2 Formations . 16
5.2.3 Roles . 16
5.2.4 Sub-Roles . 17
5.2.5 Role Switching . 17

6 Conclusion 18

A Source Code 19

2

1 Introduction

The Northern Bites is Bowdoin College’s entry to the Standard Platform League (SPL) of RoboCup.
Our team is one of only a few teams comprised solely of undergraduate students, and the only
competitive entrant from a Liberal Arts college. Despite coming from a small school of about 1700
undergraduates, we have performed well in every RoboCup since our debut in 2006. During that
first year, we competed using the Aibo robot dogs, at the US OPEN, and then at the RoboCup
championships in Bremen, placing 10th. The next year, we placed in the top three at the German
OPEN in Hannover, and finished first at the 2007 RoboCup in Atlanta, Georgia. In 2008, we were
the only undergraduate team to compete both in the Aibo league and the inaugural Nao league.
We placed 3rd in the Aibo league after losing in penalty kicks to the German Team in the semi
finals, and made it to the quarter finals with the Naos. In 2009, we struggled at the US OPEN,
which we hosted, but made big gains before the RoboCup World Championships in Graz, Austria,
where we placed second.

Figure 1: A Northern Bites Robot at the 2008 RoboCup in Suzhou.

Our team has continued to achieve high quality soccer play despite our small team size and
high turnover rate. Our program’s focus on education and our “fire” to succeed have enabled us
to perform at a high level, especially on the Nao robot, where many teams struggled to even walk,
let alone score goals.

One major change in the team’s philosophy this year was to move our code base to the
Git Version Control System. Aside from providing a superior development experience to the
Subversion system we used in previous years, we also made our Git repository publicly avail-
able. This is in accord with the spirit of RoboCup which is about scientific cooperation and
constantly making progress as a league. However, we are a proud team and recognize that
RoboCup is still a competition so we moved our main development repository offline for our last
two months of development leading up to the competition. It is now back online and can be found
at http://www.github.com/northern-bites/nao-man.

The remainder of this document describes our team strategy and the software systems which we
entered at RoboCup 2009 in Graz, Austria. We start with a description of our perceptual system,
leading into a discussion of our localization methods, and an overview of our walk engine. Finally,
we discuss how these subsystems are coordinated strategically.

3

http://www.github.com/northern-bites/nao-man

2 Vision

Our vision system changed very little from 2008 [2]. Mainly we adapted our old system, which was
built for the Aibos over to the Naos. This resulted in a much leaner system since we were able to
drop Aibo-specific code involving things such as chromatic distortion which are not a problem on
the Nao. The Nao also afforded us with a chance to simplify in other ways.

Whereas the Aibo’s head could tilt rather dramatically a great deal of attention was paid to
the angle of the head and how that impacted our vision algorithms. This is no longer the case for
the Nao, and any angle offset comes mostly from the hips. To simplify our vision in our initial scan
of the image we do a straight vertical scan from the bottom of the image up. We do not, however,
scan the entire image.

First we do some initial scanning to get a rough outline of where the field is. We then use this
information in conjunction with a pose estimated horizon to bound our scanning algorithm. If we
appear to be scanning a relevant object such as a goal, we ignore the bound. The field boundaries
also serve as useful information for doing sanity checks on any potential objects. For example, balls
should never be detected anywhere but on the field. Goals, on the other hand, should occur at the
edges of the field.

In terms of goals we simply look for the longest runs of Blue and Yellow color that we can
find. Once we have completed scanning we do an active search for the goals at the point of those
long runs. This process is basically identical to what we did in 2008 [2]. The one embellishment
we added this year was the ability to correct for the fact that the goals will not always appear
perpendicular with respect to the ground (Fig. 2). We detect this by scanning out from the corners
of a candidate goal. If the goal is skewed enough we essentially through out the pose generated
slope of the image and calculate a goal specific slope based upon the actual shape of the goal.

Figure 2: Skew Detection The angle of the post is sometimes sharper than the pose estimated
slope shown in blue. The black rectangle around the post is the result of adjusting the expected
angle on the goal.

We also added a new field object this year – the crosses at either end of the field. Our detection
method is very crude, but surprisingly effective. As we scan the image we run length encode blobs
of white color. To reduce the amount of coding we limit the runs to be only in sections of the

4

image on the field and only within parametrized size bounds. After scanning we look through all
of the candidate blobs and simply start throwing out all of the blobs that couldn’t be crosses.
For example, parts of lines are thrown out, blobs that aren’t generally square, blobs that aren’t
completely surrounded by green, etc. At no point do we actually try and determine that the shape
of the blob is a cross.

We experimented with robot detection this year but found that even with the improved cameras
on the Naos it is still not easily accomplished. The main problems have to do with color separation.
For example, in Austria the blue uniforms of the Naos were almost identical to the color of the
goals. Nevertheless this is one of our primary objectives moving forward.

Our work on field lines this year involved mainly adapting to using the Nao’s and improving how
we identify field intersections. In 2009 we only used intersections to help localize and in 2010 our
team’s number one goal will be to fully incorporate all field line information into our localization
system.

3 Localization

A crucial element of soccer strategy is having an accurate estimate of the field positions of all
the players. Using the various field features detected by our aforementioned vision system, we
use a standard 3 degree of freedom Extended Kalman Filter. Particularly, we use range, bearing
estimates to goal posts and corners as landmarks.

One of the most difficult aspects of localization in the SPL is solving the data association
problem. That is, given an ambiguous observation to an L corner, data association is the problem
of establishing a match to the correct L corner on the field. We found it sufficient to simply do a
euclidean nearest neighbor matching to make data associations.

The Jacobians needed for integration of just range bearing sensors into the EKF are relatively
straightforward, and are discussed, for example, in [8].

To develop our EKF localization module, we implemented an offline simulation environment
which allowed fake landmark observations to be detected. While this was not a high fidelity
simulation, we were able to use it to accelerate our progress.

In addition to modeling the robot’s position, we also filter the position of the ball, including
its expected dynamics. Since the location of the ball is so central in soccer, it simplifies the state
estimation if the ball is treated separately from the pose, and any cross-correlation between the
robot pose and the ball is ignored.

Finally, an in-depth treatment of the localization system can be found in [4]. Looking forward,
expanding our EKF framework to correctly integrate measurements to lines and the center circle
will allow us to increase our positional accuracy and would expand our soccer abilities significantly
(possibly passing, more accurate goalie saving).

4 Locomotion

For humanoid robots, a crucial part of playing soccer is locomotion. Because of the inherently
unstable dynamics of the robot, and the concern for the safety of the machine, we are especially
driven to create a walk engine which is robust to external disturbances yet still can move quickly
enough to participate in an engaging soccer game. Unlike most of the other teams in the SPL, we
wrote our own walking engine from scratch. Based on previous research in humanoid locomotion,

5

Support Step

hip o!set hip o!sety
^

x
^

N
ew

 Step

theta
^

Sy

x x

y F

F*
y

x

hip o!set

S*
y

x

Figure 3: An additional step is being added using a motion vector (x̂, ŷ, θ̂).

including by some SPL teams, our approach uses a ZMP model of the robot coupled with a preview
controller to generate walking trajectories. Our approach is detailed in [6, 7], but we give an detailed
overview of the salient pieces here.

The remainder of this section discusses how are system breaks successively breaks down the
walking problem into sub problems which can be solved more directly.

4.1 Step Planning

A natural representation for humanoid walking is a sequence of discrete steps. These steps explicitly
constrain the locations of the robot’s feet at certain times. The steps also provide an indirect
constraint for the path followed by the robot’s center of mass, if the robot intends to maintain its
balance.

Our engine provides a variety of methods for generating these steps, enabling omnidirectional
motion. Most generally, we consider a request to bring the robot to a specified velocity. Since
soccer is confined to a plane, it suffices to represent this as translational velocity in the forward
and lateral directions, and as a rotational velocity about the vertical axis: v = (ẋ, ẏ, θ̇). Using this
interface, the robot can be controlled by sending velocity requests asynchronously. For example,
to chase a ball, the robot can be instructed to walk towards the ball by setting the velocity in the
direction of the ball.

For finer grained control, we also allow requesting a specific number of steps to be taken at a
given velocity. This is especially helpful when approaching the ball at close range.

A list of proposed steps are maintained in a queue, and until a step has been “committed to” (see
below), a new motion request can supersede the current plan. For motion far in the future, steps
are not created, instead the desired velocity is stored, and new steps can be generated as needed.
Given a velocity vector as described above, step generation can be visualized as in Figure 3.

6

0 10 20 30 40 50 60

0
10

20
30

40
50

index

ga
in

gain

Figure 4: The weight associated with future motion plans. Intuitively, upcoming motion is weighted
more heavily than motion in the far future.

4.2 ZMP Preview Control

The next layer of complexity below step placement is movement of the center of mass of the robot
relative to the legs (or vice versa). To achieve an elegant solution to this, we build on control
theory most recently advanced by [3] which is called preview control. The preview controller
directly encompasses the idea that to some extent, humanoid walking must “preview” the future
motion plan in order to generate a dynamically balanced trajectory. In this case, the locations of
some of the future steps must be fixed some time before the steps are actually taken, forcing us to
“commit” to stepping in certain places. This period of look-ahead is called the preview period, and
for us was about 1.4 seconds. This preview window can be visualized in Figure 4 nicely by looking
at the internal weighting the controller associates with future motion. The exact integration of this
weighting is discussed in more detail in [7].

The preview controller also depends crucially on the ZMP concept which has been widely applied
to the humanoid walking problem. The ZMP provides an analytical metric to determine the balance
of the robot. In essence, it measures the location on the surface of the foot where the ground normal
force must act to keep the foot from rotating with respect to the X and Y axes. By planning to
keep the ZMP in the center of the foot (e.g. as far away from the edges of the foot as possible), the
controller can plan motions of the center of mass which will keep the robot from falling. In turn,
the planned sequence of steps provides a method for generating the ideal, or reference path for the
ZMP. As the support foot switches during the gait cycle, the planned reference ZMP is passed from
the current support to the future support foot. This process is visualized in Figure 5.

Although the ZMP can be determined analytically, considering the full dynamics of the robot
is too computationally complex to compute online. Instead, the robot is modeled as a simple cart
of a massless table, where the mass of the cart and the robot are equivalent (See Figure 6. This
allows computation of the optimal preview controller to be straightforward and tractable.

4.3 Inverse Kinematics

Once the preview controller can specify the location of the center of mass relative to the support
foot, the angles for the support foot can be solved using Inverse Kinematics. Initially, we used
an iterative damped least squares non-linear optimization method to compute the required angles

7

0 1 2 3 4 5 6

−
60

−
40

−
20

0
20

40
60

s

m
m

com_y
pre_y
zmp_y

Figure 5: The ZMP reference, and resulting Center of Mass path over time, in the lateral direction,
for a sequence of ten steps.

I

zh

x

p

τzmp

M
ẍ

Figure 6: The simplified cart table model for a robot which allows the ZMP to be computed easily.

8

given a 3D coordinate for the end effector. Much more efficient is to compute the solution in closed
form, the method for which was graciously provided to us by Prof. Daniel Lee of the Pennalizers.

For the swinging leg, the 3D end effector destinations are computed by interpolating the source
and destination steps.

4.4 Gait Tuning and Optimization

What we have just discussed is a broad overview of our motion engine. Unfortunately, the realities of
the NAO robot platform and the inherent difficulty of humanoid walking require considerable tuning
beyond the basic conceptual implementation. In practice, our motion engine was parametrized by
over 30 knobs. Many of these were necessary parameters, even in theory. For example, the height
of the robot’s body during walking, as well as the duration of each step. In reality, only six or
seven parameters need to be adjusted when moving to a new carpet or floor surface. Some of the
other parameters, although static, were crucial to the functioning of our walk. A full list of these
parameters is available in the source release, in the README in the motion folder. However, some
of the more important parameters are discussed below.

Perhaps the most crucial observation is that lowering the stiffness of the joints increases the
robustness of the walk (and lowers power consumption [5]. When the joints are very stiff, timing
errors and irregularities in the floor can cause disastrous backlash, easily causing the robots to fall.
Our best gaits had very low stiffness for the ankles, and medium stiffness in the hips and knees.
Cycling this for the support and swinging leg also helped to reduce the backlash.

Another crucial tweak, which is also employed by Aldebaran, is to artificially compensate for
weak hip motors by exaggerating the angles for hip roll. This constant often needs to be tweaked
per robot, and occasionally for each hip joint individually.

To help maintain the robot’s balance, we also introduced an additional compensator based on
the angleX, angleY computed by Aldebaran on the micro controller in the chest. By measuring the
tilt of the body, we were able to carefully compensate by increasing or decreasing the lean of the
body.

On the implementation side, these tweaks were mostly synced directly with the gait cycle. For
example, the angle of the foot relative to the ground followed a quarter period of sinusoidal motion
during the swinging phase, but stayed constant during the supporting phase. Some constant, like
the static forward lean, are applied regardless of the gait cycle.

4.5 Motion Metrics

Although we did not have the fastest walk, our final gait was extraordinarily stable. Coupled
with our ability to dynamically switch velocities, we consistently beat even the faster teams to the
ball. In addition, we fell over only once during the whole tournament, even when colliding with
opponents. Our top speed at RoboCup was measured in the 10-11 cm/s range. However, with
some more attention to sensor feedback, this could be increased to at least 15 cm/s while still
maintaining responsiveness.

5 Behaviors

Automaton (FSA) system we developed in 2008, our goal this year was to advance our behaviors
to a competent and consistent soccer player. We found our Python FSA system to permit rapid

9

behavior development and ease our work flow. Adding in new modules and extending our behaviors
was simple and pain-free.

5.1 Finite State Automaton

For our behaviors we used the same FSA-based system that we developed in 2008. This FSA
system keeps our code modular and organized. The FSA uses an API which clearly states how
and when states within the FSA are exited and entered with clear links between each state. Our
behaviors are written in Python, like our Aibo behaviors, chosen because it has a very expressive,
simple syntax and is an interpreted language. As an interpreted language, Python does not need to
be recompiled after changes. This allows us to reload modules individually without recompiling the
underlying C++ structure. Practically, this gives us the ability to reinstall Python behavior files
onto the robot and, without shutting down NaoQi or our other systems, load the new behaviors.
Since restarting NaoQi can take a few minutes, this has saved us a lot of time during development.

We use an abstract FSA class to give our system its extensibility. This abstract class outlines the
basic structure of an FSA and handles its execution. It holds the run() and addStates() functions,
along with the state switching functions and other FSA helper functions. The run() function is
called every vision frame by the behavior control module, the “Brain,” and has the responsibility
of executing the current state. Along with these functions the FSA class maintains a timer and
frame counter for the current state, a reference to the last state run, and a reference to the last
different state run.

Each FSA is defined by a class file that extends the abstract FSA class and by any number of
state files. The class file is responsible for initializing the FSA and collecting the appropriate states
into the FSA. It calls the FSA addStates() function to create a listing of all the possible states for
that behavior. The FSA addStates() function uses Python’s built-in dir() function to put all the
states into a states list for later access. Each state is a function, taking only the behavior object,
such as the player, as a parameter. Program 1 shows the implementation of a basic state.

Program 1 A basic Python state implementation
def spinLeft(player):

if player.firstFrame():
turn = motion.WalkTurn(150.,30)
player.brain.motion.setNextWalkCommand(turn)

elif (player.shouldWalkForward()):
return player.goLater(’walkForward’)

return player.stay()

The FSA API requires that each state return one of three possible values, given by three FSA
functions: goNow(), goLater(), and stay(). goNow() switches and runs the new state immedi-
ately, without waiting for the current frame to end. goLater() switches states so that the new
state is run in the next frame. stay() does not alter the FSA’s state. There is another function,
switchTo(newState), which is used to switch states from outside the FSA. The functions that define
state switches, like shouldWalkForward(), are found in the FSA player file.

10

One main advantage of the FSA is its extensibility. It is very simple to add another FSA to
the Brain module. The Brain only needs to construct the FSA and call its run() method once a
behavior cycle. In 2009, we currently use four concurrent FSAs. This allows us to break down larger
behavioral problems and divide responsibilities in a manageable way. Three of our FSAs are directly
behavioral components: a general player behavior, a head tracking controller (the “HeadTracker”),
and a navigation controller (the “Navigator”). The fourth FSA is the fall controller and deals with
the behavioral interruptions that occur in the special case of the robot falling over.

5.1.1 Player

The “player” behavior is the high level soccer behavior. It controls the HeadTracker and the
Navigator, executing soccer strategies. According to the strategy and game role set by the playbook,
the player directs the robots behavior. The player was broken down into many groups of states: ball
chasing, ball finding, kicking, position states, goalie states, penalty kick states, and game states,
each with their own state file. This further modularizes the system and lays out the general soccer
playing strategy

CHASER State files used for the CHASER role.

ChaseBallStates States for the CHASER role, used for approaching the ball.

chase The state switched to when it is decided that the robot should chase. It returns a
goNow, switching the player immediately to the appropriate state. Checks whether
the robot needs to find the ball (in case it was lost between states), if and how it
should approach the ball, and whether it should kick.

chaseAfterKick Used to chase the ball after a kick is made. Since the ball is often lost
after kicking, due to a slow frame rate and a high ball velocity, the state assumes
the kick went well, and turns the robot in the correct direction according to the last
kick made. Also makes the robot track the ball.

turnToBall When the ball is at a great bearing from the robot, the robot will turn to
face the ball.

approachBall The basic ball chasing behavior. If the ball is mostly in front of the
robot, it runs directly for the ball using the omnidirectional gait. Used in situations
when localization is poor and we are trying to get to the ball as fast as possible.

approachBallWithLoc For situations when localization is certain, instead of running
directly to the ball, this uses the Navigator to position itself in a way to give it the
best shot on goal. When approaching the ball from its own side, the player will line
up with the ball in front of it, in line with the goal. When approaching from the
opponent’s side, it will position itself so that a side kick will be a shot on goal.

positionForKick This is used when the ball is close to the player and in front of it.
Its goal is to put the player close enough to the ball, so that it may kick. When the
player is close to the ball, it must step slower and with smaller steps than when it
sprints across the field. Otherwise, it will kick the ball. positionForKick uses a
gait that can takes smaller, shorter steps, and moves the player at a slower pace. In
this state, the player does not use the full omnidirectional walk, instead moves only
orthogonally.

11

dribble Using the dribble gait (a sort of duck stance), the player will walk through the
ball towards the goal. As long as the ball stays in front of the player and it is still
walking towards the opponent goal, it will continue to dribble.

waitBeforeKick Because the player can sometimes kick the ball when stepping close
to it, it will wait after stopping to make sure that the ball is settled before it switches
to kicking.

avoidObstacle When the player is chasing the ball, sometimes another robot or a
goalpost can obstruct the player’s path. Using sonar, the obstacle can be detected.
If the obstacle is close to the player (<∼50cm), the player will step around the
object and track the ball with its head. If the ball’s distance is less than 50cm, the
player will not avoid the object and will instead continue chasing the ball. If a ball
is this close, we want to be aggressive in chasing the ball and not risk giving up a
kick.

ballInMyBox When chasing a ball in our own box, we want to stay trained on the ball,
always facing it, but we do not want to walk into the box, since this is a penalty.

orbitBeforeKick When we approach the ball and we are facing our own endline, we
do not want to kick the ball towards our own goal. If we approach close to the ball,
and are facing the wrong the way, we will try to sidestep around the ball so that we
are facing the opponent’s goal.

FindBallStates States for the CHASER role, used for finding a lost ball.

scanFindBall When a ball is first lost, instead of spinning immediately, the player will
scan for it in front of us.

spinFindBall If the ball is not found in front of us, the player will spin towards where
the ball model says the ball is.

walkToBallLocPos If we do not see the ball, we start walking towards its location in
our global ball model. This situation could arise if the ball is too far away to be
seen.

KickingStates Houses all of the states necessary to kick the ball, including deciding which
kick to make, side stepping so the ball is in the correct place for the chosen kick, and
executing the kick.
getKickInfo Our localization is not always reliable enough for kicking, when the stakes

are very high (scoring an own goal). In order to overcome this uncertainty, once
the player has reached the ball, it will stop and look up, scanning from side to side.
During the scan, the player averages the locations of seen goalposts as a quick-and-
dirty localization method.

decideKick Using the information gathered during getKickInfo, the player will decided
upon a “kick objective.” This is a high level goal for the shot placement. The po-
tential objectives are OBJECTIVE CLEAR, OBJECTIVE CENTER, OBJECTIVE SHOOT FAR,
OBJECTIVE SHOOT FAR, OBJECTIVE KICKOFF, and OBJECTIVE UNCLEAR. The objec-
tive chosen depends on the player’s orientation to both the opponent goal and his
own goal, as viewed during getKickInfo. The player then switches to the appropriate
kicking state for the chosen objective.

clearBall When the player is on his own side of the field, its objective is to get the ball
off his own half as quickly as possible. Thus, it will use a strong kick and it is less

12

picky about its precise orientation on the goal. The player will use the kick which
will send the ball deepest into the opponent side.

shootBall Uses the getKickInfo information to decide how to shoot. Chooses a kick
based on location on the field and heading relative to goal posts seen. If there were
not enough goalposts seen to make a good judgment, the player will, according to
its chosen kick objective, switch to shootBallClose or shootBallFar.

shootBallClose The closer the player is to the ball, the more important it is that he is
lined up correctly for the shot. The player will adjust alignment using the alignOn-
BallStraightKick state. If it is aiming within the posts, it will shoot, otherwise it
aims for the center of the goal to minimize the chance of missing wide. Only uses
localization information.

shootBallFar Instead of aiming at the center of the goal, the player will align so that
it is shooting across the goal. This is so that from far away the ball will go around
a goalie in the center of the net and lessen the risk of hitting a post on a crossing
shot. Only uses localization information.

penaltyKickBall During a penalty kick, the player will align to kick the ball at the
center of the goal. A simple strategy, but designed for the greatest chance of not
missing the goal.

kickBallStraightShort, kickBallStraight, kickBallLeft, kickBallRight Execute the
kick appropriate to their state name and aligns the robot so that the ball is in the
proper position, relative to the feet, for the chosen kick.

sideStepForSideKick Decides whether the player must side step before executing a
side kick.

alignForSideKick The player will side step until the ball is between the feet, where
the side kick used in 2008 performed best.

stepForRightFootKick, stepForLeftFootKick Steps the robot sideways until the
ball is in the proper place in front of the appropriate foot for a straight kick. Places
the ball directly in the middle of the foot in the y-direction.

alignOnBallStraightKick Uses the Navigator to use the ball to orbit the ball a small
amount. This is used mostly to make the robot face the goal.

kickBallExecute The player will run the kick chosen by the preceding states.
afterKick The player responds appropriately to whichever kick it used. First, the head

will look in the direction that the kick should have gone. Second, for a side kick,
the player begins spinFindBall immediately, since to chase the ball it will have to
turn to it. For a straight kick, since the ball should be directly in front of the robot,
it goes to scanFindBall.

DEFENDER States used by a robot in the DEFENDER role.

PositionStates States for positioning the player on the field.

playbookPosition The player gets its assigned position from the playbook and goes
to it. It uses the Navigator to move to the point. It first spins to the point, then
walks towards it, and finally it will use an omnidirectional walk to end up at the
correct location and heading.

13

atPosition When the player is at its goal position, it will stay put until its current
location and heading are no longer its destination location and heading.

spinToBall The player will spin in place until it is facing the ball. Used for when a
defender should not move, but needs to be facing the ball.

spinFindBallPosition Similar to the chaser spinFindBall, but the player will not chase
once the ball is found.

relocalize When the player’s localization becomes poor (high uncertainty), the player
must accumulate sensor data to find itself on the field. To accomplish this, the
player will spin and pan its head so that it sees as many objects as possible.

5.1.2 Tracking

The head tracking FSA controls all movements of the head, such as panning and object tracking.
The encapsulation of this functionality assists greatly in generating behaviors not only for game
play but also from testing and training algorithms. While the ability to switch between the tracking
of the ball and searching for landmarks from which to localize is extremely useful during games,
the tracking of posts can be used to measure distance traveled, which will assist in such task as
optimizing walking parameters or testing odometry or vision based distance estimation accuracy.

With the HeadTracker, The main player behavior is freed from the details of head movements
and can instead issue high-level commands, like trackBall, startScan, and locPans (run localization
pans). The HeadTracker deals with the details of where to set the head and implements intelligent
tracking and panning behavior.

The HeadTracker has two associated state files:

PanningStates States for scanning the field, mostly for the ball and to improve localization.

scanBall The head will scan back and forth until it sees the ball. It begins scanning for the
ball according to the global ball model. If the ball is close, it begins panning with its
head low, and the head starts higher for two other sections of ball distance.

scanning Repeatedly executes the HeadTracker’s current head scan.

locPans Continually pans the head back and forth with the head tilted back. This allows
the Nao’s camera to see across the field and increases the chance of seeing a goalpost.

look The player will look in the chosen direction and then return its head to the starting
position. This was used to make a quick glance in one direction, for gathering object
information.

TrackingStates States for tracking objects, e.g. the ball or a goalpost.

tracking This is the main state for the module. While the object to be tracked is on screen,
the head will adjust to center the object in the image. When the object leaves the screen
for a significant number of frames, the HeadTracker will return to its previous state,
likely scanning for the ball.

activeTracking Often times in the SPL, the ball will be a great distance from a player, but
in little danger of being immediately moved. In this case, staring only at the ball as
the player crosses the field will cause significant declines in localization accuracy. To

14

overcome this, the player will occasionally pan its head left and right to try and boost
his localization. While not panning, the player tracks the given object.

5.1.3 Navigation

Like the HeadTracker, the Navigator removes responsibilities from the main player behavior. Its
concern is the movement of the robot around the field. Walking commands from Python are sent
only through the Navigator. This keeps the responsibility in one place, and keeps the potentially
large and expensive number of identical walk command calls to a minimum.

The Navigator’s most complex responsibility is the goTo. Calling goTo(x,y) commands the
Navigator to direct the Nao across the field to (x,y) using localization information. The Navigator
handles the starting, stopping, turning, and speed decisions needed to walk to a specific field
location.

NavStates The Navigator’s state file.

spinToWalkHeading The first state in a goTo. The player will turn in place until it is
facing its destination (x,y).

walkStraightToPoint Once the robot is facing its destination during a goTo, it walks to
that point. It does not walk only in the x-direction, but adjusts its heading with some
strafing and spinning to keep itself on course. If it finds it is too off course, it will return
to spinToWalkHeading and readjust its heading.

spinToFinalHeading Once the player reaches its destination (x,y), it spins to its final
heading.

walking When the player calls setWalk, the Navigator will switch into this state. The state
handles calling new walk commands and prevents identical walk commands from being
sent from Python to C++, a slow operation.

orbitPointThruAngle Used for circling around an object. The Navigator uses an esti-
mated dead-reckoning to side step and spin around a point in front of the robot for a
preset angle.

5.2 Coordinated Behaviors

We describe here the system of coordinated behaviors developed for use with the Aibo. This year we
adapted these behaviors for the Nao platform with no major changes to the system. The intention
of our behavioral system has always been to facilitate a robust coordinated system to allow for
high level team play. We use a decentralized, dynamic role switching system, which utilizes the
concepts of strategies, formations, roles, and sub-roles to build a robust system of position,
based soccer.

5.2.1 Strategies

For competition we had the following formations: Ready, NoFieldPlayers, OneField, TwoField and
sThreeField.

Strategies are the first and thus most abstract level of our coordinated behavioral system.
Strategies specify a general manner of play to be used. A strategy is theoretically a set of formations,

15

which all share some underlying trait. The majority of switching between strategies occurs as the
number of active team members changes due to penalties. We could define a strategy sDefensive
which would require that every formation within it had two defenders. The logical extensions
of how to build additional strategies are fairly obvious; however, the decision making process for
determining which strategies should be used is a much more complex problem and is a target of
current research within our team.

5.2.2 Formations

For competition we had the following formations: NoFieldPlayers, OneField, DefensiveTwoField,
NeutralDefenseTwoField, ThreeField, OneGoalBox, TwoGoalBox, Kickoff, Ready

Formations act as a layer above the role switching system with each one selecting from a different
combination of roles to determine the most appropriate one for a robot. The number of roles to
select from is equal to the number of non-penalized robots. The Field formations are used for
regular game play and assign a role by first selecting the best available chaser and assigning the
remaining roles by player number. Although agents use Field for the majority of the time, the first
formation called will always be Kickoff.

The kickoff in any soccer game is the situations where the information will be most clearly known
to all members of the team: position and velocity of the ball, relative position of the opponents
(depending on which team is kicking off and which is defending), and near exact positions of all
teammates. Thus prior to kickoff robot A will always setup in position to start playing defense and
robotB will be in the center ready to become the chaser. Once play begins all robots will maintain
their roles for a specified amount of time, so that robot A will move immediately to his defensive
position and robot B will chase the ball.

The robots will move out of this formation and into Field after a short amount of time or if
something unexpected occurs (i.e. the ball goes out of bounds, a player is penalized, etc.), but it
should be pointed out, that play in the Kickoff does not look any different then other points in the
game, the formation simply reinforces the method of soccer we wish to be played against any poor
data which could occur during the very familiar kickoff situation.

The GoalBox formations are put into action whenever the ball moves near the team’s own goal
box. The goalie then becomes responsible for controlling the ball and all field players stop chasing
the ball and are assigned defensive positions outside the goal box, so that an ’illegal defender’
penalty is not incurred. Due to the goalie’s poor mobility when in a deep squat, the goalie will
only chase if the ball is in close in front of him and not moving. While this can result in none of
our robots chasing the ball, we consider the risk of standing up and exposing the goal much greater
than a game stuck penalty. The roles here are prescribed as DEFENDER, DEFENDER with the
sub-roles for the two defenders specifying that one should maintain a left deep back position, while
the other plays a right deep back role.

5.2.3 Roles

For competition we had the following roles: CHASER, DEFENDER, OFFENDER, GOALIE
Roles define the fundamental activity a robot should be preforming from frame to frame and

directly influence which behavioral states in the player’s FSM are to be used. The four roles
used at RoboCup 2009 were CHASER, OFFENDER, DEFENDER, and GOALIE. Primarily an

16

organizational tool they collect and switch between subroles that assign exact positions. This
switching is generally dependent on the position of the ball.

5.2.4 Sub-Roles

For further specifying what function a robot should serve on the team, we define sub-roles beneath
the standard roles. Sub-roles facilitate two separate necessities in our system. First they specify
parameters which refine the objective of a robot at any given time; for the most part this takes the
shape of dictating positions for players based upon the location of the ball.

The second task accomplished is that sub-roles allow multiple robots to have the same role
without conflict between the two players. Thus we can have two defenders who do not fight
to maintain the same position in front of the goal, but instead take positions which allow them
to better utilize their knowledge that there is another defender assisting in the overall defensive
objective.

5.2.5 Role Switching

The vast majority of play occurs inside of the Field formations. With that in mind, the role switch-
ing system is based almost entirely around the idea of having the roles of CHASER, DEFENDER,
and OFFENDER) to be allocated. The role-switching during Field operates around our philosophy
of having one, and only one, robot chase the ball at any given time, while allowing any robot, save
the goalie, to become CHASER. The CHASER role is allocated to the robot determined to have
the minimum chase time. We define chase time as the estimated time it will take a robot to get to
the soccer ball, calculated primarily around odometry. We assume that the robot is unobstructed
and not delayed in moving to the ball for the calculation of chase time. To reflect our overall aims
of scoring a goal, we reduce the assumed chase time in special circumstances – such as an agent
lined up behind the ball going towards the opponent’s goal. Lowering the chase time improves the
likelihood that an agent not closest to the ball, but still in the best position to score, will become
CHASER. Each robot broadcasts its chase time, when communicating to teammates, allowing each
robot to determine the chaser independently and thus denying the need for any negotiated decision
making. We feel that a non-negotiated role switching system is absolutely necessary to uphold our
philosophy of reaching the ball as fast as possible, waiting just five frames to receive confirmation
to chase could often cause a robot to lose the ball to opponent at high levels of play. Information
lag and system noise incurred from sensor data may cause the agents’ divergent world models to
bring about different conclusions as to which robot has the shortest chase time. To combat this
error while maintaining our non-negotiated system, we use a tiebreaker, which draws its inspiration
from real sports, where certain players “call off” others (i.e. a goalie can call off a defender). For
our system we use player numbers (each robot has a unique number 1-4), such that in a tie-break
situation the higher player number can call off a lower player number.

If Robot A believes it might be the fastest to the ball (it is within a small threshold ε of
the minimum chase time for all the robots), it will start pursuing and calling the ball (“I got
it!”). Robot A will continue to chase the ball until a higher ranked robot calls it off, and/or any
lower ranked robots receiving Robot A’s call discontinue chasing. Thus Robot A is committed to
chasing the ball. It cannot stop chasing and calling the ball until its chase time is outside a larger
threshold δ (that is δ > ε). This prevents hysteresis, where robots oscillate back and forth between
roles due to small changes in the data. There is a third important threshold, λ, which ensures

17

that a robot should stop listening to a higher ranked teammate if its chase time is less than that
teammate’s chase time by the value of λ. This ensures that when there is a discrepancy between
local information and communicated information the robot relies on its local information. When
things rapidly change on the field, a robot must not wait for a message from the current CHASER
with higher rank before it acts. In summary Robot A will chase the ball if:

1. chasetime(A)−min(chasetime(A,B)) < ε and no higher robot is calling off A, or

2. chasetime(A) −min(chasetime(A,B)) < δ and it was already chasing and no higher robot
is calling off A, or

3. chasetime(A) < chasetime(B)− λ where the Robot B is the higher ranked robot calling off
A

Each threshold controls a feature of the robots’ cooperation. Increasing ε makes it more likely
that a robot who is farther from the ball will ultimately end up being CHASER, but makes it less
likely that no robot will be CHASER. δ controls how willing robots are to switch roles. Increasing
the δ value decreases how often the robots will switch roles, which can leave the wrong robot chasing
the ball, but protects against robots oscillating back and forth about who should chase. λ controls
how much a robot should rely on local information. Increasing λ makes it less likely two robots will
chase the ball, but slows down reactions to a ball suddenly being closer to a non-CHASER robot.

After deciding on which robot should become the CHASER, the remaining field players must
decide which robot is to become the DEFENDER and which should become the supporting AT-
TACKER. The decision making process for this issue is the same as in determining the CHASER,
only the determining metric is distance to own goal instead of chase time. We structure the tie-
breaking thresholds about defense to ensure there is always a DEFENDER when communicated
data deteriorates.

With only two non-GOALIE robots playing for a team, a robot that determines it is not the
CHASER is assigned to the remaining role in the formation.

6 Conclusion

RoboCup 2009 was a success for the Northern Bites, both on the field and as a personal year. We
completed our migration of our code base from the Aibo platform to the Nao, reusing functional
sections and improving our structure with lessons learned from the Aibo. As a team comprised
of undergraduate students, our success came from the “fire” we brought to the team. The entire
team was personally invested in the team and kept enthusiasm high. The team came together and
worked furiously to develop the best RoboCup team we possibly could.

A key component of our success this year was our motion engine. Being completely homegrown,
we could tune, tweak, and alter it to fit our needs, in any way we wanted. The walk engine was
one of our teams strongest assets this year. It was not the fastest, in fact, it was only about 50% as
fast as the quickest walk, but its omnidirectional abilities and its stability gave us more advantages
than speed could have. Relying on Aldebaran’s closed-source walk does not represent progress in
robotics. We open-sourced our walk engine in the hopes that other teams will expand upon it and
push the league farther forward. Having our own walk engine which we could control allowed us
to optimize our leverage of our other modules, including vision and behaviors, to get a coherent
soccer system.

18

We did well in 2009 also because we were sure to treat our robots with care and keep them
healthy. Just as a human athlete must keep healthy in the off-season to train and improve, so too
must a RoboCup team prevent robot breakage if it is to continue to develop and test its algorithms
on a real robot. There are simulators, and they can be a great aid to rapid initial development,
but we have found that there is no substitute for testing on a physical robot. It helped us to iron
out some of our more complex behavioral problems and it was necessary for tuning behaviors.

It is clear there is still a significant amount of effort to be done to expose the full soccer ability
of the NAO robot. Although we have seen some significant technical limitations stemming from
the hardware and software design of an entertainment grade humanoid robot, this year has shown
us that high level soccer play is possible. Unfortunately, the league suffers from a great divide
between teams who are able to effectively play soccer, and those which are still struggling with the
formidable challenges by the humanoid form factor. It is our sincere hope that this report, along
with our publicly available source repository [1] will help teams jump over the initial engineering
hurdle and accelerate the level of soccer play in the SPL.

A Source Code

Our source code is available online using the git code version control system. The most recent
code, along with a list of release tags can be found at http://www.github.com/northern-bites/
nao-man. To checkout the code directly on a Debian Linux system, the following commands are
relevant. Further information can be found in the included README file.

> sudo apt-get install git-core
> git clone git://github.com/northern-bites/nao-man.git man
> git clone git://github.com/northern-bites/tool.git tool

This will create two directories, man and tool which contain the robot source code, and our visu-
alization and debugging tools, respectively.

References

[1] Northern Bites. Northern bites source code release for use in the spl with the nao robot.
http://www.github.com/northern-bites.

[2] Eric Chown, Jeremy Fishman, Johannes Strom, George Slavov, Tucker Hermans, Nicholas
Dunn, Andrew Lawrence, John Morrison, and Elise Krob. The northern bites 2008 standard
platform robot team. Technical report, 2008.

[3] Stefan Czarnetzki, Sören Kerner, and Oliver Urbann. Observer-based dynamic walking control
for biped robots. RoboCup Symposium, 2009.

[4] Tucker Hermans. Localization in the robocup standard platform league, 2009.

[5] Jason Kulk and James Welsh. A low power walk for the NAO robot. Technical report, University
of New South Wales, 2008.

[6] Johannes Strom, George Slavov, and Eric Chown. Omnidirectional walking using ZMP and
preview control for the NAO humanoid robot. In RoboCup Symposium, July 2009.

19

http://www.github.com/northern-bites/nao-man
http://www.github.com/northern-bites/nao-man
http://www.github.com/northern-bites

[7] Johannes Heide Strom. Dynamically balanced omnidirectional humanoid robot locomotion.
Bowdoin College, 2009.

[8] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press, 2006.

20

	Introduction
	Vision
	Localization
	Locomotion
	Step Planning
	ZMP Preview Control
	Inverse Kinematics
	Gait Tuning and Optimization
	Motion Metrics

	Behaviors
	Finite State Automaton
	Player
	Tracking
	Navigation

	Coordinated Behaviors
	Strategies
	Formations
	Roles
	Sub-Roles
	Role Switching

	Conclusion
	Source Code

