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Abstract— This paper presents a method for closed-loop
propulsion of a screw-type magnetic capsule with embedded
Hall-effect sensors using a single rotating actuator magnet. The
method estimates the six-degree-of-freedom (6-DOF) pose of the
capsule while it is synchronously rotating with the applied field.
It is intended for application in active capsule endoscopy of the
intestines. An extended Kalman filter, which uses a simplified
2-DOF process model restricting the capsule to forward or
backward movement and rotation about its principle axis, is
used to provide a full 6-DOF estimate of the capsule’s pose as
the capsule travels through a lumen. The capsule’s movement
in the applied field is constantly monitored to determine if the
capsule is synchronously rotating with the applied field. Based
on this information, the rotation speed of the external source is
adjusted to prevent a loss in the desired magnetic coupling. We
experimentally demonstrate, for the first time, simultaneous
localization and closed-loop propulsion of a capsule through
a lumen using a single rotating magnet. Prior work assumed
the capsule had no net motion during the localization phase,
requiring decoupled localization and propulsion. This closed-
loop performance results in a three times speed up in completion
time, compared to the previous decoupled approach.

I. INTRODUCTION

Wireless capsule endoscopes, propelled by magnetic fields,
promise a low-cost, minimally invasive method to view the
entire gastrointestinal tract [1]. A small permanent magnet is
embedded inside the capsule, and all power needed to propel
the device is obtained from an externally applied magnetic
field. Actuation methods typically use magnetic force for
dragging or pulling [2]–[4] or screw-like propulsion of a
capsule with a helical thread using magnetic torque [5]–[8].
Prior work from our lab developed a propulsion method
for screw-type magnetic capsules using a single rotating
magnetic dipole that can simultaneously employ magnetic
force and torque [9]; this is the propulsion strategy that we
utilize in this paper (Fig. 1).

One benefit of using magnetic fields for propulsion of cap-
sule endoscopes is the opportunity for concurrent localization
using the same magnetic field. There are several magnetic-
localization methods previously published, see [10] for a
review. We focus our discussion on those using rotating
magnetic fields, as they are compatible with our chosen
actuation method [9]. Additionally, their time-varying nature
provides a constant influx of new information to the system,
preventing the need for additional sensors (i.e., accelerome-
ter). Prior localization methods typically assume the capsule
has no net motion during localization [11], [12], which
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Fig. 1. Overall system setup with the external actuator magnet mounted
on the end-effector of a robot. The capsule’s coordinate frame origin oc
is placed at the center of its internal magnet, and the robot’s tool frame
origin or resides at the center of the actuator magnet. The inset depicts
how the lumen will cause the principle axis of the capsule, xc, to lead the
rotation axis of the applied field, ω, by some angle Ψ as the capsule is
driven “forward”. The turn is then sensed and incorporated by the extended
Kalman filter to update the “forward” direction.

prevents continuous propulsion. Kim et al. [13] developed
an algorithm to localize a capsule as it rotates with the
applied field, but found in practice the capsule needed to be
stationary to meet their desired performance [5]. Son et al.
[14] describe a five-degree-of-freedom (5-DOF) localization
algorithm using externally placed sensors to localize the
capsule by measuring the field of the capsule’s embedded
permanent magnet, but to-date the workspace is limited.

Prior work utilizing magnetic fields in true real-time
closed-loop control of capsule endoscopes have dragged
the capsule with magnetic forces [2]–[4]. Salerno et al.
[3] developed a 2-DOF control system to measure forces
during dragging tasks. Taddese et al. [2] experimentally
demonstrated 4-DOF closed-loop control of a tethered mag-
netic capsule using magnetic field gradients. To the authors’
knowledge, all prior closed-loop propulsion with rotating
fields either utilized computer vision [9] for localization,
which is not practical for clinical use, or required decoupled
localization and propulsion [5]. Recently, we described a
localization method to estimate the full 6-DOF pose of a
magnetic capsule under the assumption of no net motion,
and we applied the pose estimate for position and heading
feedback in a proof-of-concept propulsion system [12]. The
propulsion and localization were decoupled, similar to [5],
such that propulsion was executed open-loop, and our cap-
sule’s movement was periodically paused for localization.

In this paper we present an extended Kalman filter (EKF)
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Fig. 2. Block diagram depicting our localization and propulsion system.
s is the capsule’s state, u is the system input, and isRotating is a Boolean
representing whether the capsule is synchronously rotating with the field.
Roman numerals correspond to the section in which each step is described.

to provide a continuous estimate of the capsule’s 6-DOF pose
as it rotates synchronously with an applied magnetic dipole
field. The EKF uses a simplified 2-DOF process model that
assumes the capsule movement is restricted to translation
along and rotation about its principle axis. We restrict the
remaining four degrees of freedom and let the lumen dictate
changes in the capsule’s heading. For example, as the capsule
enters a turn, the geometry of the lumen will cause the
capsule’s axis xc to deviate from the rotation axis of the
applied field (ω) by an angle Ψ, as shown in the inset
of Fig. 1. If Ψ is relatively small, the resulting restoring
torque will be negligible and the capsule will continue to
rotate because of compliance in the magnetic field. We
have previously shown our propulsion method is robust to
these types of misalignments [15]. The capsule’s heading is
updated based on the sensor measurements and the capsule
is continually tracked throughout the curve.

This paper is also the culmination of many efforts from our
group in magnetic capsule endoscopy. The capsule is initially
localized using the method of [12]. It is propelled using
the method of [9], with the permanent-magnet robotic end-
effector described in [16]. Finally, the capsule’s movement in
the applied field is constantly monitored (i.e., Is the capsule
synchronously rotating with the field, is the capsule able to
rotate but the field is rotating too quickly for the capsule
to remain rotating synchronously, or is the capsule stuck?),
using the method described in [17]. A block diagram depict-
ing the complete localization/propulsion system is shown in
Fig. 2. The result is the first demonstration of simultaneous
localization and propulsion of a screw-type magnetic capsule
in a lumen using a single rotating magnet.

II. NOMENCLATURE

Throughout this paper scalars are represented by italic
lowercase font (e.g., s), vectors are denoted by lowercase
bold font (e.g., iv) where the optional superscript i denotes
a specific coordinate frame the vector is being expressed
with respect to, and subscripts may also be used in the
naming convention. The “hat” symbol (e.g., v̂) denotes a
vector of unit length. Matrices are represented by uppercase
bold font, and for rotation matrices jRi the subscript i
and superscript j denote the starting and ending coordinate
frames, respectively; this is also true for quaternions. In is
an n × n identity matrix and S[·] is the skew-symmetric
matrix representation of the cross product operation (e.g.,
S[a]b = a× b).

III. ACTUATION AND SENSING SYSTEM

Our setup shown in Fig. 1 uses the Spherical-actuator-
magnet Manipulator (SAMM) [16] mounted on the end-
effector of a robotic arm for the external actuator magnet.
The SAMM uses three mutually orthogonal omniwheels to
generate singularity-free continuous rotation of its spherical
magnet about arbitrary axes. The field of a spherical perma-
nent magnet is nearly perfectly approximated by the point-
dipole model. If a capsule is positioned in space at rpc the
applied field rbc at the location of the capsule’s magnet can
be calculated with [18]:

rbc =
µ0

4π||rpc||5
Bcrma (1)

Bc =
[
3rpc

rpTc − I3||rpc||2
]

(2)

where µ0 is the permeability of free space and ma is the
magnetic moment of the actuator magnet.

There are six Hall-effect sensors rigidly placed inside
the capsule, surrounding its internal magnet but minimally
effected by its field, as described in [12], [17]. The position
offset cδi of sensor i from the center of the capsule’s magnet
along with the orientation of the sensor’s measuring axis cαi
are known and remain constant. The position vector to the
ith sensor from the robot’s tool frame is calculated as

rpi = rpc + rQc cδi rQ∗c (3)

where rQc is the quaternion representation of the rotation
rRc (see Appendix A). The measurement of sensor i is the
projection of the field onto the sensor’s measuring axis:

bi =
µ0

4π||rpi||5
cαTi

rQ∗c (Birma) rQc (4)

IV. INITIAL LOCALIZATION

The origin of the capsule’s frame, oc, is located at the
center of its internal magnet, and the origin of the robot’s
tool frame, or, is placed at the center of the external dipole
source, as shown in Fig. 1. We will solve for the capsule’s
6-DOF pose, comprising position rpc and orientation rRc,
relative to the robot’s tool frame. While it may be beneficial
to transform the pose to a static world frame for clinical
applications, in terms of controlling the capsule, the robot’s
tool frame is preferable because the magnetic equations are
derived with respect to the actuator magnet.

To provide accurate tracking, we require an initial estimate
of the capsule pose. From [12] we can determine the 6-
DOF pose of a capsule with no net motion to within a few
millimeters and a few degrees of the true capsule pose with
no prior information. We modify the method for use with
quaternions, since we previously employed the exponential
formulation of a rotation matrix. Using the magnetic field
measurements from the sensors embedded in the capsule,
and rotating the external dipole about multiple orthogonal
axes, it is possible to determine the capsule’s 6-DOF pose
relative to the external source (i.e., in the robot’s tool frame).

The capsule’s full 6-DOF pose is represented by a 7×1
state vector rs =

[
rpTc

rQTc
]T

. The capsule’s pose is



estimated by minimizing the cost function ||Bm−Be||2 using
the Levenberg-Marquardt algorithm. Bm is an array of the
measured magnetic field readings corresponding to a single
rotation of the dipole source about each of the xr, yr, and
zr axes, and Be is an array of the magnetic field readings
estimated by (4). As the initial position is unknown, five
initial guesses, which are spread throughout the possible
workspace, were used. The estimated pose resulting in the
minimum norm of residual error between the estimated and
measured sensor readings is chosen.

V. PROPULSION METHOD

We summarize the method of [9]. If a dipole source ma is
rotated around some arbitrary axis Ω̂ such that mT

a Ω̂ = 0 is
always true, then at any point in space (e.g., the location of
the capsule), the applied field rotates orthogonal to a local
axis ω̂. The rotation axis of the actuator magnet needed to
provide a desired local rotation axis ω̂ is calculated by:

rΩ̂ = B̂crω̂ (5)

where Bc is from (2). Assuming the capsule is constrained to
a lumen, the desired ω̂ is parallel to the capsule’s principle
axis xc and locally aligned with the lumen. As ma is rotated
around Ω̂, rbc rotates around ω̂, updated as in (1), with
the same period (but not necessarily the same instantaneous
angular velocity). Bc requires an estimate of rpc, and ω̂ is an
estimate of xc, these initially come from our estimate from
Section IV, but are subsequently updated with our EKF.

VI. EXTENDED KALMAN FILTER

We use a discrete-time implementation of the EKF [19],
assuming constant inputs between samples, and assuming the
following system model:

sj = g(sj−1,uj−1,wj−1) (6)

yj = h(sj ,uj , vj) (7)

where sj is the capsule’s state at time step j, uj−1 is the
input to the system at the previous time step, g models the
system dynamics, yj are the estimated observations, h is the
measurement model, and wj ∼ (0,Qj) and vj ∼ (0,Nj) are
the zero-mean process and measurement noise parameters
with known covariances of Qj and Nj , respectively. The EKF
is broken into two steps: prediction and measurement update.

The a priori estimate predicts the next state s and its
corresponding covariance P from the process model g and
is denoted by the − superscript.

s−j = g(s+
j−1,uj−1,wj−1) (8)

P−j = Gj−1P+
j−1GT

j−1 + Qj−1 (9)

where the state transition matrix Gj−1 is defined as:

Gj−1 =
∂g

∂s

∣∣∣∣
s+j−1,uj−1

(10)

The measurement update improves the a priori prediction
by incorporating the observations to form the a posteriori
state estimate, which is denoted with a + superscript.

Kj = P−j HT
j (HjP−j HT

j + Nj)−1 (11)

s+
j = s−j + Kj(zj − h(s−j ,uj , 0)) (12)

P+
j = (I7 −KjHj)P−j (13)

H =
∂h

∂s

∣∣∣∣
s−j ,uj

(14)

where zj is a vector of observations from time step j, K
refers to the Kalman gain, and H is the Jacobian of the
measurement model. The closed-form solutions for G and H
are derived in Appendix B.

A. Process Model Implementation

The same state introduced in the initialization step is used
in the EKF: rs = [rpTc

rQTc ]T . The system input consists of
the actuator magnet’s position and dipole orientation ru =[
roTr rma

T
]T

. A simple 2-DOF process model is used to
estimate how the capsule’s state evolves over time, restricting
translation to only forward or backward movement along xc,
and rotation to only around xc. We rely on the constraining
lumen to dictate the remaining degrees of freedom and
assume the capsule’s inertia and stiction are negligible. The
capsule has a helical thread for propulsion, which translates
magnetic force and torque into forward (v) and angular (ω)
velocity using the following symmetric matrix from [20]:[

ω
v

]
=

[
A E

ET L

] [
τ
f

]
= Γ

[
τ
f

]
(15)

where A, E, and L are each 3 × 3 submatrices. The magnetic
force and torque on the capsule from the applied magnetic
field can be written as:
rτ =

µ0

4π||rpc||5
rmc × (Bcrma) =

µ0

4π||rpc||5
S[rmc]Bcrma

(16)
rf =

3µ0

4π||rpc||4
(
rma

rpTc + rpc
rmT

a +
(
rpTc Zrma

)
I3

)
rmc

(17)
where Z = I3 − 5rp̂crp̂

T
c .

The submatrices A, E, and L are chosen such that Γ only
transfers the torque and force resulting in propulsion along
cxc (the principle axis of the capsule).

A =

a 0 0
0 0 0
0 0 0

 ,E =

e 0 0
0 0 0
0 0 0

 ,L =

 l 0 0
0 0 0
0 0 0


(18)

The scalar helical propulsion parameters are lumen depen-
dent and were experimentally estimated prior to testing.
Future work will involve developing an adaptive step to
determine these parameters online. Γ was chosen to give
the desired motion of the capsule in the capsule’s coordinate
frame, so ω and v are calculated in that frame.[

cω
cv

]
= Γ

[
rQ∗c rτ

rQc
rQ∗c

rf rQc

]
(19)



Instead of updating the entire 7×1 state in a single func-
tion, the position and orientation are updated individually
and combined:

g(rs+
j−1,

r uj−1) =

[
gp(rs+

j−1,
r uj−1)T

gQ(rs+
j−1,

r uj−1)

]
(20)

The position is updated using:

gp(rs+
j−1,

r uj−1) = rpc,j = rpc,j−1 + ∆t rQc cv rQ∗c (21)

The incremental change in orientation can be found by
transforming the angular velocity into a unit quaternion.

cQc,∆ = cos

(
||cω||∆t

2

)
+

cω

||cω||
sin

(
||cω||∆t

2

)
gQ(rs+

j−1,
r uj−1) = rQc,j = rQc,j−1

cQc,∆
(22)

The process model noise is difficult to measure, so the
covariance was tuned experimentally to provide desired
tracking. All states are assumed independent, such that Q
is non-zero only along its diagonal axis. Due to the slow
nature of capsule endoscopy, we know the capsule’s next
position will be in close proximity to its previous position
and place high certainty on the position’s process model
(the upper left 3×3 submatrix), which has units of m2. The
capsule’s orientation is less certain because of the rotating
fields and this is reflected in the chosen values (bottom right
4×4 submatrix), which are unitless:

Q = diag(0.001, 0.001, 0.001, 100, 100, 100, 100) · 10−5

B. Measurement Model Implementation

This method is a recursive variant of the original algo-
rithm presented in [12] and similarly assumes there are n
magnetic sensors rigidly embedded inside the capsule. The
measurement model h estimates the sensor measurements
by projecting the expected dipole field onto the sensor’s
measuring axis using (4). The n measurements are combined
into a column vector:

h(rpc,
rQc, rma,

cD) =

 bi(
rpi,

rQc, rma)
...

bn(rpn,
rQc, rma)

 (23)

where cD is a 3×n matrix where the ith column corresponds
to cδi and is used with rpc to calculate rpi. Each row in h
is calculated using (4).

The measurement noise covariance matrix N was esti-
mated using sensor data from five locations spread through-
out the workspace. Each sensor is assumed independent so
the resulting values were placed along the diagonal of the
6×6 matrix, with the remaining values set to zero; the units
are T2.

N = diag(51.1, 49.4, 48.4, 57.2, 49.7, 59.1) · 10−7

VII. DETECTING THE CAPSULE’S OPERATING REGIME

At any given time, the capsule will be operating in one
of three regimes. 1) The capsule is rotating synchronously
with the applied field. 2) The capsule is in the “step-out”
regime where the external field is rotated too quickly for
the capsule to remain synchronously rotating. When this
occurs the capsule rotates erratically back and forth trying
to align with the field with little or no net motion. 3) The
capsule is stuck (e.g., completely stationary). We only need
to distinguish whether or not the capsule is synchronously
rotating with the external field because the method of [12]
can be used to estimate the pose of a capsule that is either
stationary or in step-out. We have previously shown that
knowledge of the “lead angle”, φ, which is the angle between
the applied field bc and the capsule’s dipole moment mc, is
sufficient to distinguish this [17]. Briefly, if the lead angle
remains relatively constant over a full rotation of the external
field, the capsule must be synchronously rotating with the
field, but if the capsule is stationary or in step-out, φ will
periodically change signs. To prevent false positives that may
occur when the capsule is rotating synchronously with a lead
angle near zero, in addition to the sign change, the following
condition must be met at least once in a given rotation to
determine that the rotation is not synchronous: |φ| > π/2 rad.

Given the capsule’s estimated pose from either the ini-
tialization or the EKF, and whether the capsule is rotating
with the applied field, the actuator dipole’s pose is updated;
pseudocode is given in Alg. I. If the capsule is not rotating
with the field, the actuator’s speed is slowed to 80 percent of
the desired speed for two rotations to re-engage the capsule.
If the capsule does not commence rotating with the field at
this reduced speed, the actuator’s speed is further decreased
to 50 percent of the desired value. This was sufficient in
our tested trajectories to always re-engage the capsule and
begin forward motion. For more complex trajectories or
in heterogeneous environments (e.g., intestines), additional
steps may be required (e.g., using the uncertainty of the
EKF’s state estimate to re-localize if it is above a threshold).

VIII. DEMONSTRATION OF CLOSED-LOOP PROPULSION

In our experimental setup, the SAMM was mounted on the
end-effector of a 6-DOF robotic arm and used as our external
magnetic source. We used the prototype capsule introduced
in [12] (Fig. 3(a)). It measures 42 mm in length and 13.5 mm
in diameter not including the helix for propulsion. The
capsule is embedded with six Allegro A1392 linear one-axis
Hall-effect sensors arranged surrounding a 108 mm3 cubic
NdFeB permanent magnet. The sensors are read at 100 Hz,
but are wirelessly sent to the PC in batches at 20 Hz. The
EKF is implemented as though each set of sensor data is
received individually at the appropriate times.

Recently, we demonstrated a proof-of-concept propulsion
system to confirm our localization estimates were sufficiently
accurate using a decoupled magnetic propulsion and localiza-
tion system [12]. Using this approach, the magnetic capsule
successfully navigated through both a straight and curved
lumen. For comparison, we demonstrate our simultaneous



Algorithm 1 Psuedocode to update the SAMM pose.
s is the estimated capsule state, isRotating is a Boolean
representing the operating regime of the capsule, ||Ω||j−1 is
the actuator’s rotation speed at the prior time step, ‖Ω‖des
is the desired actuator rotation speed, tr is the time required
for the dipole source to complete two rotations, and pc,des
is the desired position offset between the capsule and the
dipole source. It may be user specified (as it is here) or the
result of an optimization routine.

1: roc ← s[1 : 3], wQc ← s[4 : 7]
2: rRc ← QUATERNIONTOROTATIONMATRIX(wQc)
3: rω̂ ← rRc(:, 1)
4: ror ← roc −r pc,des
5: Ω̂← Eq. (5)
6: if isRotating then Ωj = Ω̂j‖Ω‖des, timer.STOP()
7: else
8: if timer.NOTSTARTED() then timer.START()

9: if timer.GETTIME() < tr then Ωj = 0.8Ω̂j‖Ω‖des
10: else Ωj = 0.5Ω̂j‖Ω‖des

localization and closed-loop propulsion system using the
same trajectories, but continuously propel the capsule.

For the straight trajectory, a leading configuration match-
ing that from [12] was chosen such that the capsule propul-
sion employs both an attractive magnetic force and magnetic
torque. Figure 3(b) shows a composite image of the trajec-
tory. With continuous actuation, the trajectory completion
time was approximately 40 seconds with an average capsule
speed of 6 mm/s, which is three times faster than what was
reported in [12]. The 5-DOF error for the straight trajectory
was found by comparing the capsule’s estimated state from
the EKF with that given by a stereo vision system. The
average position error was 8.5 mm and 7.1◦. The error on the
roll angle is not reported because of difficulties accurately
measuring the ground truth.

The semicircular trajectory from [12] was also repro-
duced to test the effectiveness of our 2-DOF process model.
The SAMM was placed in an arbitrary position such that
its relative placement with respect to the capsule remains
constant as the capsule moves through the trajectory. This
path had similar improvement over the decoupled propul-
sion/localization system from [12] with the trajectory taking
approximately two minutes, less than a third of the original
time (6.5 min), see Fig. 3(c); the average speed was 5.4 mm/s.
Error is not reported because this trajectory was outside of
the camera range.

For further demonstration, an additional test was com-
pleted in a Boston Scientific phantom of the small intestines
(Fig. 3(d)). The current size of the capsule and SAMM’s
magnet prevent the capsule from moving through the stric-
ture, but the capsule was successfully propelled through the
curved ridged lumen with an average speed of 2.2 mm/s.
At this speed, an examination of the entire small intestines
would take approximately 45 minutes. In this experiment the
SAMM is positioned at a desired offset with ‖pc‖ = 100 mm

(d)

20 s

58 s
105 s

36 s 7 s23 s

(b)

20 s

60 s

120 s

(c)

(a)

Fig. 3. Experimental demonstrations of simultaneous localization and
closed-loop capsule propulsion. (a) Our prototype capsule embedded with
a permanent magnet and six Hall-effect sensors was introduced in [12].
(b) To reproduce the trajectory originally demonstrated in [12], the SAMM
was placed in a leading configuration with pc,des = [0 58 − 100] mm
and ‖Ω‖des = 0.5 Hz. (c). A reproduction of the semicircular path
described in [12], with the SAMM placed in an arbitrary configuration with
pc,des a function of the capsule’s heading such that the SAMM maintains
the desired relative position as the capsule moves through the curve.
||pc,des|| = 100 mm and ‖Ω‖des = 0.5 Hz. (d) The capsule was propelled
through a Boston Scientific phantom. Similar to (c), ‖pc‖ = 100 mm
with p̂c dependent on the capsule’s heading, ‖Ω‖des = 0.16 Hz. Please
see supplementary video.

and p̂c dependent on the capsule’s heading. As seen in
the supplementary video, this choice resulted in significant
movement of the SAMM because the capsule’s heading
changes as it traverses the phantom’s ridges. In our current
implementation, the capsule has trouble navigating near
the tightest portion of the phantom’s curve. Improving the
robustness of the propulsion system based on the capsule’s
estimated state, optimizing the placement of the SAMM
and its rotational speed, and improving the capsule’s thread
geometry are topics of future work to further increase the
capsule’s speed. The phantom and plastic tubing, although
sufficient for a proof-of-concept, is not necessarily indicative
of performance in real small intestines. Further testing is
required in a soft, deformable lumen for a more accurate
representation of the capsule’s propulsion.

IX. CONCLUSION

This paper provides the culmination of efforts in our group
to enable active wireless capsule endoscopy by combining



magnetic propulsion, localization, and proprioceptive sensing
into a single closed-loop propulsion-localization system. Our
simplified 2-DOF process model is sufficiently accurate to
model the capsule’s dynamics through curved trajectories.
We experimentally demonstrate, for the first time, continuous
closed-loop propulsion of a magnetic screw-type capsule in
a lumen using a single rotating magnet for both propulsion
and localization. This presents an important step toward the
use of rotating magnetic fields for capsule endoscopy.

APPENDIX A: QUATERNION REVIEW

Quaternions are an alternative to rotation matrices for rep-
resenting orientations and rotations of Euclidean vectors [21].
Consider a rotation matrix R, which can be represented in
the angle-axis representation (θ, k̂). A quaternion Q is a 4×1
vector that is constructed from the angle-axis representation:

Q =

[
q0

q

]
, q0 = cos

(
θ

2

)
, q = k̂ sin

(
θ

2

)
(24)

where q0 and q are the scalar and vector parts of the
quaternion. A quaternion’s conjugate is defined as

Q∗ =

[
q0

−q

]
(25)

Quaternion multiplication is not commutative and is defined
as:

Q · K =

[
q0 −qT
q q0I3 − S[q]

] [
k0

k

]
(26)

Quaternions can be used in a similar fashion to rotation
matrices to rotate any arbitrary vector r into a different
coordinate frame by conjugating r by Q:
jr = jQi ir jQ∗i =

(
q2
0 − q · q

)
ir + 2q0q× ir + 2q

(
q · ir

)
(27)

The inverse rotation is performed in a similar way:
ir = jQ∗i jr

jQi =
(
q2
0 − q · q

)
jr + 2q0

ir× q + 2q
(
q · ir

)
(28)

APPENDIX B: CLOSED-FORM JACOBIANS

For compactness going forward, vectors are only given a
frame label if they are not in the robot frame, p = pc, and
Q = rQc. An explicit representation of the Jacobian matrix
for the process model function, G(s,u) was derived and is
given by:

G =

[
dgp
dp

dgp
dQ

dgQ
dp

dgQ
dQ

]
(29)

where the four submatrices are defined below.
dgp

dp
=
∂gp

∂v

(
∂v
∂f

∂f
∂p

+
∂v
∂τ

∂τ

∂p

)
+
∂gp

∂p
(30)

dgp

dQ
=
∂gp

∂v

(
∂v
∂f

∂f
∂Q

+
∂v
∂τ

∂τ

∂Q
+
∂v
∂Q

)
+
∂gp

∂Q
(31)

dgQ
dp

=
∂gQ
∂ω

(
∂ω

∂f
∂f
∂p

+
∂ω

∂τ

∂τ

∂p

)
(32)

dgQ
dQ

=
∂gQ
∂ω

(
∂ω

∂f
∂f
∂Q

+
∂ω

∂τ

∂τ

∂Q
+
∂ω

∂Q

)
+
∂gQ
∂Q

(33)

The partial derivatives of (27) and (28) with respect to
both Q and some arbitrary vector r are frequently used, so
these are derived first.

Π(r,Q) =
∂QrQ∗

∂Q
=

[
∂QrQ∗

∂q0

∂QrQ∗

∂q

]
∂QrQ∗

∂q0
= 2q0r + 2q× r

∂QrQ∗

∂q
= 2

(
q0S[r]T + qrT + (q · r) I− rqT

) (34)

Π∗(r,Q) =
∂Q∗rqQ
∂q

=

[
∂Q∗rQ
∂q0

∂Q∗rQ
∂q

]
∂Q∗rQ
∂q0

= 2q0r + 2r× q

∂Q∗rQ
∂q

= 2
(
q0S[r] + qrT + (q · r) I3 − rqT

)
Υ∗(Q) =

∂Q∗rQ
∂r

= (q2
0 − q · q)I3 + 2q0S[q]T + 2qqT

(35)
Starting with (16), the partial derivative of τ with respect to
p and Q can be written as:

∂τ

∂Q
=

µ0

4π||p||5
S[Bma]TΠ(cmc,Q) (36)

∂τ

∂p
= cτ

(
3(pTmaI3 + pmT

a + mapT )

‖p‖5
− 15pTmappT

‖p‖7

)
cτ =

µ0S[QcmcQ∗)]
4π

(37)
where B is from (1).

The partial derivative of the magnetic force (17) with
respect to Q:
∂f
∂Q

=
3µ0

4π||p||4
(

map̂T + mT
a p̂I3 + p̂mT

a ZT
)

Π(cmc,Q)

(38)
The derivative of force with respect to p is calculated as:

∂f
∂p

=
3µ0‖ma‖‖mc‖

4π‖p‖5

(
X− 5p̂p̂TX− 5Xp̂p̂T−

5
(

m̂T
c (3p̂p̂T − I3)m̂a

)
p̂p̂T

)
X = m̂am̂T

c + m̂cm̂T
a +

(
m̂T
c Zm̂a

)
I3

(39)

Using the current values of τ and f, the partial derivatives
of the forward and angular velocities are found:

∂ω

∂τ
= AΥ∗(Q),

∂ω

∂f
= EΥ∗(Q)

∂v
∂τ

= ETΥ∗(Q),
∂v
∂f

= LΥ∗(Q)

(40)

where A, E, and L are from (18). The remaining partial
derivatives for the position update are derived from (21):

∂gp

∂v
= ∆t

(
(q2

0 − q · q)I3 + 2q0S[q] + 2qqT
)

(41)
gp

∂p
= I3 (42)

∂v
∂Q

= LΠ∗(f,Q) + ETΠ∗(τ ,Q) (43)



∂gp

∂Q
= Π(v,Q)∆t (44)

The following partial derivatives are calculated from the
orientation update (22). Q∆ = [q∆,0 qT∆]T refers to the
incremental change in orientation that is created using the
capsule’s speed as its rotation vector, υ = ∆tω. From [21],
the derivative of a quaternion with respect to its rotation
vector υ is:

∂Q
∂υ

=
1

2||υ||3


−υ1‖υ‖2s −υ2||υ||2s −υ3||υ||2s
σ + υ2

1ε υ1υ2ε υ1υ3ε
υ1υ2ε σ + υ2

2ε υ2υ3ε
υ1υ3ε υ2υ3ε σ + υ2

3ε


where c = cos(‖υ‖/2), s = sin(‖υ‖/2)

ε = c‖υ‖ − 2s, σ = 2||υ||2s
(45)

where the subscript on υ refers to the vector index.

dgQ
dω

=

[
q0 −qT
q q0I + S[q]

]
∂Q∆

∂υ
(46)

dgQ
dQ

=

[
q∆,0 −qT∆
q∆ q∆,0I + S[q∆]T

]
(47)

∂ω

∂Q
= EΠ∗(f,Q) + AΠ∗(τ ,Q) (48)

An explicit representation of the Jacobian matrix for the
measurement model, H(s,u), is given by:

H =
[

∂h
∂p

∂h
∂Q

]
(49)

The measurement model hi can be rewritten in terms of p
and Q:

hi = cαTβQ∗ΛQ∗ (50)

where β =
µ0

4π‖rp + κ‖5
(51)

Λ =
(
3(rp + κ)(rp + κ)T − I3‖rp + κ‖2

)
ma

(52)

where κ = Q cδiQ∗. By setting ζ = cαTQ∗ΛQ the partial
derivative of hi with respect to p is calculated as:

dh

dp
= ζ

∂β

∂p
+ β

∂ζ

∂p
(53)

∂ζ

∂p
= cαTΥ∗(Q)

∂Λ

∂p
(54)

∂Λ

∂p
= 3

(
I3pTma + pmT

a + κmT
a + κTmaI3

)
− 2(mapT + maκ

T ) (55)
∂β

∂p
=

(
−5µ0

4π

)
pT + κT

‖p + κ‖7
(56)

Similarly, the partial of h with respect to Q is:
dh

dQ
= ζ

dβ

dQ
+ β

dζ

dQ
(57)

dζ

dQ
= cαTΥ∗(Q)

∂Λ

∂Q
+ cαTΠ∗(Λ,Q) (58)

∂Λ

∂Q
= 3
((

pTmaI3 + κmT
a + κTmaI3 + pmT

a

)
(59)

− 2
(
mapT + maκ

T
))

Π(δi,Q)

dβ

dQ
=
∂β

∂p
Π(δi,Q) (60)
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