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Successful robotics systems require the organization and
analysis of a tremendous amount of sensor data. Moreover, the
current computer paradigm of “shape-from” algorithms re-
quires multi-dimensional data from the sensors, e.g. 3-space
location and surface normal. Such multi-dimensional vectors
must be organized such that spatial searching is efficient and so
that spatial proximity is easily determined. Unfortunately, even
though methods of computational geometry have been quite
successful in dealing with intersection and proximity problems
in 2-D, they have not been so successful in dealing with data of
dimension greater than two. We define the spatial proximity
graph as a low-level organizational structure, and show how it
can be built efficiently. Some examples are given.
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1. Introduction

Sensed data plays an important role in general
robotics systems and will soon play an even bigger
role as better sensors appear. The trend is toward
higher resolution and shorter time for data de-
livery. It is becoming very difficult to process in
real-time the flood of data delivered by such
sensors. We propose the spatial proximity graph as
a low-level representation for the organization of
k-dimensional data from multiple sensors. The
solutions to several problems are demonstrated in
this context.

Multiple sensors pose several problems for the
environment in which they work; it is necessary to
coordinate the active control of several sensors
and integrate the data from the various sensors
into a coherent and useful description of the world.
Fig. 1 shows the flow of data in such a system,
where S, to S, are the sensor systems.

Each sensor system, S; in Fig. 1 has an associ-
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Fig. 1. Framework for Multi-sensor Environment.

ated controller, C;. for example, a camera may be

aimed, focused, or have the -aperture setting

changed. A sensor system may have several com-

ponents, e.g.

* a dexterous hand: several tactile pads in known
relationships due to the finger linkages

* a stereo range finder: two cameras with separate
controllers for focus, zoom, etc. ;

That is, a sensor system consists of all the sensor

components and the associated controllers.

The second issue that must be addressed is the
dimensionalilty of the data. The major result of
the last few years of computer vision research is
that the sensed data formation process must be
inverted to recover the intrinsic characteristics of
the real world scene which was sensed. This im-
plies an increased dimensionality of the data in
that one or more characteristics may be measured
at a given location in space. For example, a vector
might have the following elements:

(x’ Y, Z, I’l], '?2> I’l3)

where (x, y, z) is the spatial location of the de-
tected surface element and (n,,n,, n;) is the
surface normal at that location. It should be possi-
ble to spatially organize the data on any subset of
elements of the sensed vector.

The Multi-sensor Kernel System (MKS) has
been proposed as a means for the acquisition,
organization and analysis of multi-dimensional
data from multiple sensors [7,11]. In general, any
set of sensors can be used, and MKS is organized
such that each sensor contributes information in-
dependently of the other sensors. However, high-
level models are used to control the acquisition of
data, such that as object recognition and object
localization proceed, more explicit data and hence
less data will be demanded from the sensors. .

Specific relations and constraints from the already
processed data guide the sensors in further acquisi-
tion of new data. \

In this paper we discuss the part of MKS in
which multi-dimensional data is integrated and
spatially organized. It is argued that this represen-
tation supports many high-level object modeling
techniques, and in particular, feature-based mod-
els and certain structural models.

2. Organization of 3-D Data

Upon obtaining raw sensory data, we organize

the data as follows:

1. extract features from the data and the 3-D
locations of these features, and

2. determine the spatial relationships between the
subset of features in their corresponding feature
space. The spatial relationships between the
data points in the feature space give a measure
of the dissimilarity between these data points.

2.1. Feature Selection

Feature extraction plays a prominent role in
image analysis, and there is every indication that it
will do so for tactile sensors, too. Features range
from the intrinsic characteristics found in images
(edges, reflectance, depth, etc.) to physical char-
acteristics of a surface (temperature, smoothness,
compressibility).

Features are often used to characterize objects,
and as time efficiency is of utmost importance,
features are usually chosen so as to provide an
adequate description which can be obtained
cheaply and reliably. Discovering useful features is
an important research area, but such features as
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This optimized algorithm minimizes the ex-
pected number of records examined during search-
ing for nearest neighbors through choosing both
the discriminator key element and partition value
for each subfile, and the number of records in each
terminal bucket. Two restrictions govern the char-
acteristics of the optimized algorithm.

The first restriction is that the algorithm is too
general and is independent of the distribution of
queries and only utilizes information contained in
the file records. Clearly, such an algorithm works
equally well for all possible query distributions
and is not optimal for any particular one.

The second restriction is that the possible val-
ues for discriminating key and partition at any
particular node depend on the subsection repre-
sented by that node. This restriction is essential
for defining the k-d tree recursively and avoiding
a general binary tree optimization which is known
to be NP-complete and likely of nonpolynomial
time complexity [3]. v

Since information provided to a binary choice
is maximal when the two alternatives are equally
probable, it is equally likely that a file record will
be placed on either side of the partition. Hence,
irrespective of which key is selected for the dis-
criminator, the median of the marginal distribu-
tion of key values, serves well as the partition.

The search algorithm can stop searching the
subsection on the side of the partition opposite the
query record if the partition boundary does not
intersect the ball centered at the query record with
radius equal to the dissimilarity to the m'™ closest
record so far encountered.

With these considerations in mind, the opti-
mized k-d tree algorithm chooses at every non-
terminal node the key with the largest range in
values as the discriminator, and the median of the
discriminator key value as the partition. In order
to minimize the number of records examined, the
terminal buckets should each contain one record.

In searching, the optimized k-d tree algorithm
provides an efficient scheme for checking only
those records closest to the query record, thus
greatly reducing the computation required to find

the best matches. Hence we will use the k-d tree as

a means to organize our sensor data to achieve the
goal of finding the m nearest neighbors to all
target records for the derivation of the neighbor-
hood graph, i.e. the spatial proximity graph.
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2.4. Spatial Proximity Graph

The spatial proximity graph is a graph, having a
distinct node for each distinct vector from a sensor.
The nodes of the spatial proximity graph corre-
spond to the positions in feature space of these
vectors of features. Nodes are linked by an edge if
they are within some specified dissimilarity
threshold. An edge exists between two nodes if
either of the two nodes has the other as one of its
m-nearest neighbors, for some small m. The sys-
tem as currently implemented permits the user to
select a subset of the feature vector produced by
the sensor. (As a matter of fact, the user can
actually choose any non-empty subset of both the
location and feature elements.) If the features are
not used in forming the key, then the spatial
proximity graph imposes a direct Euclidean nearest
neighbors on the features; for example, such a
graph can be used to recover planar faces ap-
proximating the data when the features are simply
surface points [4]. :

On the other hand, if the features are encoded
as part of the key, then an appropriate choice of
the feature values in the feature space dimension
can lead to tremendous gains in object recogni-
tion efficiency. For example, if linear edges and
flat surfaces are features assigned a large positive
value in the first key dimension, whereas curved
edges and surfaces are assigned a large negative
value, then the spatial proximity graph of a scene
containing a sphere and a cube, for example, will
be disconnected. Obviously, one would like to take
advantage of this whenever possible.

The spatial proximity graph then provides a
means for organizing information from different
sources. Moreover, high-level analysis in terms of
features can be performed on this graph. The k-d
tree and the spatial proximity graph have already
been studied in the context of 3-D range data [4]
and feature encoding for satellite imagery [5,6].
This method of representation seems well suited to
organizing multi-sensor data. Intuitively, the spa-
tial proximity graph makes explicit the neighbor-
hood relations of selected features extracted from
the data.

3. Implementation Considerations

The low-level modeling system consists of three
major components:
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/% build left subtree ¥/
1s_lptr = 1_record_ptr;
ls_rptr = median_pos;
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leftsubtree_node = kd_tree_byilder ( discriminator, partition,
1s_lptr, 1ls_rptr ) ;

/¥ build right subtree ¥/
rs_lptr = 1s_rptr + 13
rs_rptr = r_record_ptr;

rightsubtree node = kd_tree builder ( discriminator, partition,

rs_lptr, rs_rptr );

nont_node = make_nonterminal ( discriminator, partition,
maxspread, leftsubtree_node, rightsubtree_node );

return ( nont_node );

}

Fig. 3. Code for the k-d tree builder.

1. preprocessor to format sensor data into records
of k real valued keys or attributes as proper
input to the k-d tree builder,

2. k-d tree builder to construct a binary tree for
the storage of sensor records of k composite
keys appropriate for the problem of finding
those records in the tree most similar to a query
record according to some dissimilarity or dis-
tance measure, and

3. spatial proximity graph builder to construct the
neighbors graph in which each record in the k-d
tree is associated with the number of nearest
neighbors desired.

3.1. Sensor Data Formatter

Sensor data output by the logical sensors are
sets (or streams) of vectors whose components are
features of the detected world. Depending on the
type of high-level modeling for object recognition
and localization, it could be that only a subset of
the features is relevant. The sensor data formatter
allows the user to choose the relevant subset of
features. The formatter establishes a mapping that
transforms the full original set of features availa-
ble for the logical sensor to a chosen subset of k
relevant features as proper output to the k-d tree
builder. The original mapping carries with it all
the linking information necessary to recover any
unused features associated with a particular vector
of k features.

3.2. k-d Tree Builder

The major procedures to construct an opti-
mized k-d tree for best match file search are an

adaptation of the algorithm presented by Fried-
man [3]> The k-d tree builder receives as its input
the streams of vectors of k chosen features from
the sensor data formatter. The dissimilarity mea-
sure used to estimate the range or spread in fea-
ture key values is simply the linear coordinate
distance function. In the resultant k-d tree, each
nonterminal node contains pointers to its left and
right successor nodes, discriminating feature coor-
dinate, partition value, and the median index with
respect to the discriminating feature coordinate.
Each terminal bucket contains a list of indexes of
the vectors belonging to it. The indexes can be
used to recover the associated unused features of
any vector.

The code for the k-d tree builder is given in
Fig. 3.

3.3. Spatial Proximity Graph

The k-d tree search algorithm used to construct
the spatial proximity graph is also an adaptation
of the one presented by Friedman [3]. The spatial
proximity graph results from retrieving for each
vector input to the k-d tree builder the desired
number of vectors closest to this query vector with
a given dissimilarity measure. This dissimilarity
measure is the same as the one used to build the
k-d tree. It is possible that the number of nearest
neighbors found is less than the desired number.

The code for this is given in Fig. 4. Aside from
the general organization outlined above, there are
other utilities necessary for debugging and report-
ing results of computation, and for the develop--
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else

neig_link = NEW_neighbour;
neig_ptr->link = neig_link;
neig_ptr = neig_link;

}

/% initialize coordinate upper bounds and lower bounds ¥/
for ( i=0; Ji<cur_max_dimension; ++i )
{

upper_bound[i] = HUGE;

lower_bound[i] = -HUGE;

}

/* for each record in file */
get_query ( j );

/* find the m nearest neighbours to it ¥/
done = FALSE;
search ( node, done );

/% save neighbours on a link list */
spg_list ( p );

}

return ( spg_ptr );
}

and where the search code is:

search.c - given a file of n records, each of which is described by k
real valued attributes, and a dissimilarity measure, finds
the m records closest to a query record (possibly not in
the file) with specified attribute value.

*

*

*

*

*

* Date: January, 1983.

* version: a.01

*

* The algorithm used here is taken from the following paper:

¥ Friedman, J.H., Bentley, J.L., and Finkel, R.A. An Algorithm for
*
*
*

Finding Best Matches in Logorithm Expected Time. ACM Transaction on
Mathematical Software, Vol.3, No. 3, September 1977, Pages 209-226.

*/
#include "kdtree.h" /% start with definition file of k-d tree #/
#include "spg.h" /% definition file of spg */

VAo 222 22 2o L L g S R R R S S S S S S

* TAG( search.c )
*

* search
*

¥ argument is the root node of a subtree of a k-d tree, and the
* status of search.

*

*/

search( node, done )

treenode ¥ node; /% root node of a subtree of k-d tree ¥/

boolean done; /% status of search */

{
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" search ( node->right, done );

}
}
/% else search the right subtree ¥/
else :

{

/% search the right subtree %/

lower_bound[discriminator] = prev_lower_bound;

prev_upper_bound = upper_bound[discriminator];
upper_bound[discriminator] = partition;

if ( bounds_overlap ball() )

{

search ( node->left, done );

}

upper_bound[discriminator] = prev_upper_bound;

}

/% see if return or terminate recursive search */
if ( ball_within_bounds() )

1

done = TRUE;
}
} /* end loop to search non-terminal node */
} /% end search loop ¥/

} /% end function search #*/

Fig. 4.

ment of a multisensor environment in the context
of a robot workstation. With the availability of the
Evans & Sutherland Picture System 300 (PS 300)
which is an interactive graphic system with built-in
hardware modeling transformations such as trans-
lation, rotation, and scaling, we are able to display
the internal data representation whenever ap-
propriate for purposes of debugging and display-
ing results meaningfully. For example, we display
the spatial proximity graph of m nearest neighbors
by drawing lines connecting each record with its m
nearest neighbors. With modeling transformations
like rotation, we can view the graph from different
angles to see if it makes sense. The display proce-
dures are separate from the low-level modeling
system. As a result, users can run the separate
display modules offline to view the computation
results.

4. Examples
We now show some results generated by MKS.

The original laser range data is shown in Fig. 5 for
a piece used in the construction of a Renault.

There are about 2000 data points. A photo of the
object is shown in Fig. 6. The spatial proximity
graph for that view is shown in Fig. 7. The spatial
proximity graph generated from the union of two
sets of surface point data obtained from two views
of the object is shown in Fig. 8 (with about 4000
data points).

A second example is that of a helicopter, and
the original surface point data is shown in Fig. 9.
There are about 1300 points. The spatial proximity
graph is shown in Fig. 10.

Fig. 5. Original Range Data for Renault Piece.
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Fig. 6. Renault Piece.

o One crucial assumption made in the use of the
= 5 L £58 spatial proximity graph is that the surface to be
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Fig. 8. Spatial Proximity Graph of Merged Data of Renault Piece.
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5. Summary

An efficient method for the organization of
vector type data has been designed and imple-
mented based on a multi-dimensional divide-and-
conquer technique. The ‘spatial proximity graph

“has been demonstrated as a useful low-level struc-
ture for organizing data and has been applied
successfully for both 3-D point data analysis and
feature based object analysis [11]. It is important
that robotics applications take advantage of results
in computational geometry if real time processing
is to be achieved.
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