@device (postscript) "
@make (article) 5 E%
@Font (TimesRoman)

@Style (LineWidth 4.24inches, Spacing 1)

@use [Bibliography="<henderson.proposals>general .bib"]
@use[Bibliography="<hansen.papers>myown.bib"]

@begin (format)

@MajorHeading (The Specification of Logical Sensors)@+(1l)@foot (This work was suppo:
ted in part by NSF Grants ECS-8307483, MCS-82-21750, DRC-850639, and DMC-8502115)

@begin (center)
@b (Tom Henderson)

Department of Computer Science
The University of Utah
Salt Lake City, Utah 84112

@Value (date)

@end (center)

@center @b (Abstract)]

@end (format)

Multi-sensor systems require a coherent and efficient treatment of the
information provided by the various sensors. We propose

a framework, the Logical Sensor Specification System, in

which the sensors can be abstractly defined in terms of computational

processes operating on the output from other sensors. Issues addressed
include: (1) integration of various kinds of sensed

data, (2) sensor system reconfiguration for fault tolerance or dynamic
context, and (3) the control of sensors. Various properties

of such an organization are given, and a particular implementation

is described.

@newpage ()

@Section (Introduction)

In order to achieve more reliable and autonomous systems (e.g.,
autonomous vehicles and remote space stations) complex sensor systems and
controllers are being developed. However, the dynamic nature of such
systems, and the random nature of much of the data make it very difficult
to foresee or simulate the behavior of such systems. There is also the
problem that the system which is eventually produced may not in fact be the
required system. Our goal is to develop a methodology which permits the
design and specification of sensor systems such that their properties can
be analyzed (semi-)automatically. Moreover, we believe that it may be
possible to synthesize such specifications based on a knowledge of the
system requirements and the available sensors and algorithms.

We base the sensor system specification on the notion of Logical Sensors
which characterize, in addition to the the block box properties of the
sensor, a certain amount of internal structure.

The overall goal of Logical Sensors and the Logical

Sensor Specification Language is to aid in the coherent synthesis of
efficient and reliable sensor systems
(see@cite[Hansen83, Henderson84a, Henderson84c, Henderson85h, Shilcrat84]) .

Both the availability and need for sensor systems is growing, as is the
complexity in terms of the number and kind of sensors within a system.
Unfortunately, most robotic sensor-based systems to date have been designed
around a single

sensor or a small number of sensors, and @u(ad hoc) technigques have been
used to integrate them into the complete system and to operate on their
data. In the future, however, such systems must operate in a
reconfigurable

multi-sensor environment; for example, there may be several cameras
(perhaps of different types), active range finding systems, tactile pads,
and so on. In addition,

a wide variety of sensing devices, including mechanical,

electronic, and chemical, are available for use in sensor systems, and

a single sensor system may include several kinds of sensing devices. Thus,
three issues regarding the configuration of sensor systems arise:

@begin (enumerate)

How to develop

a coherent and efficient treatment of the

information provided by many sensors, particularly when the sensors are of
various kinds.

How to allow for sensor system reconfiguration, both as a means toward
greater tolerance for sensing device failure, and to facilitate future
incorporation of additional sensing devices.

How to control sensor systems.
@end (enumerate)

The @u(M)ulti-sensor Qu(K)ernel Qu(S)ystem (MKS) has been proposed as an
efficient and uniform mechanism for dealing with data taken from several
diverse sensors@cite[Henderson83,Henderson83a,Wus83].

MKS has three major components: low-level data organization, high-level
modeling, and logical sensor specification. The first two components of
MKS concern the choice of a low-level representation of real-world
phenomena and the integration of that representation into a meaningful
interpretation of the real world, and have been discussed in detail
elsewhere@cite (Wu83) . The logical sensor specification component

aids the user in the configuration and integration of data such that,
regardless of the

number and kinds of sensing devices, the data is represented consistently
with regard to the low-level organization and high-level modeling
techniques that are contained in MKS. As such, the logical sensor
specification component is designed in keeping with the overall goal of
MKS, which is to provide an efficient and uniform mechanism for dealing
with data taken from several diverse sensors, as well as

facilitating sensor system reconfiguration. However,

the logical sensor specification component of MKS can be used independently
of the other two MKS components; for example, in conjunction with any
desired low-level organization and high-level modeling technique.

Thus, a use for logical sensors is evident in any sensor system which is
composed of several sensors, and/or where sensor reconfiguration is desired.

The emergence of significant multi-sensor systems provides a major
motivation for the development of logical (or symbolic) sensors. Monitoring
highly automated factories or complex chemical processes requires the
integration

and analysis of diverse types of sensor measurements; e.g., it may be
necessary to monitor temperature, pressure, reaction rates, etc.

In many cases, fault

tolerance is of vital concern; e.g., in a nuclear power

plant@cite[Nelson82]. Our work

has been done in the context of a robotic work station where the kinds of
sensors involved include:

@begin(itemize)

cameras: an intensity array of the scene is produced,

tactile pads: local forces are sensed,
proximity sensors: the proximity of objects tec a robot hand is sensed,

laser range finders: the distance to surface points of objects in the scene
are produced, and

smart sensors: special algorithms implemented in hardware for detecting
features such as edges.

Rend (itemize)

Oftentimes, 1if the special hardware is not available, then some of these
sensors may be implemented as a software/hardware combination which should
be viewed as a distinct sensor and which ultimately may be replaced by
special hardware.

Other examples of sophisticated sensor systems include

automatic target recognition (ATR) systems@cite (Bhanu83) and the Utah/MIT
Dextrous Hand@cite (Jacobsen83). ATR systems integrate data from three (or
more) sensors: microwave, FLIR, and LADAR.

The Utah/MIT Hand includes both internal and external (tactile)

sensing systems.

Other principal motivations for logical sensor specification are:

@begin (itemize)

@u (benefits of data abstraction): the specification of a sensor is
separated from its implementation. The multi-sensor system is then much
more portable in that the specifications remain the same over a wide range
of implementations. Moreover, alternative mechanisms can be specified to
produce the same sensor information but perhaps with different precision or
at different rates. Thus, several dimensions of sensor granularity can be
defined. Further, the stress on modularity not only contributes to
intellectual manageability@cite[Wirth79] but is also an essential

component of the system's reconfigurable nature. The inherent hierarchical
structuring of logical sensors further aids system development.

@u(availability of smart sensors): the lowering cost of hardware combined
with developing methodologies for the transformation from high level
algorithmic languages to silicon have made possible a system view in which
hardware/software divisions are transparent. It is now possible to
incorporate fairly complex algorithms directly into hardware. Thus, the
substitution of hardware for software (and vice versa) should be
transparent above the implementation level.

@end(itemize)

@section(Related Work)

The work most related, in a high level way, to logical sensor specification
has been done in computer graphics. The need for some

device-independent interactive system has been widely recognized in the
area of graphics, and the Graphical Kernel System (GKS) is now a Draft
International Standard, and is under consideration as an American National
Standard. The main idea behind GKS is to provide "a means whereby
interactive graphics applications could be insulated from the peculiarities
of the input devices of particular terminals, and thereby become
portable"(@cite (Rosenthal82) .

This was accomplished by allowing only a restricted view

of an input device; the only aspect of an input device which could be
viewed was the Qu(type) of its output. Input devices so restricted are
called Qu(virtual input devices).

Criticisms of GKS have focused on the need for virtual devices to have
visible aspects other than type alone. This led to the adoption of the
@u(logical) device concept, which is a virtual device with an enlarged view
whereby other details of importance are visible.

Logical sensors are also proposed as a means by which to insulate the user
from the peculiarities of input devices, which in this case are (generally)

physical sensors. Thus, for example, a
sensor system could be designed around camera input, without regard to the
kind of camera being used. However, in addition to providing

insulation from the vagaries of physical devices, logical sensor
specification is also a means to create and package "virtual"

physical sensors. For example, the kind of data produced by a physical
laser range finder sensor could also be produced by two cameras and a
stereo program. This similarity of output result is more important to the

user than the fact that one way of getting it is by using one physical
device, and the other way is by using two physical devices and a program.
Logical sensor specification allows the user to ignore such differences of
how output is produced, and treat different means of obtaining equivalent
data as logically the same.

Another related graphics interface system is SYNGRAPHQRcite (Olsen83).
This

system automatically generates graphical user interfaces. The user
expresses the desired interface in a modified BNF wherein a primitive
input device must be declared so that a set of special

features as well as output type are visible.

A grammar-driven approach is favored because the syntactic description
makes automated analysis of the interface possible.

The need for higher-level robotics languages has also been articulated by
Donner@cite[Donner83] in his work on the OWL language.

However, OWL is not a sensor specification language, but rather a simple
programming language for describing concurrent processes to control a
walking machine. More recently, there have been some encouraging results
reported in the robotics literature. A systematic study of robotic sensor
design for dynamic sensing has been undertaken by Beni et al@cite[Beni83].
Another research effort related to our work is the programming environment
(called the Graphical Image Processing Language) under development as part
of the IPON project (an advanced architecture for image processing) at the
University of Pennsylvania@cite[Bajscy84a].

@section(Logical Sensors)

We have briefly touched on the role of logical sensors above. We now
formally define logical sensors.

A @b (logical sensor) is defined in terms of four parts:
@begin (enumerate)

A @b(logical sensor name). This is used to uniquely identify the logical
sensor.

A @b (characteristic output vector). This is basically a vector of types
which

serves as a description of the output vectors that will be produced by the
logical sensor. Thus, the output of a logical sensor is a set (or

stream) of
vectors, each of which is of the type declared by that logical sensor's

characteristic output vector. The type may be any standard type (e.g.,
real, integer), a user generated type, or a well-defined subrange of
either. When an output vector is of the type

declared by a characteristic output vector (i.e., the cross product of the
vector element types), we say that the output vector
is an "instantiation" of that characteristic output vector.

A (@b (selector). The role of

the selector is to detect failure of an alternate and switch to a different
alternate. If switching cannot be done, the selector reports failure of
the logical sensor.

@b (Alternate subnets). This is a list of one or more alternate ways in
which to obtain data with the same characteristic output vector. Hence,
each alternate subnet is equivalent, with regard to type, to all other
alternate subnets in the list, and can serve as backups in case of
failure. @Qu (Each) alternate subnet in the list is itself composed of:

@begin(itemize)

A set of @b (input sources). Each element of the set must either be itself a
logical sensor, or the empty set (null). Allowing null

input permits @b (physical) sensors, which have only an associated

program (the device driver), to be described as a logical sensor, thereby
permitting uniformity of sensor treatment.

A (@b (computation unit) over the input sources. Currently such computation
units are software programs, but in the future, hardware units may also be
used.

@end (itemize)

A @b[control command interpreter]. FEach logical sensor has a set of
control commands (specified by a grammar). The control command interpreter
decodes these commands and produces the appropriate commands for the
currently selected input logical sensors.

@end (enumerate)

Figure 1 gives a schematic view of logical sensors.

@Blankspace (3inches)

@center (@b [Figure 17]. The Logical Sensor Schema)

@begin (format)

@end (format)

A logical sensor can be viewed as a network composed of sub-networks
which are themselves logical sensors.

Communication within a network is controlled via the

flow of data from one sub-network to another. Hence, such networks
are @u(data flow) networks. ’

The idea is that a logical sensor can specify either a device driver
program which needs no other logical sensor input, but rather gets its
input directly from the physical device and then formats it for output in a
characteristic form, or a logical sensor can specify that the output of
other logical sensors be routed to a certain program and the result
packaged as indicated. This allows the user to create "packages" of
methods which produce equivalent data, while ignoring the internal
configurations of those "packages."

@subsection (Formal Aspects)

Having described how logical sensors are developed and operate, we now
define a logical sensor to be a @b(network) composed of one or more

sub-networks, where each sub-network is a logical sensor. The computation
units of the logical sensor are the nodes of the network. Currently, the
network

forms a rooted directed acyclic graph. The graph is rooted because, taken

entirely, it forms a complete description of a single logical sensor
(versus, for example, being a description of two logical sensors which share
sub-networks) . We also say that it is rooted because there exists a path
between each sub-network and a computation unit of the final logical

sensor. Logical sensors may not be defined in terms of themselves, that is,
no recursion is allowed, and hence the graph is acyclic.

All communication within a network is accomplished via the flow of
data from one sub-network to another. No explicit control mechanism, such

as the use of shared variables, alerts, interrupts, etc., is

allowed. The use of such control mechanisms would decrease the degree of
modularity and independent operation of sub-networks. Hence the networks
described by the logical sensor specification language are data flow
networks, and

have the following properties@cite (Keller78):

@begin(itemize)

A network is composed of independently, and possibly concurrently,
operating sub-networks.

A network, or some of its sub-networks, may communicate with its
environment via possibly-infinite input or output streams.

Sub-networks are modular.

@end(itemize)

Since the actual output produced by a sub-network may depend on things like
hardware failures (and because the output produced by the different
sub-nets of a logical sensor are only required to have the same type), the
sub-networks (and hence the network) are also indeterminate.

@subsection (Logical Sensor Specification Language)

It should be noted that there may be alternate input paths to a

particular sensor, and these correspond to the alternate subnets.

But even though there

may be more than one path through which a logical sensor produces data,
the output will be of the type declared

by the logical sensor's characteristic output vector.

With these points in mind, a language for describing the logical sensor
system can be formed. We give the syntax below.

@paragraph (Syntax)

@begin (verbatim)

(logical-sensor) —-——> (logical-sensor—-name)
(characteristic-output—-vector)
(selector)
(alternate—-subnet-1list)
(control command interpreter)

(logical-sensor—name) ——=> (identifier)

(characteristic-—
output-vector) ———> (name-type-list)

(name—-type—-1list) —-—=> (identifier) : (type)
{; (name-type-1list) }

(selector) —-——> (acceptance-test-name)

(alternate—subnet-1list) —-—=> (computation-unit-name) (input-list)
{(alternate—subnet—-1list) } *

(control command interpreter) —---> (identifier)
(acceptance-test—-name) ———> (identifier)

(input-1list) —-—=> (logical-sensor-1list) | null
(logical-sensor-1list) —-——> (logical-sensor)

{(logical—-sensor—-1list) }*
(computation-unit-name) ———> (identifier)
@end (verbatim)

@subsection (Implementation)
We currently have two implementations of the logical sensor specification

language running: a C version (called C-LSS) running under UNIX, and a

functional language version (called FUN-LSS). The C version has been described
elsewhere@cite[Henderson83d] and produces a shell script from the
specification. We give details here of the functional language version.

FUN-LSS provides a logical sensor specification interface for the user and
maintains a database of s—-expressions which represents the logical sensor
definitions (see Figure 2).

@begin (figure)

@begin (verbatim)

@center (@b [Figure 2]. The Logical Sensor System Interface)
@end (verbatim)
@end (figure)

The operations allowed on logical sensors include:

@begin (itemize)

@u(Create): a new logical sensor can be specified by giving all the
necessary information and it is inserted in the database.

@u(Update) : an existing logical sensor may have certain fields changed; in
particular, alternative subnets can be added or deleted, program names and
the corresponding sensor lists can be changed.

@u(Delete): a logical sensor can be deleted so long as no other logical
sensor depends on it.

@u(Display): show all parts of a logical sensor or list all logical sensor
names .
@u (Dependencies): show all logical sensor dependencies.

@end(itemize)

Once the logical sensors are specified, they are stored as s—expressions in
the database. In order to actually execute the logical sensor
specification, it is necessary to translate the database expressions into
some executable form, e.g., to produce source for some target language, and
then either interpret or compile and run that source.

Our approach is displayed in Figure 3.

@begin (figure)
@begin (verbatim)

abstract syntax trees for FEL

A
FEL Code
L 1
@center (@b [Figure 3]. Steps to Obtain Executable Code)

Qend (verbatim)

@end (figure)

We have written a translator which converts the s-expressions in the
database into abstract syntax trees for a Function

Equation Language (FEL)(@cite[Keller82].

These are then passed to the FEL Compiler which

produces a function graph which can then be evaluated, using a combination
of graph reduction and dataflow strategies. More on

these topics can be found elsewhere@cite[Shilcrat84]. 1In that paper we
discuss a methodology for configuring systems of sensors using a functional
language. The use of abstraction and of functional language features leads
to a natural and simple approach to this problem. The features of a
particular functional programming environment, Function Equation Language
(FEL) running on the REDIFLOW simulator, are exploited to develop a

scheme that avoids complicated issues of state restoration and switching
protocols.

@Section (Fault Tolerance)

The Logical Sensor Specification Language has been designed in accordance
with the view that languages should facilitate error determination and
recovery.

As we have explained, a logical sensor has a selector which takes possibly
many alternate subnets as input. The selector determines errors,

and attempts recovery via switching to another alternate subnet.

Each alternate subnet 1is an input source - computation unit pair.
Selectors can detect failures which arise

from either an input source or the computation unit.

Thus, the selector together with the alternate subnets

constitute a failure and substitution device, that is, a fault-tolerance
mechanism, and Qu (both) hardware and software fault

tolerance can be achieved. This is particularly desirable in light of the
fact that "fault tolerance does not necessarily require diagnosing the
cause of the fault or @i(even deciding whether it arises from the hardware
or software)" (emphasis added)@cite(Randell77). In a multi-sensor system,
particularly where continuous operation is expected, trying to determine and
correct the exact source of a failure may be prohibitively time-consuming.

Substitution choices may be based on either @u(replication) or Qu(replacement).
@u (Replication) means that exact duplicates of the failed component have
been specified as alternate subnets. In Qu(replacement) a

different unit is substituted.

Replacement of software modules has long been recognized as necessary for
software fault-tolerance, with the hope, as Randall states, that wusing

a software module of

independent design will facilitate coping "with the circumstances that
caused the main component to fail"@cite (Randell?77). We feel that
replacement of physical sensors should be exploited both with Randall's
point in view, and because extraneous considerations, such as cost,

and spatial limitations as to placement ability are very likely to

limit the number of purely back-up physical sensors which can be involved
in a sensor system.

@subsection (Recovery Blocks)
The recovery block is a means of implementing

software fault tolerance@cite[Randell77].
A recovery block contains a series of alternates

which are to be executed in the order listed. Thus, the first in

the series of alternates 1is the Qu(primary) alternate. An acceptance
test 1is used to ensure that the output produced by an

alternate is correct or acceptable. First the primary

alternate is executed, and its output scrutinized via the acceptance test.
If it passes, that block is exited, otherwise the next alternate is
tried, and so on. If no alternate passes, control switches to a new
recovery block if one (on the same or higher level) is available;
otherwise, an error results.

Similarly, a selector tries, in turn, each alternate subnet in the list,
and tests each one's output via an acceptance test.

However, while Randall's scheme requires the use of

complicated error recovery mechanisms (restoring the state, and so on), the
use of a data-flow model makes error-recovery relatively easy.

Furthermore, our user interface computes the dependency

relation between logical sensors@cite (Shilcrat84). This permits the system

to know which other sensors are possibly affected by the failure of a given
sensor.

The general difficulties relating to software acceptance

tests, such as how to devise them, how to make them simpler than the
software module being tested, and so on, remain. It i1is our

view that some acceptance tests will have to be designed by the user, and
that our goal is simply to accommodate the use of the test. Unlike

Randall, we envision the recovery block as a means for both hardware and
software fault-tolerance, and hence we also allow the user to specify

general hardware acceptance tests. Such tests may be based, for example,

on data link

control information, 2-way handshaking and other protocols.

It is important to note that a selector must be specified even if

there is only one subnet in a logical sensor's list of alternate subnets.

Without at least the minimal acceptance test of a "time-out," a logical
sensor could be placed on hold forever even when alternate ways to

obtain the necessary data could have been executed. Given the minimal
acceptance test, the selector will at least be able to signal failure to a

higher level selector which may then institute a recovery.

However, we also wish to devise special schemes for acceptance tests when
the basis for substitution is replacement. While users will often know

which logical sensors are functionally equivalent, it is

also likely that not all possible substitutions of

logical sensors will be considered. Thus, we are

interested in helping the user expand what is considered functionally

equivalent.

Such a tool could also be used to automatically generate

logical sensors.

We give an example logical sensor network in Figure 4.

@begin (fullpagefigure)

@begin (verbatim)

(x:real,y:real,z:real)

Range_Finder | Select |
[|
| Project | Project |
| 1.2 3 | 1.2 3 |

(x:real,y:real,z:real,i:int) / \
/ \

Image_Range | Select | \

| ——— I \ (x:real,y:real,z:real,

| PASS | PASS | \ force:real)
R v \
/ \ \
/ R . [:
/ Stereo | Select | | Select | Tactile_Range
/ | —————————= I [—————— |
/ |PASS |PASS| | 3-D |
/ N e e \ N]
/ / \ |
__________________________ |
LS | Select | Stereo | Select | | Select | Stereo | (i:int, j:int,
| —————————= [1 [———————= l | ———————= I 2 | force:real)
| P1 | P2 | | Fast | | Slow | |
| | | | Stereo | | Stereo | |
__________ 1 D | D | e e
\ l / | Select | Tactile Pad
\ [e / | —— |
. \.. N / | Combine |
(i:int, . R | / N e v
J:int, . .. o\ | / (force:real) / | \
level:int) \ | / / | \
Camera | Select | | Select | Camera | Select| |Select| |Select|
1 [————— I |- I 2 | —————— | |- [|=—————= |
| Driver | | Driver | |Driver| |Driver| |Driver|
________] — e e Y R | U | DR |
T1 T2 Tn
@center (@b [Figure 4]. Logical sensor network for Range_Finder.)

@end (verbatim)

@end (fullpagefigure)

This example shows how to obtain surface point data from possible
alternate methods. The characteristic output vector of Range_Finder is
(x:real,y:real,z:real) and is produced by selecting one of the two
alternate subnets and

"projecting" the first three elements of their characteristic output
vectors. The preferred subnet is composed of the logical sensor
Image_Range. This logical sensor has two alternate subnets

which both have the dummy computational unit PASS. PASS does not effect
the type of the logical sensor. These alternatives

will be selected in turn to produce the characteristic output vector
(x:real,y:real,z:real,i:integer). If both alternates fail (whether due to
hardware or software), the Image_Range sensor has failed. The Range_Finder
then selects the second subnet to obtain the (x:real,y:real,z:real)
information from the

Tactile_Range's characteristic output vector. If the Tactile_Range
subsequently fails, then the Range_Finder fails. Each subnet uses this
mechanism to provide fault tolerance.

@subsection(Ramifications of Fault-Tolerance Based on a Replacement Scheme)
Many difficult issues arise when fault tolerance is based on a replacement
scheme.

Because the replacement scheme is implemented through the use

of alternate subnets, the user can be sure that the Qu(type) of output
will remain constant, regardless of the particular source subnet. Ideally,
however, we consider that a replacement based scheme is

truly fault tolerant only if the effect of the replacement is within
allowable limits, where the allowable limits are determined by the user.

As a simple example, consider a sensor system of one camera, A, and a
back—up camera, of another type, B. Suppose camera A has accuracy of @u(+)
0.01%, and camera B has accuracy of Qu(+)0.04%. If the user has determined
that the allowable limit on accuracy is @u(+)0.03%, then replacement of
camera A by camera B will not yield what we call a truly fault tolerant
system; 1f the allowable limit is @Qu(+)0.05%, the replacement does yield a

truly fault tolerant system, as it will if the user has determined that the
system should run regardless of the degree of accuracy.

As mentioned above, determining functional equivalence may necessitate
seeing more of a logical sensor than merely its type.

This example illustrates this point in that

we have

isolated a need to know more about leaf logical sensors (physical sensors).
However, we also mentioned that the

above example was simplified. Let us now

assume, in addition, that the user can use a variety of algorithms to obtain
the
desired final output. Suppose one of those algorithms incorporates
interpolation techniques which could increase the degree of accuracy over
camera B's input. In this case, the user may be able to use camera B and
this
algorithm as an alternate subnet and have a truly fault tolerant system,
even if camera B's output is not itself within the allowable accuracy
limit. Thus, when we consider a slightly more complex example, we see a
general need

for having features (beside type of output) of logical sensors visible,

and a need to propagate such information through the system.

Feature propagation, together with allowable limit information, is

needed for replacement based fault-tolerance schemes, and constitutes an
acceptance test mechanism. In addition,

such feature propagation has a good potential for use in automatic logical
sensor system specification/optimization. For example, consider a
workstation with

several sensors. Once various logical sensors have been defined and
stored, feature propagation can be used to configure new logical sensors
with properties in specified ranges, or to determine the best (within the
specified, perhaps weighted, parameters) logical sensor system.

Thus, feature propagation is necessary for both fault tolerance and
automatic generation of logical sensor systems,

and it is our view that the basic scheme will be the same in either case.

@section(Features and Their Propagation)

Our view 1s that propagation of features will occur from the leaf nodes to
the root of the network. In sensor systems, the leaf nodes will generally
be physical sensors (with associated drivers). Thus, we first discuss the
important features of physical sensors.

@subsection (Features of Physical Sensors)

Our goal here is to determine whether a set of generally applicable
physical sensor features exists, and then to provide

a database to support the propagation mechanism. In

addition, it 1is possible for the user to extend the set of features.
Currently, the system provides

a small set of generally applicable features (see below).

All physical sensors convert physical properties or measurements to some
alternative form, and hence are transducers. Some standard terms for use
in considering transducer performance must be definedf@cite (Wright83) .

We have selected a set of features defined by Wright which we feel are
generally applicable to physical sensors.

@begin(itemize)

@u(Error) — the difference between the

value of a variable indicated by the instrument and the true value at the
input.

@u (Accuracy) - the relationship of the output to the
true input within certain probability limits. Accuracy is a function of
nonlinearities, hysteresis, temperature variation, and drift.

@u (Repeatability) - the closeness of agreement within a group of
measurements at the same input conditions. '

@u(Drift) - the change in output that may occur despite constant input
conditions.

@u (Resolution) - the smallest change in input that will result in a
significant change in transducer output.

@u (Hysteresis) - a measure of the effect of history on the transducer.
@u(Threshold) - the minimum change in input required to change the
output from a zero indication. For digital systems this is the input

required for 1 bit change in output.

@u (Range) - the maximum range of input variable over which the transducer
can operate.
@end (itemize)

Based on this set of physical sensor characteristics, the

next step in arriving at a characterization of logical sensors is to
"compose" physical sensor feature information with computation unit
feature information.

@subsection(Algorithm Features)

There are several difficult issues involved in choosing a scheme whereby
features of algorithms can

be "composed" with features of physical sensors such that the overall
logical sensor may be classified. As Bhanu@cite (Bhanu83) has pointed out:
"the design of the system should be such that each of its

components makes maximum use of the input data characteristics and its
goals are in conformity with the end result."

One issue to be resolved is how to represent features and feature
composition. One approach is

to record feature information and composition functions separately.

Thus, it would be necessary to classify an algorithm as having a certain
degree of accuracy, and, in addition provide an accuracy function which,
given the accuracy of the

physical sensor, produces the overall accuracy for the logical sensor which
results from the compostion of the physical sensor and the algorithm.

A major

difficulty in resolving such issues is presented by

the great variety of sensor

systems, both actual and potential, and the varying level of awareness of
such issues within different sensor user communities. For example,
experienced users of certain types of sensors may have a fairly tight
knowledge of when and why certain algorithms work well, whereas other user
communities may be aware in only a vague way which algorithms work well
under which circumstances. Indeed, even within a sensor user community,
algorithm evaluation techniques may not be standardized, hence yielding a
plethora of ways in which properties algorithms may be described.

This problem is manifest in Bhanu's survey of the evaluation of automatic
target recognition (ATR) algorithms@cite (Bhanu83).

The state of the art in algorithm evaluation techniques effects the choices
made regarding the use of classifying physical sensors whether we wish

to simply catalog information or maximize criteria. For example, 1f the
user cannot provide information about the degree of resolution for the
algorithms being used, then an overall logical sensor resolution figure
cannot be determined, even if the resolution of all physical sensors is
known. Also, 1f such is the case, then the system cannot be used to help
the user maximize the degree of resolution of the final output.

On the other hand, there are some encouraging results reported in the
literature; a systematic study of robotic sensor design for dynamic sensing
has recently been undertaken by Beni et al@cite[Beni83], and more of that
kind of work is required if we are to achieve comprehensive sensor systems.
@section (Automatic Logical Sensor Synthesis)

We are investigating ways in which to generate logical sensor

systems automatically. We recognize that, considering the number of
unanswered questions, we will not be able to establish

a fully automatic logical sensor system, and therefore we propose to
confine ourselves to an automatic logical sensor system of limited
generality.

We now describe some technigques to allow for dynamic specification

and allocation of logical sensors. Though the kinds of logical sensors
which we consider represent only simple extensions to the existing logical
sensor system, this type of work is a first step towards generally
extensible logical sensor systems.

The goal here is to show how, given information about logical sensors which
can be configured in the system, new logical sensors can be automatically
defined.

@Subsection (Tupling Data)

Tupling data is a technique which can be used to automatically generate new
logical sensors in a feature-based sensor

system. In such systems, the logical sensors would be returning information
about certain features found in the scene, such as number of edges, number
of holes, temperature, metallic composition, and so on.

The user may then request that a new logical sensor be established by
specifying the name for the new logical sensor, and giving the names of

the

input logical sensor(s). The output of the new logical sensor will be,
simply, a set of tuples (one for each object in the scene), where the tuple
is composed of the cartesian product of the features which were input from
the source logical

sensors. Thus, we are basically packaging together features of

interest so that they will be in one output stream.

For example, suppose that the features "number of edges" and "number of
holes™

are sufficient to determine the presence of bolts. Then

a logical sensor (@u(bolt-detector) could be created by

tupling the output of the logical sensors @u(edge-detector) and

@u (hole—-detector) . It should be noted that we assume that the latter two
logical sensors produce output of the form (object no., featurel, feature2,
feature N). For the sake of simplicity, in this example we assume that

logical sensor @u(edge—-detector) produces output of the form (object no.,
number of edges) and logical sensor @u(hole-detector) produces output of
the form (object no., number of holes). Logical sensor (@Qu(bolt-detector)
will match on object number, and produce tuples of the form (object no.,
number of edges, number of holes).

@subsection (Choosing Algorithms Based on Appropriateness/Reliability)

Our view is that a feature propagation mechanism is useful for both
fault-tolerance checking and logical sensor optimization.

Some difficulties are involved in using the feature

propagation mechanism in a logical sensor optimization system. From the
optimization viewpoint, the task which we wish the

logical sensor system to perform is not merely to produce output, but to
produce output which is optimal. One difficulty is that what makes the
output optimal may

change from application to application, or from use to use.

Hence, the logical sensor system should produce output of the

specified type which is optimized according to the @Qu(user specified
optimization criteria).

In light of the above discussed difficulties in developing a feature
propagation mechanism, we

are considering optimization facilities which could also be used in the
absence of a general feature propagation mechanism. Our goal is to help
the user choose algorithms which maximize desired capabilities of a logical
sensor system. Therefore, in addition to providing what may only
constitute a catalog of physical sensor characteristics,

we wish to establish a database of algorithms which can be

searched to determine how to configure the optimal logical sensor system
for the task at hand. Since, once again, we are forced to consider the
level of information detail which the user can provide in setting up the
database, we recognize that this database may or may not be part of a
general feature propagation mechanism. In other words, if the user tell us
only that a certain

algorithm works well, for example, then this database

will basically serve merely as an automatic cataloging device.

On the other hand, if we can be provided with numerical estimates of
certain parameters for each algorithm, and composing functions, the
database can be used as part of a feature propagation mechanism.

In the latter case, not

only can we provide a much closer realization of the user's goal, but we
may also be able to indicate which performance attributes cannot be met by
any known configuration of physical sensors and algorithms; in such cases,
the system may actually specify a new or the parameters on an algorithm
which would make the demanded performance possible.

@subsection (Automatic Generation of Algorithm Feature Information)

Several approaches to the incorporation of

algorithm feature information into a

logical sensor specification system have been discussed.

As an extension to this idea, we

intend to investigate ways in which to use a logical sensor specification
system to @u(generate) algorithm feature information.

We are looking into the use of models for algorithm

evaluation, together with a database of training data, that is, sample
data to be used as a standard against which algorithms are evaluated. For
the ATR (Automatic Target Recognition) systems,

Bhanu states that the models for algorithm evaluation should be chosen such
that each part of the system should be evaluated with respect to its own
figures of merit but also against its effect on the overall classification
(i.e., the overall goal of the system). In this view, statistical
measures of an algorithm's performance such as edge point measures and
structural measures, the ability of an algorithm to make maximal use of
the specific characteristics of FLIR images, and the three general
parameters which are used to determine the overall performance of an ATR
system (probability of target detection, probability of classification,
and false alarm per frame) must all be taken into account when evaluating
an algorithm. In addition, these statistical, heuristic and parametric
models are

to be used in establishing the requirements of the database in terms of
data collection and organization, with the end goal of generating databases
of FLIR images which are increasingly representative of the real world.
‘Thus, Bhanu envisions a training data base - algorithm data base
interaction such that the original figures of merit for algorithms are
refined, on the basis of sample data, to reflect ability to make maximal
use of specific characteristics of particular physical sensor data towards
the end of promoting the overall system performance. We agree with the
philosophy that sensor systems should be viewed as the best source of
information on to how to improve themselves, and intend to investigate the
use of training databases, and possible training database - algorithm
database interaction schemes.

@Section (An Example: A CAGD-Based Vision System)

Computer vision has been an active research area for over 20 years.

In the early days, emphasis was on low level processing such as intensity
and signal processing to perform edge

detection@cite (ballard82,Rosenfeld76b) . Systems were constructed which
only operated in very

constrained environments or for very specific tasks@cite (barrow78,
horn70,Witkin81) . It was quickly recognized that higher level concepts of
image

@i (understanding) were needed to successfully perform computer vision.

More recently, models of objects and knowledge of the working environment
have provided the basis for driving vision systems. This is known as model
based vision. The pursuit of the fully automated assembly environment has
fueled interest in model based computer vision and object manipulation.

The problem we are interested in solving is model based visual recognition
and manipulation of objects in the automation environment. This involves
building a 3-D model of the object, matching the sensed environment with
the known world and locating objects. Not until the desired object is
located and its orientation is known can a robot gripper or hand manipulate
it.

Our goal is to develop a system which will work in the environment of the
automated assembly process. This is not intended to provide a general
model for the human visual process but rather a solution to the problem of
visual recognition and manipulation in a well-known domain. The
constraint we are imposing is one which limits the necessity of modeling
the entire world. Rather, the known world to us is that of the automated
environment in which this system is intended to operate.

In order to recognize an object, vision algorithms require a model of the
object. Different shape representations

usually necessitate different recognition techniques. Currently, computer
vision systems are being developed which permit the use of multiple
representations to describe a single object. The representations can be
constrained by the class of shapes, the class of algorithms or by other
means. In any case, some model must initially be constructed in order for
the system to operate.

Likewise, Computer Aided Geometric Design (CAGD) systems allow the designer
to model objects to be produced. These systems may include facilities

for modeling certain classes of objects, such as sculptured surfaces
(primarily used in free form design) or combination of primitives (primarily
used in mechanical design). Just as in machine vision, the representation
of shape is a central problem.

Even though these similarities exist, there is a dichotomy in computer
vision and CAGD. A model is created by the designer and is stored in the
CAGD database. 1In order for a visual inspection station to operate, the
user must design the appropriate vision model, constrained

possibly by the class of shapes or the algorithm chosen, for the system.
Thus, in current systems, the same object would have to be modeled more
than once. Although shape modeling is performed in both disciplines, the
models are not related except that they may represent the same object.
More recently, research has focused on the problem of linking the two
disciplines@cite (Castore84, Kuan83).

Simply stated, our proposed approach is to provide an integrated
environment in which the CAGD model can be used to generate appropriate
recognition and manipulation strategies. A major aspect of this work is
the successful development of a prototype system combining design, vision
analysis and manipulation. The key to our approach is the notion of

@u (specialization). Rather than use a general weak method for wvisual
recognition, we use logical sensor specifications to synthesize
specialized, finely-tuned recognition "packages" which are specific to a
particular shape or feature.

@Subsection (Shape Analysis)

In 3-D shape analysis, we have a 3-D model of known objects and a way of
matching objects in a scene with the model. Shape representations and the
algorithms which operate on these representations are intimately tied

together. Shape representations are chosen to solve specific problems. A
representation which is good for CAGD might not be as effective (where
effective might mean efficient or successful) when used in computer vision.
Figure 5 illustrates some aspects of this.

@begin (Figure)

@begin (verbatim)

Vision Domain CAD Domain

I |
l |
l l | | | |
I (e.g., I | (e.g., [
	matching,		F.E.M.,	
	feature extraction,		rendering,	
	edge recovery,		set operations,	
	surface recovery,		etc.)	
	etc.) l I			
l l				
I				
I				

@end (verbatim)

@center (@b [Figure 5]. CAGD Representations vs. Computer Vision Representations)

@end (Figure)

Representations which are used in CAGD support some basic operations
which are fundamental for graphics or design applications. They should
provide an efficient means for rendering, finite element analysis, set
operations, etc.

Although the objects modeled may be the same, representations appropriate
for the above processes do not necessarily best serve computer vision's
needs. Representations for computer vision need to support feature models,
active sensing, edge recovery and relations, and explicit surfaces.
Furthermore, a representation which might be efficient and concise for one
vision application might not be appropriate for another vision

application. For example, a representation which is efficient for feature
models isn't likely to be efficient when used for edge recovery and
relations.

There are many different recognition strategies which can be used to locate
an object in a scene. Recognition algorithms are generally developed to
operate on a particular representation. Marr has promoted the concept of
the 2 1/2-D sketch representation and methods which operate on

it@cite (Marr75, Marr77, Nishihara8l). Other researchers have developed the
syntactic approach which involves shape parsing and uses shape grammars as
the representation@cite (Davis79, Davis8l, Henderson79, Henderson8l,
Henderson81ld, Henderson83cl, Henderson83c2, Lin84). Another approach is
based on features of the shape where a feature vector encoding the shape

is extracted and matching algorithms operate on these@cite (Henderson8le,

Henderson82c, Ishii76). Others perform the matching operation using
surface patches@cite (Aggarwal,bhanu84). Another popular method for
shape recognition is graph matching@cite (pavlidis77). Figure 6

shows the general schema for these shape analysis methods.
@begin (Figure)
@begin (verbatim)

derived
shape ——> model —-> matching <== derived <-- sensed
description data | description data

|
\Y%

result

@center (@b [Figure 6]. Schema for Shape Analysis)

@end (verbatim)
@end (Figure)

A major aspect of choosing a representation method is mapping the
representation to a matching strategy for object recognition. The
availability of matching paradigms might restrict the possible choices of
either representation methods or implementation schemes.

The system we are developing integrates the CAGD design system with the

robotic workcell. The system contains knowledge of recognition
strategies, shape representations, available sensors, and manipulation
strategies. It uses this knowledge to guide the vision system and

robot in the process of recognizing, locating and manipulating objects in
the workcell environment.

The key issues in automatic generation of recognition strategies are:
@begin (enumerate)

generating an object model in the chosen representation from a CAGD model
base, and

matching the correct shape representation with known recognition algorithms
and sensors available.

@end (enumerate)

The most difficult of these these two is selecting the appropriate shape
representation for the vision model. Once the shape representation is
chosen, the object model for the vision system must be generated. While
this may not be straightforward, algorithms can be developed which can
perform this transformation. The problem of selecting a representation for
the vision model is constrained by several factors. One is the
availability of recognition algorithms. If we consider the available
algorithms to be stored in a library, the selection can be constrained by
this library. The trivial case of selecting the correct representation occurs
when the recognition library of known strategies is limited to one
representation. This can be considered the trivial case, even though the
transformation from the CAGD model base may be nontrivial, since the
selection of the shape representation is dictated by the singleton library
of recognition schemes. Similarly, knowledge of the sensors available in
the robotic workcell will further constrain the recognition procedure.
These too can be thought of as being a library of available sensors.

The process is further complicated by the existence of CAGD models composed

of multiple representations. For each complete CAGD model, there might
possibly be several forms of representations contributing to the final
result. If we think of the CAGD model as forming a tree of representations

whose leaves are homogeneous models, we can match each of the shapes
represented by these homogeneous models with some shape matching algorithm
available to us in the library. Figure 7 demonstrates this idea.

Consider a CAGD model to be made up of multiple structures, @B(SE-(i)),
each of which might possibly Dbe in a different representational form. For
each of the @B(S@-(1i))'s, the system will select an appropriate algorithm
and sensor type to perform the matching the workcell. This will constrain
the type vision model, @B (ME@-(i)), to be used.

@Begin (Figure)

@begin(verbatim)

CAGD Model Vision Model
o o

/ \ / 1\
S1 o ====> M1 M2 M3 ====> Analysis

/ \ Routines
S2 S3

@center (@b [Figure 7.] Relation of CAGD Models to Vision Models)

@end (verbatim)
@end (Figure)

Once the representation strategy is determined, the transformation from the
CAGD representation to the recognition representation must be performed.
Knowledge of this transformation is encoded along with knowledge of
existing recognition algorithms. Thus, the method for the transformation
can be explicit in the system. For example, if the recognition strategy
uses generalized sweep, the model built from the CAGD model base would be
in the form of sections of the generalized cylinder. Should planar or
quadric patches be selected, the representation for recognition would be a
graph structure of relations between the patches. If feature vectors are
the chosen method for recognition, the features can be extracted directly
from the CAGD model or the CAGD system might first produce an image of one
view of the object then the features could be extracted by the same
algorithm which processes the sensed data.

An extreme method for generation of recognition strategies is
parameterization. This is extreme because the user is required to Q@I (fill
in the blanks) for the sensors and algorithms for the particular object, or
class of objects, modeled. Obviously, a more automated system is desired
for this task. Drawing from our experience with Logical Sensor
Specification in the MKS system, a possible alternative is to combine
several algorithms and sensors to form a specialized QI (object

finder)@cite (hansen83, henderson83d, henderson84c, henderson84f, henderson85, hend:s
rson85a, henderson85c, henderson85e, henderson85h) .

The methodology provides a means for abstracting the

specification of a sensor from its implementation along with providing
transparency of hardware and software above the implementation level.
Another alternative is to embed knowledge of the algorithms and sensors in

the system and provide a rule base for the decision process. This would
require a complex expert system (see, for example a description of a
preliminary system@cite (henderson84e)) . In either case, the system would

be composed of multiple sensors and recognition methods.

@Subsection (2-D Binary Vision)

To demonstrate the concepts proposed, let us consider the design of an object,
generation of the corresponding 2-D vision models and model based recognition
of the object. We provide the functionality of an existing vision

system currently in the market place. For this demonstration, we

do not actually mill the piece even though the capabilities exist for the
class of objects involved. Furthermore, we do not

consider manipulation in this example but concentrate on the

vision aspects instead. It is stressed that this is not intended to be a
general solution to the problem but is rather an illustration of how a

CAGD driven vision system might operate and indicative of the functionality
of currently available commercial vision systems.

The vision system we emulate is an industrial type 2-D feature-based system.
Such systems use features to

distinguish objects. These features include area, perimeter, and

several moments which are invariant to translation, rotation and scale.
Images are obtained via a digitization process using a TV camera. The gray
scale image 1is transformed into a binary image for subsequent processing.
The recognition phase of the system is performed using a nearest neighbor
classifier operating on a user selectable subset of the features.

Features vectors are representative of both currently available commercial
systems and on going research effortslcite(Bolles82). In feature vector

matching, the model is a set of features of the particular object in vector
form. When a scene 1is analyzed, all objects are segmented into distinct
regions and the pertinent features are extracted. These are then used to
recognize known objects usually with a nearest neighbors method in
n-dimensional space. Figure 8 is demonstrates how this method

is applied.

@begin (Figure)

@begin (verbatim)

derived
shape model matching derived sensed
description data description data
shape -—> vector ——> nearest <—- features <-— intensity
features of features neighbors of regions image
in n-space detected
I
l
v
object matched
with model
@center (@b [Figure 8.] Schema for Feature Vector Matching Paradigm)

@end (verbatim)
@end (Figure)

These systems obtain an object model by using the system to perform
feature extraction on a physical example of the object to be recognized
(sometimes called @I (training) the system).

As a result, when this system is used in an automated environment, the
link between the CAGD model and the vision model would be the physical
piece itself rather than the CAGD model.

Although this system seems rather elementary in its capabilities, it is
representative of current products on the market. Indeed, most commercial
systems sell for around $30,000.

@Subsection (Synthesis of Feature-Bases Object Detectors)

@Section (Conclusion)

We have described Logical Sensor Specifications as a framework
facilitating efficient and coherent treatment of information provided in
multi-sensor systems. In addition to the issues raised when considering
the language implementation itself, various extensions have been suggested.
In particular, we have implemented:

@begin (itemize)

A Logical Sensor Specification Language compiler.

General fault-tolerance features such as:

@begin (enumerate)

A mechanism for detecting sensor failure.

A technique by which switching to an alternate subnet is accomplished.

A method for determining when a sensor failure dictates top-level sensor
failure.

@end (enumerate)

A database of physical sensors.

Automatic generation of tupling/merging logical sensors.

@end (itemize)

In addition, we are currently investigating:

@begin(itemize)
Formal semantics for the Logical Sensor Specification Language.

Features and feature propagation, in particular, how to arrive at a
classification scheme for algorithm features and composing functions.

The establishment of an algorithm database for at least optimization
purposes.

Inference schemes by which to determine a need for new physical
sensors.

Training databases, and training database - algorithm database interaction
schemes.

The automatic synthesis of logical sensor specifications.
@end (itemize)

