A Fault Tolerant Sensor Scheme*

Tom Henderson, Esther Shilcrat and Charles Hansen

Departme_nt of Computer Science
The University of Utah
Salt Lake Citv, Utah 84112

Abstract

A framework is defined in which sensors can be
abstractly defined in terms of computational processes
operating on the output from other sensors. Such
processes are called logical sensors. Logical sensors
make sensor configuration and integration easier and
facilitate reconfiguration of sensor systems so that fault
tolerance can be both expressed and achieved.

1. Introduction

Both the availability and need for sensor systems is
growing, as is the complexity in terms of the number and
kinds of sensors within a system. For example, most
pattern recognition systems to date have been designed
around a single sensor or a small number of sensors, and
ad hoc configuration techniques have been used for
sensor integration and operation. In the future, however,
such systems must operate in a reconfigurable multi-
sensor environment; for example, there may be several
cameras, active range finding systems, tactile pads, etc.
In addition, a wide variety of sensing devices of different
kinds, including mechanical, electronic, and chemical, are
available for use in sensor systems, and a sensor system
may include several kinds of sensing devices. Thus, in a
multi-sensor system, the need to develop a coherent and
efficient treatment of the information provided by many
sensors, particularly when the sensors are of various
kinds, becomes paramount.

The emergence of multi-sensor systems is one of the
principal motivations for logical sensor specification. In
addition, multi-sensor systems present a challenging
opportunity to turn what is in one case a source of
weakness (the number and variety of sensors) into a
source of strength in terms of building fault tolerant
sensor systems. This is the issue which we concentrate
on in this paper. Other motivations include: the benefits
of data abstraction and modularity, and the benefits of a
hardware/software transparency so that smart sensors
can easily replace software.

L
This work was supported in part by the System Development Foundation

and NSF Grants ECS-8307483 and MCS-82-21750

CH2046-1/84/0000/0663$01.00©1984 IEEE

663

In single sensor systems, backup sensors would generally
be duplicates of the failed sensor, or would be
functionally equivalent to it. By functionally equivalent we
mean that-the backup sensor performs similarly to the
failed sensor. However, having sensors which are to act
solely as backups is not only expensive, but may also be
difficult due to physical space limitations. One answer to
this problem lies in extending our view of functionally
equivalent. We concentrate on determining whether data
is functionally equivalent, rather than determining if
physical sensors are functionally equivalent. We take this
approach to maximize the possibility of using sensors
which are already doing duty in the system to produce
data which is equivalent to that which the failed sensor
would have produced. For example, the kind of data
produced by a physical laser range finder sensor could be
functionally equivalent to that produced by two cameras
and a particular stereo program. Thus, one backup for
the laser range finder could be a module composed of
the two cameras and the stereo program. As this
example illustrates, backups may well not be simple
replacement of sensors, but replacements which involve
one or more sensors, and one or more software modules.

Thus, in order to take advantage of the greater
opportunities for building fault tolerant sensor systems, it
is necessary to express the replacement of a single
sensor with a sensor-software “package” to the system.
In addition, the user may need guidelines to help
determine functional equivalence. The Logical Sensor
Specification Language makes use of data abstraction to
build packages and to express fault tolerance. This is
accomplished by the Logical Sensor Specification
Language which implements fault tolerance and helps
users design sensor systems with a greater degree of
fault tolerance. The inherent hardware/software
transparency has been exploited as the basis for a
uniform approach to fault tolerance mechanisms.

2. Logical Sensors

Logical Sensors constitute one major component of the
Multi-sensor Kernel System (MKS). MKS has been
proposed as an efficient and uniform mechanism for

dealing with data taken from several diverse
sensors [1, 2, 3, 5]. MKS has three major components:
low-level data organization, high-level modeling, and

logical sensor specification. The first two components of
MKS concern the choice of a low-level representation of
real-world phenomena and the integration of that

representation ‘into a meaningful interpretation of the real
world, and have been discussed in detail elsewhere [5].
The logical sensor specification component aids the user
in the (re)configuration and integration of data such that,
regardless of the number and kinds of sensing devices,
the data is represented consistently with regard to the
low-level organization and high-level modeling
techniques that are contained in MKS. However, a use for

logical sensors is evident in any sensor-system which is
composed of several sensors or where sensor
reconfiguration is desired, and the logical sensor
specification component may be used independently of
the other two MKS components.

Multi-sensor systems can present a user with a
confusing plethora of details concerning both the sensors
and associated software. However, not every detail is
important in every sensor system. Logical sensors are a
means by which to insulate the user from unnecessary
details, and thereby allow the user to concentrate on the
information which is actually necessary to determine
system configuration. This is accomplished by creating
packages of sensors, and allowing only some information
about the package to be visible to the rest of the system.
The type of data produced by the physical laser range
finder sensor was also the -type produced by the two
cameras and the stereo program. This similarity of
"output result renders the alternate methods functionally
equivalent, and is more important than details concerning
the methods themselves. Logical sensor specification
allows the user to ignore such differences of how output
is produced, and treat different means of obtaining
equivalent data as logically the same. We note, however,
“that from the fault tolerance viewpoint, type of output
alone may not be enough to determine functional
equivalence and hence a logical sensor should have
visible features other than type.

A logical sensor is defined in terms of four parts:

1. A logical sensor name. This is used to uniquely
identify the logical sensor.

2. A characteristic output vector. This is basically a

" vector of types which serves as a description of the
output vectors that will be produced by the logical
sensor. Thus, the output of a logical sensor is a set
(or stream) of vectors, each of which is of the type
declared by that logical sensor's characteristic
output vector.

3. A selector whose inputs are alternate subnets
(below). The role of the selector is to detect failure
of an alternate and switch to a different alternate.
If switching cannot be done, the selector reports
failure of the logical sensor.

4. Alternate Subnets. This is a list of one or more
alternate ways in which to obtain data with the
same characteristic output vector. Hence, each
alternate subnet is equivalent, with regard to type,
to all other alternate subnets in the list, and can
serve as a backup in case of failure. Each aiternate
subnet in the list is itself composed of:

* A set of input sources. Each element of the
set must either be itself a logical sensor, or

664

the empty set (null).
permits physical sensors,
associated program (the device driver), ¢
described as g logical sensor, ;heo, be
permitting uniformity of Sensor treatment o
* A computation unit over the inpuyt .

Currently such computation unitg are
programs, but in the future, hargw
may also be used.

A logical sensor can be viewed as a network com

of sub-networks which are themselves logical sez:sed

Communication within a network is controlled via the‘f?rs-‘

of data from one sub-network to another. Hence .

networks are data flow networks. Such

Allowing ny input
which have only ap,

SOurces,
Softwarg
are unijtg

3. Fault Tolerance

The Logical Sensor Specification L
designed in accordance with the vi
should facilitate error determination
selector determines errors, and att,
switching to an another alternate subnet. Each alternate
subnet is an input source - Computation ynjt pair
Selectors can detect failures which arise from either ar;
input source or the computation unit. Thus, the selector
together with the alternate subnets constitute a failyre
and substitution device, that is, a
mechanism, and both hardware and
tolerance can be achieved.

anguage has been
ew that languages
and recovery. The
empts recovery yija

fault-toierance
software fault

Substitution choices may be based on either replication
or replacement. Replication means that exact duplicates
of the failed component have been specified as alternate
subnets. In replacement a different unit is substituted,
Replacement of software modules has long been
recognized as necessary for software fault—tolerance, with
the hope, as Randall states, that using a software module
of independent design will facilitate coping “with the
circumstances that caused the main component to
fail” [4l. We feel that replacement of physical sensors
should be exploited both with Randall’s point in view, and
because extraneous considerations, such as cost, and
spatial-limitations as to placement ability are very likely to
limit the number of purely back-up physical sensors
which can be involved in a sensor system.

3.1. Recovery Blocks

The recovery block is a means of implementing software
fault tolerance [4]. A recovery block contains a series of
alternates which are to be executed in the order listed.
Thus, the first in the series of alternates is the primary
alternate. An acceptance test is used to ensure that the
output produced by an alternate is correct or acceptable.
First the primary alternate is executed, and its output
scrutinized via the acceptance test. If it passes, that
block is exited, otherwise the next alternate is tried, and
so on. If no alternate passes, control switches to a new
recovery block if one (on the same or higher level) is
available; otherwise, an error results.

) Simila'rlv a selector tries. in turn. each alternate subnet
in the list, and tests each one's output via an acceptance

test. However, while Randall’'s scheme requires the use of
complicated error recovery mechanisms (restoring the
state, and so on), the use of a data-flow model makes
error-recovery relatively easy. Furthermore, our user
interface computes the dependency relation between
logical sensors [1]. This permits the system to know
‘which other sensors are possibly affected.

The general difficulties relating to software acceptance
tests, such as how to devise them, how to make them
simpler than the software module being tested, and so
on, remain. It is our view that some acceptance tests will
have to be designed by the user, and that our goal is
simply to accommodate the use of the test. Unlike
Randall, we envision the recovery block as a means for
both hardware and software fault-tolerance, and hence
we also allow the user to specify general hardware
acceptance tests. It is important to note that a selector
must be specified even if there is only one subnet in a
logical sensor’s list of alternate subnets. Without at least
the minimal acceptance test of a time-out, a logical
sensor could be placed on hold forever even when
alternate ways to obtain the necessary data could have
been executed. However, we also wish to devise special
schemes for acceptance tests when the basis for
substitution is replacement. While users will often know
which logical sensors are functionally equivalent, it is also
likely that not all possible substitutions of logical sensors
will be considered. Thus, we are interested in helping the
user expand what is considered functionally equivalent.

~ 3.2. Ramifications of Fault-Tolerance Based on a
Replacement Scheme

Many difficult issues arise when fault tolerance is based
on a replacement scheme. Because the replacement
scheme is implemented through the use of alternate
subnets, the user can be sure that the type of output will
remain constant, regardless of the particular source
subnet. Ideally, however, we consider that a replacement
based scheme is truly fault tolerant only if the effect of
the replacement on the output is within allowable limits,
where the allowable limits are determined by the user.

Determining functional
seeing more of a logical sensor than merely its type.
Suppose that an algorithm incorporates interpolation
techniques which increase the degree of accuracy of a
camera output. In this case, the user may be able to use
this algorithm and have a truly fault tolerant system, even
if the substitute camera’s output is not as accurate as the
failed camera. Thus, there is a need for having features
(beside type of output) of logical sensors visible, and a
need to propagate such information through the system.

A Logical Sensor Specification system, C-LSS, has been
developed and implemented in the “C” programming
language under UNIX, a registered trademark of Bell Labs.
This specification system provides a user-interface for
interactively editing sensor systems, networks. This
system allows the capability of providing alternate
subnets for assisting the fault-tolerance issue as well as

equivalence may necessitate

665

-a_Multi-sensor Environment.

computing the dependency relation between sensors as
previously mentioned.

4. Current Research Issues
We are currently investigating several aspects of logical
sensor systems:

* Semantics of Logical Sensor Systems. Both the
operational and denotational semantics of logical
sensor systems require thorough investigation if the
fundamental properties of logical sensor systems
are to be understood. .
Sensor/Algorithm Performance Evaluation. It is
crucial in many applications to know the effect of
passing data of known characteristics through some
algorithm implemented on a certain architecture.
For, example, if an algorithm merges data from two
different resolutions, its output most probably is of
the lower resolution of the two. On the other hand,
some algorithms actually improve the quality of the
data (e.g., subpixel feature detectors in images).

* Automatic Logical Sensor Generation. Given an
expert system on sensors and algorithms which
work on those sensors, it may be possible for an Al
system to create new logical sensors based on the
kinds of objects or features that it needs to detect
in the world. Such new sensors would be built by
putting together algorithms and existing logical
sensors.

* Implementation Issues.
of efficiency and

Finally, there are the issues
robustness which must be

addressed. It is imperative to provide a system
which performs in real-time and with low
probability of unrecoverable error. Even the

characterization of the probability of error is
difficult.

References

1. Hansen, C., T.C. Henderson, Esther Shilcrat and Wu So
Fai. Logical Sensor Specification. Proceedings of SPIE
Conference on_Intelligent Robots, SPIE, November, 1983,
pp. 578-583.)

2. Henderson, Thomas C. and Wu So Fai. A Multi-sensor
Integration and Data Acquisition System. Proceedings of
the IEEE Conference on_ Computer Vision and Pattern
Recognition, IEEE, June, 1983, pp. 274-280.

3. Henderson, T.C. and Wu So Fai. Pattern Recognition in
UUCS 001, University of

Utah, July, 1983.

4. Randell, B. Syétem Structure for Software Fault
Tolerance. In RT. Yeh, Ed., Current Trends in
Programming Methodology, Vol. 1, Prentice-Hall,

Englewood Cliffs, NJ, 1977, pp. 195-219.

5. Wu So Fai. A Multi-sensor Integration and Data
Acquisition System. Master Th.,, University of Utah, Salt
Lake City, Utah, June 1983.

Seventh International
Conference on
Pattern Recognition

Montreal, Canada
July 30 - August 2, 1984

Proceedings

Volume 1

Organizers:

CIPPRS:
Canadian Image Processing and
Pattern Recognition Society

IAPR:
International Association for
Pattern Recognition

ISBN 0-8186-0545-6

|IEEE Catalog No. 84CH2046-1
Library of Congress No. 84-80909
Computer Society Order No. 545

Printed in the United States of America PRESS

