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Abstract—Analyzing patient health through irregular time
series vital sign data demands innovative methods beyond
conventional imputation techniques. This study introduces a
novel approach diverging from prevailing attention-based models
to explicitly capture temporal patient evolution. We adopt a
paradigm where patients are viewed as dynamic systems evolving
over time, with their vital signs encapsulating the system’s states.
Our conceptual framework draws parallels to a Markov chain,
exploring the transitions between states within a unit of time. To
navigate the challenge of a vast state space, we employ a neural
network to model expected transitions. Our method portrays the
patient’s progression within one unit of time as the system evolves
from one state to another, and forecasts states into the future. We
outline the training process using irregular time series data and
demonstrate its efficacy through analysis on two large vital sign
data sets. Comparative analysis against attention-based models
emphasizes the effectiveness and efficiency of our approach. This
research heralds a promising avenue for patient vital sign analy-
sis, providing insights into temporal patient evolution without
relying on imputation methods, thereby enhancing predictive
accuracy and interpretability of models.

Index Terms—Vital Sign Prediction, Irregular Time Series,
Markov Chains

I. INTRODUCTION

Vital signs are measurements of physiological parameters
that represent a set of quantitative measures used to determine
a patient’s general health and viability. They significantly in-
fluence doctors’ and nurses’ interpretation of a patient’s overall
condition and subsequently impact the course of treatment
for each individual [1]. Traditionally, vital signs are a crucial
component of nursing assessments and serve as early warning
indicators for changes in a patient’s condition, particularly
in emergency departments (ED). Consequently, monitoring
patients’ vitals is essential for patient safety, as any signs of
patient deterioration can be promptly addressed, preventing
potentially costly delays in response [2], [3].

Utilizing artificial intelligence and machine learning to
predict future patient states has the potential to detect pa-
tient deterioration before visible signs appear, allowing for
increased attention to be given to the patient [4]. However,
in a typical ED, vital sign monitoring occurs at irregular in-
tervals, contingent upon the patient’s condition, the availability
of medical staff, hospital policy, nursing judgment, written
physician orders, and various other factors [5]. Despite being
the most commonly performed task in the ED, the frequency
of vital sign monitoring is usually inconsistent [1].

Fig. 1: An illustration of irregular time observations for two
patients with two vital signs over six hours. An asterisk refers
to the absence of data at a particular time point.

Hence, in vital sign analysis, a substantial amount of patient
data constitutes irregular time series, where patient states are
recorded at non-uniform time intervals. This presents chal-
lenges for machine learning modelling as each patient’s time
series data becomes diverse, complicating machine learning
approaches in identifying a common underlying pattern. These
data do not naturally yield a fixed-dimensional representation
as required by many standard machine learning models [6].
Moreover, each time series may vary in length, posing diffi-
culties for methods assuming fixed dimensional spaces.

Additionally, monitoring patient states involves more than
just measuring one variable, resulting in multivariate time
series [7]. Forecasting multivariate patient states poses an even
greater challenge, as historical data for a variable not only
contributes to its future value but also because interaction
effects between one variable and every other variable are
possible and could significantly impact its future value [8].

Consider a scenario with two patients, each characterized
by two vital signs: 1 and 2. Infrequent observations are made
on these two patients over a six-hour period, as depicted in
Figure 1. Initially, the first patient’s vital signs are observed
with values A and D for vital signs 1 and 2, respectively. Sub-
sequent observations occur at hours 2, 3, and 5, with recorded
values (B, D), (A, C), and (A, D). The second patient is observed
at hours 0, 1, 4, and 6, with different observations. They
represent irregular time series, unlike “regular” time series
where observations are consistently made at fixed frequencies.

Traditionally, the standard approach for handling such irreg-
ular data sets involves imputation [6], [9], thereby transform-
ing the irregular dataset into a regular one. Simple statistical
techniques have been employed, where missing values are
filled in using methods such as zero-filling, mean substitution,
moving averages, or the last observed value. However, these



methods can introduce bias and diminish accuracy [10].
Recently, there has been a development of machine learn-

ing models specifically tailored for irregular time series. As
discussed in Section II, several recent models have emerged,
incorporating innovative applications of Transformers (self-
attention) [11]. Instead of imputation, these models are con-
structed solely based on available observations within the
data, treating each time series as a set of observation triplets
comprising time, variable, and value. These triplets are then
embedded using an embedding mechanism and encode con-
textual information using a Transformer-based architecture
with various attention mechanisms [12]. While demonstrating
success in predicting the occurrence of clinical events (clas-
sification), their performance in predicting vital sign values
(regression) has not been reported in the literature. Further-
more, these attention-based models inherently lack algorithmic
transparency, making them challenging to explain.

In this study, we adopt a different approach. Rather than
relying on imputation to filling in missing values or using
attention mechanisms to encode time, we explicitly model time
progression of each patient. Essentially, we consider a patient
as a dynamic system evolving over time, with the patient’s
vital signs characterize the system’s states. Our aim is to
represent the patient system as a Markov Chain, conceptu-
alizing a transition matrix that specifies the probabilities of
the system moving from one state to another with a unit time.
This transition matrix enables us to describe how a patient
progresses over time. Given the large state space, instead
of explicitly solving for this transition matrix, we employ a
neural network F : S 7→ S that maps between states (S)
with parameters θ, describing expectations of state transitions.
Effectively, given a patient in state s at time n,

E[Zn+1|Zn = s] ≈ F (s; θ)

describes the expected state transition in one unit time; and

E[Zn+t|Zn = s] ≈ F (t)(s; θ)

describe system states in t units time. (Note that F (t)(s; θ)
denotes applying F recursively t-times.) In this work, we
elaborate on how such an F can be trained from irregular
time series data by finding the optimal θ and demonstrate its
effectiveness in two large vital sign data sets, in comparison
with attention based approaches.

In summary, the contributions of our work are as follows:
1) Conceptualization of a “patient state”, which consists of

the measurements of vital signs at a point in time.
2) Using neural networks with trainable weights and biases

to model state transition.
3) Novel training method for the neural network to accom-

modate irregular time-series data.
The rest of this paper is organized as follows. Section II

describes existing works related to irregular time modeling,
while Section III describes our approach using Markov state
transition as well as other methods for comparison. The data
sets, experiments conducted, and the results are covered in
Section IV, and finally, concluded in Section V.

II. RELATED WORK

Given the sequential nature of time-series data, recurrent
neural networks (RNNs) such as long short-term memory
(LSTM) models, gated recurrent units (GRUs), and transform-
ers have gained popularity. In the realm of irregular time
series, [9] provides a systematic review of methods employing
“gated RNNs.” These models, based on RNN architectures
with dedicated connections indicating missing values, have
found applications across various domains including medical
research [13]–[15], traffic monitoring [16], [17], and environ-
mental monitoring [18], [19].

Imputation encompasses a broad spectrum of methods to
handle irregular time series data, with numerous techniques
outlined in the literature. These methods include replace-
ment strategies [20], interpolation techniques [21], re-sampling
methodologies [22], and approaches leveraging Gaussian pro-
cesses [23]–[25].

Additionally, neural network models have been designed
with specific structures to identify missing data. One approach
involves masking missing values using “missing data indica-
tors” like NaN values, allowing models to utilize this indicator
set and skip data points lacking valid observations [15], [26].
For example, [27] introduced a time-aware long short-term
memory (LSTM) modification that adjusts the hidden state to
accommodate time gaps. Another model, the GRE-D proposed
by [26], adapts the gated recurrent unit (GRU) cell to decay
inputs and hidden states across unobserved time intervals.

Although both imputation and missing data identification
have displayed some success, they can incur excessive com-
putations and introduce unnecessary noise, particularly when
dealing with high missing rates [12]. Consequently, a recent
trend has emerged where attention mechanisms [28] are em-
ployed to handle irregular time series data more effectively.
We elaborates on two notable recent works, STraTS [12]
and PrimeNet [29], which are state-of-the-art methods and
have exhibited significant success in predicting irregular time-
series data, particularly vital signs, in comparison with all
aforementioned methods. These models hence serve as the
benchmarks for our experimental comparisons later in this
study, shown in Section IV.

A. STraTS

Tipirneni and Reddy [12] introduced the Self-supervised
Transformer for Time-Series (STraTS) model, treating time-
series as a collection of observation triplets. They employ a
“continuous value embedding” approach to encode continuous
time and variable values without discretization. The model
utilizes a Transformer component with multi-head attention
layers to learn contextual embedding for these triplets. The
resultant time series embedding is then merged with demo-
graphic information, embedded via a separate feedforward
network, and forwarded into a prediction head to forecast a
target value for each time series. Their experimental focus has
been on predicting ICU mortality, achieving ROC-AUC scores
of 0.891 and 0.839 on the MIMIC-III [30] and PhysioNet [31]
data sets, respectively.



B. PrimeNet

Chowdhury et al. [29] introduced the PrimeNet model,
utilizing a learnable time representation known as Time Em-
bedding [32]. This Time Embedding incorporates trainable
weights and biases to transform time into a vector repre-
sentation, comprising linear and periodic terms. These Time
Embedding vectors form the query and key vectors for Time-
Feature Attention (TFA), combined with feature values as the
value vector. Feature-Feature Attention (FFA) subsequently
employs self-attention on the output from TFA, followed by
residual and feedforward layers. The resulting outputs can
be directed to task-specific layers, enabling adaptation to
various downstream prediction tasks, including interpolation,
regression, and classification. Notably, on the MIMIC-III and
PhysioNet datasets, the model achieved ROC-AUC scores of
0.838 and 0.842, respectively, in predicting patient mortality.

III. METHOD

A Markov chain is a stochastic model that describes a
sequence of events where the probability of transitioning from
one state to another depends solely on the current state and not
on the sequence of events that preceded it, encapsulating the
Markov property [33]. It consists of a set of states and transi-
tion probabilities, forming a discrete-time or continuous-time
process, applicable in various fields from physics to finance
and natural language processing. The chain’s memoryless
property allows for the prediction of future states based solely
on the current state, enabling the analysis of random processes
and system behaviors over time, essential in modeling systems
with probabilistic dynamics and understanding state-dependent
probabilistic relationships.

In our context, we consider discrete-time Markov chains
with continuous state spaces, the system’s evolution occurs at
distinct time steps while the potential states span a continuous
set. This framework extends the Markov chain concept to
scenarios where the system’s state variables exist within a
continuum. The principles of the Markov property persist,
dictating that future states depend solely on the present state,
allowing for the modeling and understanding of complex
systems with continuous state variables across time.

In this paper, we will use Markov chains to model the space
of patients’ vital signs. For presentation simplicity, we assume
that the state space S has an enumerable approximation with
cardinality N ∈ N, i.e., we can write

S = {s1, s2, . . . , sN}

to denote the space of all possible patient states. Then, we
consider chains defined on this state space S. That is,

(Z) = ⟨Z1, Z2, . . . , Zz⟩,

in which z ∈ N and Zi ∈ S. Most importantly, we consider
Z having the Markov property in the sense that for any i, the
probability distribution on Zi+1 depends only on the state Zi

at time i, and not on previous values of Z. In other words,
state transitions are memory-less. Formally,

Pr(Zn+1 = s′i+1|Zn = s′i, . . . , Z1 = s′1)

= Pr(Zn+1 = s′i+1|Zn = s′i).

Furthermore, we consider time-homogeneous Markov
chains [34]. In other words, the probability of transition does
not depend on time. Formally, for any n,m ∈ N, it holds that

Pr(Zn+1 = s′i+1|Zn = s′i) = Pr(Zm+1 = s′i+1|Zm = s′i).

At the core of a Markov model is the Markov transition
matrix P . For a state space with N states, the matrix is an N -
by-N square matrix, defining the probabilities of transitioning
from one state to another in a single time step, encapsulating
the dynamic behaviour of the system.

P =


P11 P12 . . . P1N

P21 P22 . . . P2N

...
...

. . .
...

PN1 PN2 . . . PNN


Each entry in the matrix represents the probability of transi-
tioning from a current state to a future state, e.g.,

Pi,j = Pr(Zj |Zi)

denotes the probability of transition from Zi to Zj . From the
Markov transition matrix, we can represent the expected value
of the transition from the current state sn to its next state sn+1

as:

E[Zn+1|Zn = si] =

N∑
j=1

sj · Pij . (1)

In other words, Equation 1 describes the expected outcome of
a single step state transition from a given state si. Thus, with
all states si identified from a data set, if we can compute P ,
then we will be able to describe and predict how a patient’s
vital signs progress through time using

E[Zn+t|Zn = si] =

N∑
j=1

sj · P (t)
ij , (2)

in which P
(t)
ij is t-th power of P , describing the transition

probabilities for moving from Zn to all possible states after t
time steps.

However, since N is large, it is not feasible to estimate P
directly. In this work, we provide an alternative approach to
compute E[Zn+1|Zn = si] by constructing a neural network
regression model F : S 7→ S that maps between states directly,
such that

F (si; θ) ≈
N∑
j=1

sj · Pij , (3)

in which θ is the parameters (weights and biases) of F . With
this, we can effectively compute the vital sign progression with

E[Zn+t|Zn = si] ≈ F (t)(si; θ). (4)



In words, given a patient’s vital signs si at time i, we can
estimate the vital signs at time i + t by feeding si into the
regression model F exactly t times, recursively, such that the
output of one iteration is used as the input for the next.

To train the regression model F from data, we take several
steps. Firstly, we consider a data set D with patient vital signs
collected from τ patients. Data from each patient forms a chain
Z,

D = {(Z1), . . . , (Zτ )}.

The state space S will contain the union of all states from all
patients in D,

τ⋃
i=1

(Zi) ⊆ S.

Then, we stratify D into m partitions D1, . . . , Dm such that:
1) Each Di is a set of pairs, Di = {(xi

1, y
i
1), (x

i
2, y

i
2), . . .};

2) Each pair (xi
j , y

i
j) is drawn from a chain (Z), such that

xi
j = Zk and yij = Zk+i; and

3) For each pair (xi
j , y

i
j) in Di, there is no Za in any chain

(Z) such that for xi
j = Zk, yij = Zk+i, it is the case

that k < a < k + i.
This stratification ensures that (1) all pairs are extracted from
the data set D, (2) pairs in the same partition Di are data
points that are exactly i-steps apart from each other; and (3)
pairs represent observations that are closest to each other.

TABLE I: A data set containing two patients with irregular
observations crossing 5 time steps.

Patient ID t1 t2 t3 t4 t5
1 s1 NA s2 NA s3
2 s4 s5 NA s6 s7

For instance, consider a data set containing two patients as
shown in Table I. This data set forms two partitions with

D1 = {(s4, s5), (s6, s7)},
D2 = {(s1, s2), (s2, s3), (s5, s6)}.

On this stratified data D1, . . . , Dm, with a loss function L,
the model training can be concisely expressed as

θ∗ = argmin
θ

m∑
k=1

1

|Dk|

|Dk|∑
i=1

L(yki , F
(k)(xk

i ; θ))

 , (5)

where |Dk| is the cardinality of Dk.
To train the model F by computing θ∗ in Equation 5, we

take an iterative approach by training F with respect to each
Dk separately. Thus, θ∗ is updated after each pass to Dk, for
each k. Training stops once some termination condition is met.

We discuss the training in details as follows. Firstly, it is
easy to see that for D1, this is nothing but standard gradient
descent training,

θ∗ = argmin
θ

|D1|∑
i=1

L(y1i , F (x1
i ; θ)),

which is solved with backpropagation.

Fig. 2: Training the prediction model can be viewed as training
several concatenated models sharing the same parameters θ.

For Dk, k > 1, we can still use backpropagation with ac-
cumulated gradients. Effectively, as illustrated in Figure 2, we
can consider F (k)(x, θ) as k copies of F (x, θ) concatenated
with one another, all with the shared weights and biases θ. We
illustrate the case k = 2, with the Mean Squared Error (MSE)
loss,

L(θ) =
1

2
||F (F (x; θ))− y||2, (6)

as follows. We compute the first application of F with

z = F (x; θ),

and the second application of F

ŷ = F (z; θ).

In the backward pass, we first compute the gradient of the loss
with respect to the second application of F :

δ2 = (ŷ − y)⊙ F ′(z; θ),

where ⊙ denotes the element-wise multiplication and F ′ is
the gradient of F with respect to its parameters θ. Then we
compute the gradient of the loss with respect to the first
application of F :

δ1 = F ′(x; θ)⊙ (F ′(z; θ)T δ2).

The overall gradient of the loss with respect to both applica-
tions is the sum of the two:

δ = δ1 + δ2.

Then in each iteration, θ is updated using the delta rule

θ ← θ − αδ,

with some learning rate α.
It is easy to see that the above training process generalizes

to any number of repeated applications of F as we just need
to keep accumulating the loss δ. Moreover, we see that this
process shares the same convergence properties as backpropa-
gation training in general, i.e., it is guaranteed to converge to
a local minimum and known optimization techniques such as
Adaptive Moment Estimation (Adam) [35] can be applied.

The overall model training algorithm is summarized in
Algorithm 1. The data is first formatted into the inputs, target
outputs, and the number of intervals between the inputs and



Algorithm 1 Markov Chain Model Training

learningRate← 0.01; γ ← 0.1
for interval from 1 to maxIntervalSize do
d← ∅
for timeSeries in dataset do

for row in timeSeries do
if row is not the last in timeSeries then

(intervalSize of row) ←
time difference between current and next row

time of one interval
(inputs of row) ← patient state of the current
row
(targets of row) ← patient state of the next row
if (intervalSize of row) = interval then
d← d ∪ row

end if
end if

end for
end for
update model weights with gradient descent on d
learningRate← learningRate× γ

end for

the target. Then, the model is trained on data of increasing
interval sizes sequentially. All gradient computation is done
via autograd implemented by PyTorch [36]. As the interval
size increases, the learning rate decreases by a factor γ. Both
learning rate and γ values were determined through random
hyperparameter tuning.

To visualize how the Markov chain model models the
progression of a patient’s vital signs over time, Figure 3
shows a radar chart of the predictions made by the Markov
chain model for one patient for the next 4 hours at hourly
intervals given the current patient state at t = 0. Based on
the predictions, values for Urine decrease while the values for
SysABP, DiasABP, MAP increase, and HR remain stable.

IV. EXPERIMENTS

A. Datasets

The datasets used are Physionet Challenge 2012 [31] and
MIMIC-III [30], [37]. Both contain intensive care unit (ICU)
records containing measurements of various physiological
variables at irregular time points.

1) Physionet: The following vital signs are used.
• Diastolic arterial blood pressure (DiasABP) (mmHg)
• Mean arterial blood pressure (MAP) (mmHg)
• Systolic arterial blood pressure (SysABP) (mmHg)
• Heart rate (HR) (bpm)
• Urine output (Urine) (mL)

Set A was used for training and Set B was used for model
evaluation as specified in the Challenge. Data points with
missing values in any of these features were dropped from
the datasets. Clinically impossible outliers where DiasABP,
MAP, SysABP had 0 values and Urine values greater than
1,000 were removed. Patient who had multiple ICU records
were also removed. As the majority of the remaining data

were in intervals of 1 hour, discretization was employed to
ensure the intervals in the data were all in multiples of 1 hour.
Furthermore, models were trained on intervals of nine hours
or less but were also evaluated on intervals beyond nine hours.
This is to test the ability of the models to forecast patient states
at time intervals further than those seen in the training set.

The post-processed training dataset has 1,768 patients, 1,006
male and 762 female, with ages ranging from 16 to 90.
The post-processed testing dataset has 1,743 patients, 1,012
male and 731 female, with ages ranging from 16 to 90. The
minimum, maximum, and mean values across the combined
training and testing dataset as well as the standard deviation
for each variable within each patient are shown in Table II.

TABLE II: Physionet: Descriptive statistics of the dataset.

DiasABP MAP SysABP HR Urine
Minimum 3.0 4.0 10.0 14.0 0.0
Maximum 272.0 297.0 285.0 200.0 1000.0
Mean 59.5 79.7 120.0 87.4 95.5
SD 7.3 9.7 13.7 8.1 72.1

2) MIMIC-III: The dataset was preprocessed by following
the steps taken in [12], with the following vital signs:

• Diastolic arterial blood pressure (DBP) (mmHg)
• Mean arterial blood pressure (MBP) (mmHg)
• Systolic arterial blood pressure (SBP) (mmHg)
• Heart rate (HR) (bpm)
• O2 Saturation (O2) (%)

Stratified sampling based on the patients’ gender and age
was employed to select a smaller data subset for experimen-
tation to reduce computation times. As MIMIC-III had more
data with intervals shorter than an hour than PhysioNet, the
data was discretized to 15-minute intervals.

The post-processed dataset has 983 patients, 492 female and
491 male, with ages ranging from 18 to 89. The minimum,
maximum, and mean values across the entire dataset as well
as the standard deviation are shown in Table III.

TABLE III: MIMIC-III: Descriptive statistics of the dataset.

DBP HR MBP O2 RR SBP
Minimum 14.0 43.0 10.0 80.0 1.0 46.0
Maximum 179.0 169.0 186.0 100.0 57.0 240.0
Mean 59.8 87.9 78.9 97.9 18.8 119.7
SD 7.6 6.3 9.6 1.3 3.2 13.6

Min-max scaling from 0 to 1 was applied to each variable,
with minimum and maximum values derived from the training
data. For experiments on MIMIC-III, the results are averaged
from 120 iterations of random 70-30 train-test splits.

B. Methods for Comparison

1) Naive Forecast: In the case where no models are applied,
we can naively assume that the best prediction for patient states
in the future is the most recent input. We use the latest time
point available as the naive forecast for the target.



Fig. 3: Illustration of how a patient’s state evolves through time. Predictions from Markov Chain model for a patient for the
next 4 hours in the Physionet dataset. The upper bound represents the upper limit of what would be considered normal for
an average person for that variable, while the lower bound represents the lower limit of what would be considered normal.
The upper and lower bounds respectively for each variable are as follows: Heart rate (HR): 100, 60. Urine: 130, 30. Mean
arterial blood pressure (MAP): 100, 60. Diastolic arterial blood pressure (DiasABP): 90, 60. Systolic arterial blood pressure
(SysABP): 140, 90. The patient values are scaled according to the upper and lower bound values.

2) STraTS: We adopt STraTS [12] for vital sign prediction,
keeping its self-supervision component. To forecast at various
intervals into the future, the time values are encoded as values
relative to the target forecasting time before embedding of time
values. Hyperparameter tuning was performed to determine the
dimension of the embedding layers, the number of transformer
layers, the batch size, and the number of training iterations.

3) PrimeNet: In [29], pre-training of PrimeNet was used
before fine-tuning on the downstream prediction tasks. When
forecasting patient vital signs, we observed that pre-training
did not improve performance. Thus, models were directly
trained in a supervised manner on both datasets. Hyperparam-
eter tuning was also performed to determine the dimension of
the time embedding layer, the hidden size of dense layers, the
batch size, and the number of training iterations.

4) LSTM Model: We also compared the Markov Chain
model with existing models for regular time series prediction,
namely a standard LSTM model with missing value interpola-
tion [13]. Two LSTM layers of 100 units each, followed by a
dense layer to output predictions for each vital sign are used.

The number of trainable model parameters for each method
is tabulated in Table IV.

TABLE IV: Number of parameters for each method. MC is
two orders of magnitudes smaller than the next smallest model.

Physionet MIMIC-III
MC 30 42
Naive 0 0
STraTS 6,029 6,102
PrimeNet 97,637 98,022
LSTM 123,305 123,806

C. Performance

We evaluate the performance of the MC model based on
the following criteria. noitemsep

1) Short-term forecasting performance
2) Overall forecasting performance
3) Number of parameters
From Table V, we observed that the MC model had the

best forecasting performance for patient states one interval into

the future even with the least number of trainable parameters
(Table IV); the Markov Chain model had the lowest root mean
square error (RMSE) for all variables except MAP, in which it
is second to STraTS. In Table VI, the MC model also shows
the best forecasting performance, displaying the lowest RMSE
for 4 of the 6 output variables, and a close second to LSTM
for the remaining 2 variables.

TABLE V: Physionet: Average RMSE of forecasting one
interval into the future. Models with the best RMSE are shown
in bold while the second-best RMSEs are italicized.

HR SysABP DiasABP MAP Urine
Naive 0.0403 0.0637 0.0672 0.0486 0.0887
MC 0.0394 0.0597 0.0639 0.0398 0.0843
STraTS 0.0459 0.0665 0.0699 0.0369 0.0844
Prime Net 0.0616 0.1272 0.1314 0.0402 0.0961
LSTM 0.1361 0.1155 0.1098 0.0687 0.1091

TABLE VI: MIMIC-III: Average RMSE of forecasting one
interval into the future. Models with the best RMSE are shown
in bold while the second-best RMSEs are italicized.

DBP HR MBP O2 RR SBP
Naive 0.0566 0.0465 0.0603 0.1004 0.0740 0.0855
MC 0.0540 0.0460 0.0576 0.0948 0.0698 0.0813
STraTS 0.0596 0.0626 0.0638 0.1096 0.0728 0.0870
Prime Net 0.0705 0.0745 0.0684 0.1170 0.0822 0.0997
LSTM 0.0535 0.0494 0.0581 0.1002 0.0707 0.0799

Evaluating model performances on forecasting intervals
greater than one, the MC model performs well on the Phy-
sionet dataset. In Table VII, MC has the lowest RMSE for 3
variables. On MIMIC-III (Table VIII), MC also performs well,
with RMSE values within the top two for 5 variables.

Figures 4a and 4b show the average forecasting RMSE as
interval size increases for Physionet and MIMIC-III respec-
tively. For Physionet, the RMSEs for the first 12 intervals,
each representing 1 hour, are shown, while for MIMIC-III, the
first 8 intervals, each representing 15 minutes, are shown. In
Figure 4a, the RMSE generally gradually increases as interval
size increases. In Figure 4b, there is an increasing trend in
RMSE for HR and RR, but for the remaining 4 variables,
the RMSE fluctuates after the 4th interval, especially for the



TABLE VII: Physionet: Average RMSE across all test data
points. Models with the best RMSE are shown in bold while
the second-best RMSEs are italicized.

HR SysABP DiasABP MAP Urine
Naive 0.0643 0.0807 0.0884 0.0572 0.1182
MC 0.0617 0.0745 0.0830 0.0519 0.1072
STraTS 0.0701 0.0768 0.0875 0.0501 0.1057
Prime Net 0.0701 0.1337 0.1317 0.0478 0.1012
LSTM 0.1347 0.1185 0.1125 0.0832 0.1144

TABLE VIII: MIMIC-III: Average RMSE across all test data
points. Models with the best RMSE are shown in bold while
the second-best RMSEs are italicized.

DBP HR MBP O2 RR SBP
Naive 0.0668 0.0751 0.0758 0.1219 0.0927 0.1026
MC 0.0636 0.0745 0.0703 0.1089 0.0921 0.0992
STraTS 0.0642 0.0842 0.0711 0.1170 0.0897 0.0941
Prime Net 0.0690 0.0875 0.0690 0.1185 0.0925 0.0977
LSTM 0.0667 0.0913 0.0727 0.1407 0.1022 0.0996

variables related to blood pressure. Looking at the naive graph,
the changes in the variable values after 6 intervals and 8
intervals are smaller than 1 interval before, which perhaps is
due to some periodic nature of these variables in the dataset.

In Figure 4a, the MC model displayed more consistent
performance across all 5 variables as compared to PrimeNet,
which performed especially poorly on SysABP and DiasABP.
On MIMIC-III, the MC model has the best performance for
variables HR and O2, and a comparable performance to other
models for the other variables in Figure 4b, even with its
small number of parameters (Table IV). MC performs well
consistently for the first 4 intervals (up until 1 hour from the
input data) across the 6 variables. We observe that the RMSE
increases sharply for after the first 4 intervals, suggesting that
changes in patient state in the first hour may have a different
trend as compared to the subsequent hour.

V. CONCLUSION

We introduce a novel approach to the analysis of patient
vital sign data characterized by irregular time series. Our
approach considers patient states as dynamic systems evolving
over time, bypassing the need for imputation by explicitly
modeling temporal evolution. By conceptualizing patients’
vital signs as indicative of system states and leveraging a
neural network-based approach to model transitions, we have
demonstrated the effectiveness of capturing temporal evolution
without relying on fixed transition matrices or attention mecha-
nisms. The results from experiments conducted on MIMIC-III
and PhysioNet, two large vitals data sets, affirm the promise of
our approach. With models that are two orders of magnitudes
smaller than competitors, our approach outperform state-of-
the-art models in the literature. This research prepares for
future explorations in patient state analysis, encouraging the
adoption of innovative methodologies that emphasize temporal
evolution modeling over traditional approaches. By advancing
the understanding of temporal patient states, our approach
contributes significantly to the development of more accurate
and efficient predictive models in healthcare.
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