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Abstract— Many Departments of Transportation (DOTs) in
the United States have incomplete accounting of the location
and condition of their crosswalks. Deploying inspection crews
to inspect crosswalk conditions is costly and time-consuming. A
complete inventory of crosswalks and their associated paint con-
dition would allow maintenance cycle optimization and reduce
inspection costs. Using aerial imagery from the Washington,
D.C. metropolitan area, a Mask R-CNN was trained to identify,
measure, and localize unique object instances of crosswalks.
These crosswalks will serve as the reference dataset for ongoing
crosswalk quality assessment. A similar network was trained
to identify crosswalk instances in consumer dashcam imagery.
Crosswalks extracted from these images are used to update
the quality assessment of the reference dataset. We report the
data collection process, approaches to paint quality estimation,
and deep learning implementations. Crosswalks were located
and cataloged using aerial imagery with a precision of 0.968
and a recall of 0.949 within a test region. A quantitative paint
quality metric was successfully established and calculated from
street-level imagery. By attributing these scores to localized
crosswalks, we are able to automatically provide city-wide
paint quality assessments. This method serves as a promising
technique for DOTs to continuously monitor the condition of
their crosswalks and spare valuable department resources.

I. INTRODUCTION

Crosswalks are among the most high-traffic painted re-
gions of roadways and are essential for maintaining safe
pedestrian street crossings. Their paint is susceptible to
wear from motorized vehicles, bicycles, foot traffic, roadway
construction, and environmental effects. Clear and obvious
crosswalks encourage pedestrian usage and prevent vehicles
from stopping too far into intersections. For these reasons
and more, DOTs are interested in maintaining their cross-
walk populations and spend substantial department resources
locating and repairing worn crosswalks. Maintaining and
accounting for a city’s vast network of crosswalks is difficult
given their abundance and dynamic generation and removal.
Manual crosswalk paint quality evaluation is a qualitative
measure, preventing an unbiased condition-based approach
to maintenance scheduling. This work attempts to alleviate
this burden by leveraging publicly available aerial imagery
(see Figure 1) and industry-sourced dashcam imagery (see
Figure 2) to locate and evaluate crosswalks in the Washing-
ton, D.C. metropolitan area.

Aerial imagery is taken on an annual basis and provides
an almost orthogonal projection of the terrain. Moreover,
the crosswalks in the image are generally captured in their
totality and in clear weather. On the other hand, dash-cam
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imagery gives a view from a camera angle almost tangent
to the ground surface and thus has a gross perspective
distortion. In addition, there is little control over weather,
lighting, or the presence of occluding objects in the scene
(e.g., vehicles, pedestrians, leaves on the road, etc.).

Fig. 1. An aerial image of an intersection in Washington, D.C. Four zebra-
style crosswalks are seen as white stripes across each of the roadways.

This pilot-study location was selected due to data avail-
ability and a relatively small geographic area. While many
crosswalk styles are utilized within the D.C. area, this work
focuses on locating zebra-style crosswalks (see Figure 1).
This style was selected due to the characteristic shape, color,
and susceptibility to wear of such crosswalks.

Fig. 2. An example consumer dashcam image from Washington, D.C.
metropolitan area. A zebra-style crosswalk is seen in the center and bottom
right of the image.

The objective of this work is to locate and characterize
all crosswalks in the D.C. area using aerial imagery and
to evaluate crosswalk paint quality using consumer dash-
cam imagery. While aerial imagery is preferable for both
purposes, such data is collected on a yearly time scale
and would be insufficient for capturing paint degradation.
Dashcam imagery is routinely captured by consumer vehicles
on a daily basis, and image metadata like GPS location and
heading can indicate which previously localized crosswalks



are in the image field of view (FOV). This approach is
unique in that it combines information gleaned from two
disparate image perspectives to create a near real-time paint
quality estimation for maintenance schedulers. The work
presented herein is expected to drastically reduce crosswalk
maintenance misappropriation and cost.

II. PREVIOUS WORK

Detection and localization of painted crosswalks from
aerial imagery have a number of use cases in city planning,
road maintenance, and assisting the visually impaired [1]–
[5]. Crosswalk localization requires two main components,
collection of aerial imagery, and crosswalk detection within
these images. Both components of crosswalk localization
have been the research focus for some time.

For the problem of aerial imagery data collection, several
authors [6] [7] rely on annotations from publicly available
satellite imagery platforms such as OpenStreetMaps to dis-
cover potential locations for crosswalks. However, from our
analysis, these crowd-sourced annotations were unreliable
and did not provide sufficient coverage of all possible cross-
walk locations. Zhang et al. [8] poses a more thorough data
acquisition method that involves using existing roadway data
to collect imagery along the roadways in a given region. We
implement a variation of this approach for data collection.

Earlier approaches to crosswalk detection within images
rely on the use of a trained support vector machine classifier
on a sliding window within a given image to detect the
locations of crosswalks [7]. Barriel et al. [6] instead train a
VGG-based CNN for the detection of crosswalks in images,
which performs very well for the basic binary classification
task of detecting crosswalks but does not locate individual
instances of crosswalks in images. Zhang et al. [8] extend this
approach by training a similar VGG-based CNN for object
detection of instances of crosswalks in images. We improve
upon these results by implementing a higher-performing
model, Mask R-CNN [9], for this object detection task.

III. CROSSWALK LOCALIZATION

Establishing an initial accounting of a city’s crosswalk
population requires a comprehensive view of a geographic
region of interest. Fortunately, the D.C. metropolitan area
has publicly available high-resolution aerial imagery that is
accessible via the aforementioned image collection method-
ology. Aerial imagery is an excellent medium for locating
crosswalk object instances because they are all at least
partially visible and the metadata associated with each image
allows geographic localization.

Crosswalk localization aims to locate and catalog all cross-
walks in a given area, e.g. Washington D.C. This process
consists of three main steps, first we collect aerial images
of every potential location of a crosswalk at a high enough
spatial resolution to be able to distinguish crosswalks. Then
we use a trained model to detect each instance of a cross-
walk within each aerial image. Lastly, with each crosswalk
instance detected, we remove duplicate detected crosswalks

and recover the latitude and longitude coordinates of each
crosswalk.

A. Image Collection

Initially, we approached the problem of image collection
assuming no previous knowledge about roadways or inter-
sections in the target area. For this uninformed approach,
we tested two solutions. The first naive solution was to
partition the entire target geographic region into a grid
of 100m × 100m tiles and retrieve an image of each tile.
Collecting images in this way posed two issues, the first
being that for larger regions, this required a massive number
of images which greatly increased necessary storage capacity
and computation time for downstream tasks, and second, the
images taken were not centered around roadways causing
crosswalks to be split across multiple images. The second
solution was to collect high-resolution zoomed-out images
covering large areas and use an object detection model with
a high recall to identify possible locations of crosswalks.
This solution requires less space and produces higher-quality
images than the naive approach. However, it tends to be bi-
ased toward intersections and therefore may miss crosswalks
between city blocks.

For the majority of major metropolitan areas where the
detection of crosswalks is necessary, open-source data exists
which captures the locations of all roadways in the region.
Using this data, we developed an approach outperforming
both uninformed solutions above. The available roadway data
is generally a collection of GeoJson LineString objects, each
containing the coordinates of endpoints of a road segment
between two intersections. For each of these recorded line
segments, we save evenly spaced coordinates along its length
where the spacing between each coordinate is calculated
based on the desired area captured in each image. We
then retrieve aerial images centered around each of these
coordinates to create a data set of images that cover all of
the roadways in a given region. Since crosswalks only occur
on roads, this approach allows us to capture images of every
potential location of a crosswalk while requiring significantly
less space than the naive approach above.

B. Aerial Crosswalk Detection

A Mask R-CNN [9] model architecture was selected for
crosswalk object detection due to its ability to provide a
bounding box and segmentation mask prediction for each
identified crosswalk object instance. The centroid of each
bounding box can indicate the object’s geographic location
and the predicted mask can serve as a foundation for calcu-
lating an initial paint quality assessment. 170 aerial images
were collected from around the D.C. area and crosswalks
were hand-labeled with bounding polygons. Obstructions to
the crosswalk areas (vehicles, people, etc.) were avoided
where possible. Of these 170 images, 102 were used for
training and 68 were used for testing. A pretrained v2 Mask
R-CNN with a ResNet-50-FPN backbone was trained for 10
epochs using Adam optimization [10] and a learning rate of
5∗10−4. The final 68 aerial image test set average precision



(AP) and average recall (AR) results are reported in Tables
I and II. All detection model evaluation metrics reported
in Tables I, II, III, and IV follow the Common Objects in
Context (COCO) evaluation metric standard [11]. The AP for
detected objects with intersection over union (IOU) threshold
scores ranging from 0.5 to 0.95 (with threshold steps of 0.05)
is averaged and reported as (mAP and mAR). Alongside this
general metric, AP for detected objects with a single IOU
threshold of 0.5 (AP0.5) and 0.75 (AP0.75) are reported. AP
and AR of various detected object area size thresholds are
also reported for objects with small pixel areas less than
322 (APS and ARS), medium pixel areas between 322 and
962 (APM and ARM), and large pixel areas greater than 962

(APL and ARL). Note that all values of AP and AR for pixel
area thresholds are calculated using the aforementioned IOU
threshold averaging used to calculate mAP and mAR.

IOU metric mAP AP0.5 AP0.75 APS APM APL
bounding box 0.823 0.956 0.926 0.837 0.812 0.836
segmentation 0.837 0.957 0.925 0.803 0.810 0.866

TABLE I
Average Precision Results.

IOU metric mAR ARS ARM ARL
bounding box 0.853 0.840 0.841 0.865
segmentation 0.862 0.820 0.840 0.885

TABLE II
Average Recall Results.

Fig. 3. An example aerial image crosswalk bounding box and mask
prediction.

In terms of aerial instance segmentation and bounding
box AP results, AP is consistently high across all IOU
evaluation categories. Similar results for AP0.5 and AP0.75
indicate that most detected objects had excellent agreement
between model predictions and ground truth labels. Small
detected objects were predicted with a lower precision than

their larger counterparts, but still presented an mAP greater
than 0.8. The consistently high precision amongst all object
sizes is important for localization given that crosswalks vary
widely in size and images taken from high altitudes will
often result in small crosswalk pixel areas. As for AR results,
high recall values are especially important for localization
given that a missed crosswalk will be omitted from a cities
inventory. The consistently high recall values for all size
categories indicates that taking images of a city from a
high altitude (reducing the number of images required for
full region coverage) is suitable for crosswalk detection and
localization.

C. Instance Post-Processing
Once we have detected each instance of crosswalks within

the collected images using our trained Mask R-CNN, we
then recover each crosswalk’s exact location. Using the
coordinates of each image, the area captured by each image,
and the pixel level bounding box of each crosswalk instance
(see Figure 3), we can recover the coordinates of each
detected crosswalk’s bounding box and center point.

One issue we found in our process is that collecting images
along roadways produces overlapping images, causing cross-
walks to be detected multiple times. To resolve duplicated
crosswalks, we first remove collected images that overlap
beyond a given threshold before crosswalk detection occurs.
Then, after we have recovered the lat/long coordinates of
each crosswalk’s bounding box, for any pair of images that
overlap, if both images contain a crosswalk whose real-world
bounding box coordinates overlap, we remove the detected
crosswalk whose bounding box has the smaller area.

Another issue that we found is that our model would occa-
sionally mistake other patterns of white lines as crosswalks,
such as solar panels and parking spaces. To address this, we
use the open source roadway data and recovered crosswalk
coordinates to detect crosswalks that are predicted to be off
of a road and remove them. By implementing this procedure
we were able to significantly reduce the number of false
positives our system detected.

IV. PAINT QUALITY ANALYSIS

The paint quality of crosswalks can deteriorate quickly
over time, particularly in areas with high traffic. Because
available aerial imagery is often at least a year old, relying
on this data to analyze paint quality may result in outdated
assessments. To address this we use dashcam imagery pro-
vided by Blyncsy Inc., which is captured continuously over
time to assess paint quality with higher temporal accuracy.
To make these assessments, we first register a given dashcam
image to the set of cataloged crosswalks that are most likely
in view. Then, we use a fine tuned Mask R-CNN model to
segment crosswalks in the street-level image and calculate
paint quality grades for each predicted region.

A. Street-Level Crosswalk Segmentation
Street-level imagery from consumer dashcams is taken

daily all over the D.C. metropolitan area. Their high-
frequency capture and GPS location metadata make these



images suitable for a near real-time paint quality assessment.
A Mask R-CNN model is especially useful for crosswalk
object detection because it provides mask predictions for
crosswalk areas that include only paint and roadway pixels
(see Figure 4). These areas serve as the basis for paint quality
analysis. 235 street-level images were sourced from Blyncsy
Inc. and hand-annotated with bounding polygons. All visible
crosswalk areas were labeled, and any obstructions were
avoided where possible. Crosswalks bisected by obstructions
were labeled as separate objects. Of the 235 images, 165
were used for training and 70 were used for testing. The
aerial image model architecture and hyperparameters were
replicated for street-level object detection. The 70 street-level
image test set AP and AR results are reported in tables III
and IV.

IOU metric mAP AP0.5 AP0.75 APS APM APL
bounding box 0.609 0.856 0.673 0.300 0.507 0.796
segmentation 0.617 0.866 0.714 0.269 0.523 0.806

TABLE III
Instance segmentation and bounding box AP results. The disparity in pixel
area AP categories was qualitatively observed, with large crosswalks near

the front of the vehicle routinely labeled well. Smaller peripheral and
background crosswalks were often mislabeled, which is reflected in their
relatively low AP values. Fortunately, the frequency of street-level image
capture is high enough that detected objects with smaller pixel areas can

be filtered and detected within future imagery.

IOU metric mAR ARS ARM ARL
bounding box 0.654 0.383 0.560 0.835
segmentation 0.658 0.374 0.581 0.827

TABLE IV
Instance segmentation and bounding box AR results. The recall results

follow a similar trend to the precision results reported in table III. Large
area crosswalk objects are routinely detected by the model but smaller

crosswalk regions are more ambiguous and difficult to consistently detect.

Fig. 4. An example dashcam image crosswalk bounding box and mask
prediction.

B. Paint Quality Assessment

The primary goal of the paint quality assessment procedure
was to provide DOTs with a simple and easily understand-
able metric for maintenance schedule optimization. Percent
remaining (PR) was selected and is defined by the ratio

of crosswalk paint to the entire crosswalk area (paint and
roadway). DOTs across the world use a variety of crosswalk
geometries, and the PR of a perfect crosswalk is often
municipality dependent. While unreported and relatively
variable, the ideal crosswalk PR in the D.C. metropolitan
area was determined to be approximately 65 percent. This
approximate value was used for all PR calculations reported
in this paper.

The output of the street-level Mask R-CNN model is
particularly useful for calculating the PR of crosswalk object
instances because its mask region predictions prevent the
inclusion of obstructions (vehicles, debris, pedestrians, etc.)
in the visible crosswalk regions. This leaves mask regions
that only include crosswalk paint and their adjoining roadway
(see Figure 5). Masks are often predicted outside of the
detected object bounding boxes. To prevent the incorporation
of these extraneous masked regions, any mask regions with
less than 75 percent of their area within any of the bounding
boxes are omitted.

Fig. 5. Mask prediction and isolation process.

Segmenting crosswalk paint from the 8-bit RGB images
was accomplished by first converting the image to the YCrCb
color space. The Luma (Y) channel was then isolated and
a contrast-limited adaptive histogram equalization (CLAHE)
was applied to the image. The CLAHE was executed using
OpenCV [12], a clip limit of 2.0, and a kernel size of 8x8.
A binary threshold was then applied to the equalized image,
with pixel values above a value of 170 assigned a value of
1. This process is outlined in Figure 6.

Fig. 6. Street-level image binary threshold process.



Obtaining the PR value for the detected crosswalk object
instances is accomplished by combining the model mask
predictions and the thresholded image. Each predicted mask
region from the Mask R-CNN model is individually applied
to the thresholded image. Division of the masked thresholded
image sum and the mask pixel area provide the paint-to-
crosswalk area ratio. Division by the ideal PR results in the
final PR value for each respective predicted crosswalk region
(see Figure 6). If the PR of a detected crosswalk region
exceeds the ideal PR it is considered an invalid reading and
omitted from any paint quality evaluations (see Figure 7).

Fig. 7. Example crosswalk object instance percent remaining calculation.

To further simplify crosswalk paint quality comparisons, a
color-coded wear rating scale is proposed (see Figure 8). This
scale is inspired by the U.S. Forest Service wildfire risk color
wheel and is intended to give an easily understandable wear
rating to crosswalk object instances. An example assessment
of the paint quality within a street-level image is seen in
Figure 9.

Fig. 8. Proposed wear rating chart.

Fig. 9. Predicted crosswalk object instance masks and corresponding
thresholded paint regions. Crosswalk regions are color-coded by their
predicted paint quality (fig. 8) in the center RGB image.

Fig. 10. All crosswalks found through our localization pipeline in our
chosen region of Washington D.C. Red squares represent the clusters that
nearby crosswalks correspond to.

C. Attributing paint quality estimates to localized crosswalks

Along with each street-level image, we also receive the
image’s geographic location, heading yaw, and time of cap-
ture which can be used to attribute the calculated assessments
to previously localized crosswalks. Initially, our goal was to
register each crosswalk instance visible in a street-level im-
age to a cataloged crosswalk from our localization procedure.
We believe this could be accomplished by first using a model
to predict the distance from each visible crosswalk to the
camera in a street-level image, then estimating the locations
of each crosswalk using the dashcam’s GPS coordinates. The
resulting estimated locations could then be registered to our
cataloged crosswalks. Unfortunately, the GPS readings from
dashcams have inconsistent accuracy and are liable to be off
by up to 30 meters which is too large of a margin of error
to register individual crosswalks using the aforementioned
procedure accurately.

From our sample data, we observed that crosswalks often
exist in clusters at intersections, and the quality of all
crosswalks in an intersection tends to degrade at a similar
rate. Based on this observation, we felt it would be viable



to attribute the quality of all crosswalks visible in a given
street-level image to an entire cluster of crosswalks rather
than assessing the quality of each individually. Also, due
to the larger area covered by an intersection, by taking this
approach, we are able to attribute street-level images to full
intersections with a high degree of accuracy despite the
limitations of our data.

To determine clusters of crosswalks, we use the density-
based clustering algorithm DBSCAN on the localized cross-
walks. This clustering was performed using Euclidean dis-
tance, an EPS of 30 meters, and one as the minimum number
of samples to include crosswalks that do not belong to an
intersection. Based on qualitative assessment, we felt this
clustering produced clusters that correspond to all crosswalks
that may be in the field of view in a street-level image. An
example of the clusters found in a sample region can be seen
in Figure 10.

With these clusters calculated, we then register each street-
level image by finding the cluster whose center point is
closest to the coordinates of the image. The paint quality
of a street-level image is calculated by taking the average
PR of all crosswalk instances within the image, weighted by
the area of each crosswalk’s mask. This weighted average
is then attributed to its registered crosswalk cluster. To
calculate a cluster’s estimated paint quality rating, we take
a time-weighted average of all of its attributed paint quality
assessments.

V. EXPERIMENTS

To test crosswalk localization, we first selected a smaller
region within Washington D.C. to collect data from. We
selected the area from 2nd & H St. to 15th & Independence
Ave since this is a residential area that we believed would
contain many crosswalks and be representative of the full
city. We then manually located all crosswalks and crosswalk
clusters within our region that are visible in our satellite
imagery data. In total, we labeled the locations of 356 cross-
walks and 125 clusters for this area. Lastly, we applied our
crosswalk localization procedure to this region and compared
the results.

To gauge the results of our method, we imported the pre-
dicted crosswalk and crosswalk cluster locations in ArcGis
and manually inspected each predicted location to determine
if it corresponded to an actual crosswalk. Using this ap-
proach, we found that of the 349 crosswalks detected by
our system, 11 were false positives, and 18 of the manually
labeled crosswalks were missed. We also found that of the
127 clusters this approach located, 4 were false positives,
and 2 manually labeled clusters were missed.

Past approaches to crosswalk localization have assumed
crosswalks to be located at intersections, ignoring other areas
in their image collection. To test the validity of our approach
of collecting images along all roadways, we implemented the
same testing procedure on a baseline where aerial imagery
was only taken at intersections. This baseline approach
produced 287 crosswalk predictions with 7 false positives,

missing 76 labeled crosswalks. After clustering, this ap-
proach produced 105 clusters, where 3 were false positives,
missing 23 true clusters. While this baseline does lead to
higher precision, it misses significantly more crosswalks than
our approach. Precision and recall values of these results are
shown in Tables V and VI. Precision is calculated as the
number of true positives divided by the sum of true positives
and false positives. Recall is calculated as the number of true
positives divided by the sum of the true positives and all
missed clusters. The F1 score is calculated as the harmonic
mean of both precision and recall.

Method Precision Recall F1 Score
All Roadways 0.968 0.949 0.959

Intersections Only 0.975 0.787 0.87

TABLE V
Results for our crosswalk localization approach on crosswalks.

Method Precision Recall F1 Score
All Roadways 0.969 0.984 0.976

Intersections Only 0.971 0.816 0.887

TABLE VI
Results for our crosswalk localization approach on crosswalk clusters.

VI. DISCUSSION

A. Limitations of crosswalk localization

The most notable limitation of our crosswalk localization
procedure is that we only detect zebra-style crosswalks and
ignore other types, which may also be prevalent in some
regions. We have observed that these non-zebra crosswalks
tend to have much less paint and, thus, fewer visual cues
for our aerial crosswalk detection model. Because of this,
accurately detecting these crosswalks requires a significant
number of annotated images of crosswalks in this style. If
more annotated data on other crosswalk styles are available
in future work, our procedure could easily be augmented to
account for them.

Another downside to our method is that it can depend
highly on the crosswalks’ quality when the aerial imagery
is taken. The large majority of crosswalks that our model
could not detect were due to heavy wear on the crosswalks
in the aerial imagery, making them difficult to detect even
for a human. We believe this could be addressed in future
work by increasing the annotated images of highly degraded
crosswalks.

B. Limitations of paint quality analysis

While the aforementioned paint quality analysis is a good
approximation for the PR of crosswalks, there are several
limitations to the method that contribute to error. Changes
in lighting conditions (day to night, shadows, etc.) make
the application of a simple binary threshold inconsistent.
This inconsistency sometimes produced a poor street paint
segmentation, which misrepresents the actual amount of paint
that exists within any given crosswalk area. Future work
should include training a semantic segmentation model to



conduct the street paint segmentation task. This could help
prevent missed or false paint, increasing the accuracy of the
PR calculation.

Due to the perspective of the street-level dashcam imagery,
crosswalk objects often appear distorted relative to their true
geometries. This distortion can conceal small regions of paint
deterioration and may bias clusters towards deceivingly high
PR ratings. The area-weighted averaging and removal of
regions that exceed the ideal PR is intended to mitigate these
errors, but further paint study analyses should be conducted
to better characterize their effect on PR calculations.

VII. CONCLUSIONS

In this paper, we propose a method for evaluating cross-
walk paint quality using satellite and continuous street-level
imagery. Our approach thoroughly catalogs and localizes all
crosswalks within a region without the use of crowd-sourced
annotations (e.g., OpenStreetMaps). We then introduce a
novel paint quality measure that can assess crosswalks that
are visible in street-level images. These assessments can then
be associated with cataloged crosswalk clusters. We believe
this two-model approach to localizing and grading cross-
walks will significantly increase the efficiency of crosswalk
maintenance and reduce associated costs.
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