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Abstract— A growing remote sensing network comprised of
consumer dashcams presents Departments of Transportation
(DOTs) worldwide with opportunities to dramatically reduce
the costs and effort associated with monitoring and maintaining
hundreds of thousands of sign assets on public roadways.
However, many technical challenges confront the applications
and technologies that will enable this transformation of roadway
maintenance. This paper highlights an efficient approach to the
problem of detection and classification of more than 600 classes
of traffic signs in the United States, as defined in the Manual
on Uniform Traffic Control Devices (MUTCD). Given the vari-
ability of specifications and the quality of images and metadata
collected from consumer dashcams, a deep learning approach
offers an efficient development tool to small organizations that
want to leverage this data type for detection and classification.
This paper presents a two-step process, a detection network that
locates signs in dashcam images and a classification network
that first extracts the bounding box from the previous detection
to assign a specific sign class from over 600 classes of signs. The
detection network is trained using labeled data from dashcams
in Nashville, Tennessee, and a combination of real and synthetic
data is used to train the classification network. The architecture
presented here was applied to real-world image data provided
by the Utah Department of Transportation and Blyncsy, Inc.,
and achieved modest results (test accuracy of 0.47) with a
relatively low development time.

I. INTRODUCTION

Traffic signs are an integral component of ensuring safety
for all drivers. Different types of signs communicate unique
messages to drivers; the signs are grouped into three main
categories: warning, regulatory, and guide signs. These signs
warn drivers of upcoming road conditions, regulate laws
on the road, and provide information about nearby cities,
food, and attractions. For drivers, traffic signs create a safe
and fast-flowing driving environment. For departments of
transportation (DOTs), knowing the location, the type, and
the state of repair of these signs is essential for inventory
and maintenance purposes.

While access to information about traffic signs is helpful to
DOTs, cataloging the data related to sign location is tedious,
costly, and recorded infrequently. Sign locations do not often
change, but new signs are added as cities grow and temporary
signs are placed in construction zones. Additionally, traffic
signs are only cataloged and updated once every two years,
so temporary signs and signs in disrepair would not be ac-
counted for in a timely fashion. When signs are cataloged, it
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is time-consuming to classify them by hand due to the many
unique signs found on roadways. An automated approach for
determining the location and the type of signs in near-real
time would be valuable for DOTs across the United States
and worldwide.

Detecting and classifying traffic signs is a complex prob-
lem to automate due to many sign classifications and the
variation in sign appearance. According to the Manual on
Uniform Traffic Control Devices (MUTCD) from the US
DOT Federal Highway Administration (FHWA), there are
over 600 different types of signs on US roads [1]. In addition
to many different signs, the traffic sign’s appearance can vary
due to the sign’s content or the conditions of the image of
the sign. These challenges add complexity to sign detection
and classification; however, deep learning approaches show
promise in overcoming these challenges.

Deep learning methods have had great success solving
problems like object detection and classification. Useful
technologies exist to leverage deep learning methods quickly.
There are robust frameworks for performing deep learning
like Pytorch [2] and Tensorflow [3]. Pre-trained models can
also be used for transfer learning or fine-tuning a well-
trained general model to accomplish a specific task. These
technologies allow for the accelerated development of deep
learning solutions.

This project aims to create a deep learning pipeline for
detecting and classifying traffic signs from dashcam images
in collaboration with Blyncsy, Inc. In this work, we trained
a model using a training dataset of dashcam images of
Tennessee roads and applied it to detect signs in dashcam
images of Utah roads. Due to insufficient examples for
image classification, we created synthetic data to supplement
actual sign data. We used a two-stage architecture where
we trained one model for sign detection using real-world
image data, and we trained another model separately for sign
classification using a combination of synthetic and real-world
sign images. This approach achieved promising results with
a relatively low development effort.

II. PREVIOUS WORK

Recently, a real-world European dataset for traffic sign
classification was introduced with 80,000 images containing
164 classes from six European countries [4]. This dataset
is focused on the classification of traffic signs and cannot
be used to evaluate detection models. Other previous works
almost unanimously used a publicly available traffic sign



dataset named German Traffic Sign Recognition Benchmark
(GTSRB), with 43 classes developed for detection and clas-
sification [5]. There are numerous approaches developed for
increased accuracy and speed [6]–[11].

Our study aimed to detect and classify traffic signs com-
monly used in the United States as defined by FHWA.
These traffic signs include three main categories, regulatory,
warning, and guide, with over 600 classes. This task presents
some unique challenges, such as many classes compared to
the existing benchmark datasets and the amount of variation
in sign shape and color. Our solution to these challenges was
to employ deep learning models to learn the detection and
classification tasks.

Deep learning model development requires a large number
of images per class for the training data. However, there
is not a publicly available dataset for all traffic signs used
on US roadways. As a result, we synthesized a traffic sign
dataset using the existing design-level templates to prepare a
set of annotated data. This approach differs from the previous
attempts to produce realistic synthesized training pictures
using actual traffic sign images. Dewi et al. [12], [13] applied
generative adversarial networks (GANs) such as DCGAN,
LSGAN, and WGAN to actual traffic sign pictures to create
synthetic images of those traffic signs, focusing on no entry,
no stopping, no parking, and speed limit signs (all a circle
shape). The most similar works to ours are those efforts made
to apply a series of transformations to the pictograms of the
traffic signs [14]–[20]. This research generally focuses on a
small set of traffic sign classes, such as rare classes [21],
so they do not prove their effectiveness on FHWA-defined
traffic signs with more than 600 different classes.

III. MATERIALS & METHODS

A. Datasets and resources

The training dataset for sign detection consisted of manu-
ally labeled dashcam footage from cars obtained from the
Tennessee Department of Transportation (TDOT). Images
were provided by Blyncsy, Inc. and manually annotated with
bounding boxes and classification labels according to the
MUTCD [1] for warning, regulatory, and guide signs. The
manually labeled dataset consisted of 620 labeled dashcam
images with 1578 labeled signs from 98 different classes. Of
the 98 classes represented in the labeled data, the median
number of signs in a class was 4. In the MUTCD pdfs,
there are over 600 categories of signs. Since our labeled
data contained few examples of only 98 types of signs,
we supplemented the real-world data with synthetic data to
perform the classification task.

B. Synthetic sign data created to supplement sign classifica-
tion task

Synthetic data were created using images from the
MUTCD pdfs. First, example images of each class were
prepared from the pdf by deleting the annotations, masking
the sign, and cropping the image. These example images
were saved in the PNG format to preserve the mask in-
formation in the alpha channel. These images were then

processed into synthetic data following two approaches.
The simpler approach included placing the image on a
randomly chosen background of black, white, or noise,
adding randomly weighted noise and Gaussian blur to the
image, and then randomly resizing the image. The more
involved approach included randomly skewing the image,
and its mask, randomly adding noise and Gaussian blur to
the image, randomly resizing the image, randomly placing
the image on a dashcam image that did not contain any signs,
and allowing a random amount of the background to show
through the sign to add texture. We generated approximately
385,000 synthetic images for training using the two methods
described. Before classification, all images were resized to
64×64 to enable easy image batching.

C. Sign detection using transfer learning with a Faster R-
CNN model

Traffic signs were detected in dashcam images using
transfer learning. The models used for this task were all
pre-trained on COCO [22] and accessed through Pytorch’s
torchvision package [2]. These models were adjusted to only
have two classes, background and sign, and trained using the
composite loss function in pycocotools [23]. Three Faster
R-CNN network backbones were selected to test, ResNet-
50-FPN, MobileNetV3-Large FPN, and MobileNetV3-Large
FPN for mobile platforms. These models were trained and
validated using the TDOT dashcam image dataset. Each
model was trained for five epochs with the optimizer
Adam [24] using a learning rate of 0.0001 and a batch size
of 4. After five epochs, all models’ validation performance
was compared to select an appropriate model for detection.
Once the different architectures had been compared and the
hyperparameters had been tuned, the final model selected
for sign detection was the Faster R-CNN model with the
ResNet-50-FPN backbone. This model was trained for 30
epochs using Adam [24] as the optimizer, a learning rate
of 0.0001, and a batch size of 4. The model weights were
stored at each epoch where there was an improvement in the
validation loss. These weights were then loaded into the final
model for prediction.

D. Sign classification using transfer learning

Traffic signs were classified into their MUTCD categories
using transfer learning. The models used for this task were all
pre-trained on ImageNet [25] and accessed through Pytorch’s
torchvision package [2]. When fine-tuning these models, the
final layer in the model architecture was adjusted from 1000
classes to 608 classes to reflect the number of classes in our
MUTCD signs dataset. All models were trained using cross-
entropy as the loss function because the task was a multi-
class classification. The models were trained using primarily
synthetic data, with some real examples included where pos-
sible. The performance of six different model architectures
was tested to determine an appropriate model architecture for
the sign classification task. The model architectures included
SqueezeNet, MobileNet, EfficientNet, ResNet, ResNext, and
Wide-ResNet [26]–[31]. The validation accuracy of these



models was recorded after allowing them to train for five
epochs to assist in model selection. The model was selected
based on its ability to achieve high validation accuracy with
fewer parameters to mitigate overfitting. After testing the
different architectures and tuning hyperparameters, the final
model used was an EfficientNet [28] with Adam as the
optimizer [24] a learning rate of 0.001 trained over ten
epochs with a batch size of 256. During training, the weights
were stored at each epoch when there was an improvement
in validation loss.

IV. RESULTS

A. Sign detection has success with a small training dataset

The model selected for sign detection was the Faster
R-CNN model with the ResNet-50-FPN backbone. The
ResNet-50-FPN backbone outperformed the MobileNet
backbones on validation accuracy for each bounding box
size. This performance is expected because the ResNet-50-
FPN backbone has the most trainable parameters of the
backbones tested. Despite the relatively small amount of
training data, the network trained for sign detection had
high accuracies. We observed that small signs are not well
detected, with only a peak accuracy of about 25%. As
bounding box size increases to medium and large, accuracy
increases. Intuitively, this trend makes sense because as the
bounding box size increases, more image information of
the sign is available for the network to use to classify.
Medium size bounding boxes had an accuracy of about 58%,
and large bounding boxes had an accuracy of about 75%
on the validation dataset. The F0.5 scores of the network
during these bouts of training were very similar (Fig. 1).
These scores are slightly higher than the training accuracies,
indicating that the network does not sacrifice accuracy for
recall.

B. Sign classification has success using synthetic data

The model selected for the classification task was Ef-
ficientNet B0 [28]. This network was chosen because it
achieved high validation accuracy with fewer trainable pa-
rameters than the other tested models. The EfficientNet B0
architecture balanced high validation accuracy with a few
parameters. Training the EffiencentNet architecture for ten
epochs resulted in high validation accuracy. Three instances
of the EfficeintNet network were trained for ten epochs
to analyze performance better. The model with the highest
validation accuracy reached an accuracy of 0.994. This
network was selected for use in the final product. The
model’s accuracy on the UDOT test dataset was lower than
the accuracy on the validation set, with a test accuracy of
0.470. To further characterize the model’s performance on
the test set, we implemented a top k prediction accuracy.
This approach shows if the correct label is found in the top
k predictions (Fig. 2). This analysis showed that the model
accuracy improved quickly with the top k predictions. When
k=10, the model achieved an accuracy of 0.73.

Fig. 1. Comparison of detection accuracies of the TDOT validation dataset
and UDOT test dataset. TDOT validation performed on the highest-accuracy
epoch is shown in dark blue. After training, the network was applied to the
UDOT dashcam dataset, shown in light blue. While overall sign detection
accuracy is lower than the training accuracy, the network generalizes to
images from another state quite well, as shown in the medium and large
size sign accuracy. The network even performs more accurately on large
signs from the UDOT testing dataset.

C. Final product detects and classifies MUTCD signs

The final product combines the Faster R-CNN detection
network and EfficentNet classification network to detect
and classify MUTCD signs. We set thresholds for both the
detection and classification networks to avoid false positives.
The thresholds for detection included a minimum score of
0.7, a minimum bounding box side of 15 pixels, and a
minimum aspect ratio of 0.1. For classification, a minimum
score threshold of 0.45 was set. An example of the final
model’s performance can be seen in Fig. 3.

V. DISCUSSION

The Faster R-CNN network architecture with the ResNet-
50-FPN backbone achieved good detection results with lim-
ited training data [32]. The success of this model stems from
the pre-trained weights used as a starting point for training.
These initial weights are already well situated for general
object detection tasks. By fine-tuning this model with the
small set of traffic sign training data, the model successfully
learned to detect signs in dashcam images. Another factor
that could contribute to this model’s success is that the signs
generally contrasted well with their surroundings. During
qualitative observations of the model’s performance, we saw
that the model generally excluded objects that could be mis-
taken as signs like billboards or the sides of trucks. However,
there were instances where the model would misclassify
objects as a sign, such as traffic lights. These mistakes are
likely due to sparse examples of intersections with traffic
lights in our training data. With additional training data, this
model would likely successfully learn to exclude objects that
are not signs.



Fig. 2. Classification accuracy on the UDOT test dataset for the top k
predictions. For example, at k=5 the accuracy 0.65 reflects the true label
being in the top 5 predictions. The accuracy of a single prediction is lower
(0.47), but the accuracy quickly increases with k.

The EfficientNet achieved good classification results using
the synthetic data. The EfficientNet model showed promise
of performing the classification task well by quickly achiev-
ing high validation accuracy during training. However, when
we applied the trained model to the hold-out test data, we
observed much lower accuracy than what was observed on
the validation data. This reduced performance on the test
dataset is likely due to the model overfitting on the training
data. Since most training data was synthetic, most of the
training images were very similar to one another. These
similarities likely allowed the model to memorize aspects of
the training data instead of learning more meaningful rep-
resentations of the classes. Overfitting was not immediately
detected during training because the model achieved high
validation accuracy. This high validation accuracy was likely
a result of data leakage, or information being shared between
training and validation data. Because most of the training
and validation datasets consisted of synthetic images, the
images in both datasets were very similar. In future work, the
input data should be supplemented with as much real-world
input data as possible, and the synthesis of synthetic data
should mimic real-world images more than current methods.
Despite the model overfitting to the synthetic data, the model
still provides valuable classifications of real-world data. The
accuracy of the model on the test data was 0.47, which is
somewhat low; still, if we look for the correct class being
in the top ten predictions, then the accuracy rises to 0.73
(Fig. 2), which is very respectable considering the sizable
number of potential classes in this task. While looking at the
top ten predictions would not work for the final application of
automatic sign classification, these predictions could be used
to assist in labeling real-world data to improve the model’s
performance.

The use of synthetic data allowed us to build a functioning
classification network with minimal data labeling. After

labeling the data, many unrepresented classes of signs and
few examples in the represented classes made deep learning
impossible. We mitigated this challenge using synthetic data
to balance the classes and increase the number of examples
in each class. These synthetically generated sign images
allowed us to train a classification model; however, there
were limitations in training on the synthetic data. One of
these limitations is that the synthetic signs all contained the
same text information. For example, all synthetic speed limit
signs showed a limit of 50 MPH, all interstate route signs
showed interstate 20, and all hill warning signs warned of
an 8% grade. We expect that the example signs containing
the same text data hindered how well the model generalizes
to real-world examples; however, we observed instances of
correct sign classifications that had different text than the
template examples. Another limitation of the synthetic data
is that the synthetic images look a bit unnatural. One of the
main contributing factors to this abnormal appearance was
our inability to apply the natural lighting conditions in real
images. We tried to overcome this issue by applying a gamma
correction on the images and allowing some background to
show through the signs. However, the synthetic data still had
a distinct appearance compared to actual images of signs.
This challenge could be overcome with more resources using
a generative adversarial network. Despite these limitations,
the classification network could still achieve good classifica-
tion results on real-world images.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, using a small amount of labeled data
supplemented with synthetic data, we created a two-stage
network that performs well at both sign detection and
classification for many prominent sign classes. While the
performance of this network is modest, it could be used to
assist in labeling data to train a more robust model in the
future. This work highlights the strength of transfer learning
to create valuable models with relatively low development
time.

In future work, we intend to work to increase the per-
formance of the system developed here. As part of that,
single-unit ablation studies can be performed to determine
the impact on the variety of sign classes. There is some
evidence [33] that ablation of specific units may increase
the classification performance for some of the sign classes.
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