Monocular Road Damage Size Estimation using Publicly Available
Datasets and Dashcam Imagery

Adithya Badidey', Ryan Dalby', Zhongyi Jiang!, David Sacharny? and Thomas C. Henderson'

Abstract— Among the challenges of maintaining a safe and
efficient transportation system, Departments of Transportation
(DOT) must assess the quality of hundreds-of-thousands of
miles of roadway every year and prioritize limited resources
to address issues that affect safety and reliability. In particular,
road damage in the form of 3D analysis of cracks and potholes
is difficult to catalog and require significant human resources
to survey. However, a new and growing remote-sensing net-
work comprised of low-cost consumer dashcams presents an
opportunity to dramatically lower the cost and effort required
to perform road damage assessments. This paper provides
methods to approach this problem and details a number of
public datasets and models that can be used to tackle it. The
central contribution here is a set of several practical software
pipelines designed to accomplish this task in an automated
fashion. An emphasis on deep learning methods is presented
that enables organizations to improve or tailor the results
according to their specific requirements and the availability
of labeled data. Suggestions for possible directions for future
work and improvements at each stage of the pipeline are also
presented.

I. INTRODUCTION

Road damage in the form of visible cracking and potholes
can pose safety risks for motorists, cyclists, and pedestrians,
as well as indicate important information about the state
and quality of the road network. Informing transportation
departments about where these cracks have formed can
enable maintenance crews to effectively prioritize activities
and address them before they become a major concern. Cur-
rently, transportation departments use a mixture of human-led
inspection activities (i.e., driving all the roads) that may or
may not include high-resolution data-collection using LIDAR
systems. These manual survey activities typically occur on
an annual basis, or longer due to the excessive cost and
time requirements. Alternatively, a sensing system that is
comprised of millions of motorists that are already driving
the roads and passively collecting street-level imagery daily
could dramatically reduce the cost of maintaining the road
network. This new and growing data source, coupled with au-
tomated methods presented here represent how transportation
authorities can monitor road conditions and prioritize public
funds for maintenance. A review of the state-of-the art of
automated road damage classification and segmentation, as
well as publicly available datasets and neural net models is
given here, and we highlight the challenges to the industrial
application of automated road damage assessment using
consumer dashcams.

1University of Utah, Salt Lake City, UT tch@cs.utah.edu
2Chief Technology Officer, Blyncsy, Inc., 175 W 200 S STE 1000, Salt
Lake City, UT david.sacharny@blyncsy.com

Several problems underlie the application of automated
road damage assessment using consumer dashcam imagery,
and in particular, the detection of road damage, location es-
timation, and dimension estimation. Hundreds-of-thousands
of vehicles driving the roads in the United States include
dash cameras (dashcams) that have the ability to store sample
imagery offsite and in datacenters, enabling further post
processing of the imagery. The imagery includes different
times of day, different intrinsic camera parameters, and
usually only a subset of extrinsic parameters (with unknown
error), such as GPS location and heading. The challenge is to
first detect road damage in the image, to classify it, then to
localize it in world coordinates and estimate its size. All steps
should be accomplished with minimal human interaction, for
example for tuning parameters. A detailed method to ap-
proach this problem is presented here, including the datasets,
models, and deep learning tasks involved. A description is
given of software pipelines for detecting multiple cracks
and estimating their size, with experiments that include an
implementation. Possible future directions for research are
also presented and possible improvements are suggested for
each stage of the pipeline.

For a recent review of image-based crack detection meth-
ods, see [1]. A broad set of applications and respective
methods is presented. However, it must be noted that all
of this previous work has as its goal the detection of cracks
in images, and not the 3D assessment of those cracks. For
example, [2] aims to determine if a pixel is in a crack region
in the image; this task is performed quite well on cell phone
camera images. [3] attempts to ascertain the presence of a
crack in an image; however, there is no ground truth for their
dataset except for a small set of manually labeled images. An
attempt to overcome noise is given by [4] where a pyramid
technique is used for this purpose. [5] provides a method for
autonomous vehicles to assess the severity of damage for
safety purposes. A semi-supervised learning method is used
which combines a class-conditional Variational Autoencoder
and a Wasserstein Generative Adversarial Network. Finally,
[6] describe a two-camera system mounted in the car which
uses a Kalman filter to track cracks in front of the vehicle.
As stated previously, our goal is to obtain 3D crack mea-
surements from a 2D image.

II. DATA EXPLORATION

Data for experimentation was provided by a local company
(Blyncsy, Inc.) that develops software for transportation
authorities. These images vary greatly in terms of camera
parameters and camera pose. Some examples of these images



can be seen in Figure 1. Ground truth is generally not
available for road damage, and this represents a major hurdle
for developing automated crack size estimation. For this
reason, publicly available datasets are explored to see if
they can be used to train a model that could generalize to a
specific dataset.

Figure 2 contains examples of the field-of-view of the
different datasets we investigated. Each contains street-level
imagery, and they vary greatly in terms of camera per-
spective. This lack of standard camera parameters further
complicates the task since generalizable methods mapping to
the target dataset is a difficult, if not ill-posed, task without
ground truth.

EaEdpd - -

Fig. 1.

Examples of Blyncsy dashcam imagery.

Mandli Dataset

RDD Dataset
Czech subset

RDD Dataset
Japan subset

Kitti Dataset

Fig. 2.

Comparison of camera FOV of different datasets.

A. RDD2020 Data

The RDD2020 dataset [7] is publicly available and was
released as part of the Global Road Damage Detection
Challenge 2020, which was a part of the IEEE BigData Cup
2020. The images were collected from Japan, India, and the
Czech Republic. The training dataset includes 21041 labeled
images, and each image may contain one or more annotations
in the form of bounding boxes. Each bounding box represents
an instance of road damage and is labeled with one of the
following four classes (additional classes in the dataset were
deemed irrelevant and discarded).

1) DO0O0: Longitudinal crack

2) D10: Lateral linear crack

3) D20: Alligator crack

4) D40: Potholes

Some training images did not contain any road damage
class (no road damage). Some examples from RDD2020
dataset can be seen in Figure 3.

Fig. 3.

RDD2020 dataset: Some annotated examples

B. Mandli Data

Mandli UDOT (Utah Department of Transportation) road
data consists of monocular road view images of Utah state
roads of constant camera parameters and pose along with
associated road distress and LIDAR data. This data is col-
lected by Mandli, a private company specializing in mapping
road surfaces. UDOT has each state road mapped at least
once every year in a single direction, and every few years
in both directions in a costly and time consuming process.
The mapping occurs using a specialized vehicle that is
driven along the roads with a LIDAR camera and a special
laser crack measurement system [8]. This data provides a
monocular road view imagery but it is important to note
the large perspective difference when compared to the input
Blyncsy dashcam data as seen in Figure 2.

This data appears very useful as a potential source of
ground truth, but there were issues in terms of being able to
programmatically access the data outside of the web interface
[9]. To overcome this, a Mandli data visualization program
was created to directly visualize the data for labeling. Figure
4 shows a custom Mandli data visualization tool developed
to explore this data. This program joins the “LCMS” XML
file with the associated monocular image and gives visual
cues that help in labeling the data. Unfortunately, this data
was not explored more because the lack of an easy way to
get a large amount of the raw folder data other than a few
example folders which were used to create the tool. As a
result, no data was manually labeled, although this would
be a logical next step if the underlying data were readily
accessible. Utilizing this or similar data would be very useful
to evaluate the crack size estimation because the LCMS
data contains the needed crack size ground truth. This data
could also enable segmentation rather than instance detection
through manual labeling, which may help in estimating the
dimensions of each crack.



Fig. 4. Mandli visualization tool with two sequential images to illustrate
how the monocular image corresponds to LCMS data. Note the manhole
cover for reference.

C. Brazilian NDTI Dataset

This dataset was created using data from the Brazilian Na-
tional Department of Transport Infrastructure (NDTI) [10].
These images were captured using a Highway Diagnostic
Vehicle with a fixed front facing SMP camera. The camera
is installed on the highest part of the vehicle, facing the front
and with an inclination closer to orthogonality. The visibility
of the pavement is 15 meters. The data was developed using
these images after filtering out images which present a clear
view of the pavement and have some crack(s) or pothole(s).
Each image in the dataset comes with 3 masks for each type
of annotation: road, crack and pothole (as seen in Figure 5).

This dataset provides a template for a good data collection
method for use by deep learning methods. Since the camera
is fixed, it enables easier extraction of meaningful informa-
tion. This dataset was used to perform semantic segmentation
using FCN (in subsection III-C) and produced great results.

D. KITTI Dataset

Beyond crack data it was necessary to look at datasets
which contain depth information; one of the most commonly
used street level depth datasets is the KITTI dataset [11]. The
KITTI dataset contains raw sparse LIDAR data, GPS/IMU
data, and the associated color and gray-scale stereo image
pairs. This dataset can be used for a range of tasks such
as depth estimation, depth completion, odometry estimation,

(c) (d)

Fig. 5. (a) Example of the original image; (b) the masks corresponding to
the road region; (c) pothole; (d) and crack.

optical flow estimation, object detection and more. In relation
to this project this dataset was leveraged for monocular depth
estimation.

III. METHODS EXPLORATION

To determine the 3D crack measurements, various deep
learning and computer vision techniques were explored. The
lack of ground truth meant we had to look at individual tasks
separately (each of them with their individual training data)
and then join them to create a pipeline which could solve the
complete task. This decision also allowed us to interpret and
evaluate the results of each task separately. First we looked at
methods to find cracks within images: instance segmentation
and semantic segmentation. Instance segmentation identifies
each instance of a class within an image and outputs their
predicted bounding box and label. Semantic segmentation
tries to identify the label of each pixel in an image. Then, we
estimate the size of detected cracks using various techniques
such as inverse perspective transformation, monocular depth
estimation, lane detection, and depth completion.

A. Instance Detection: FasterRCNN

FasterRCNN is an object detection model proposed by
[12]. FasterRCNN comes from a family of machine learning
models which began with RCNN. These models work in
two stages (i) region proposal; and (ii) region classifier. The
first of the family, RCNN used selective search to generate
region proposals and several SVM classifiers to classify each
proposal. The second, Fast RCNN also uses selective search
to generate region proposals with CNNs and a method called
Region-Of-Interest Pooling (ROIPooling) to extract features
for each region proposal for classification. This results in a
huge speedup, but the selective search algorithm was still a
bottleneck.

FasterRCNN solves bottleneck of region proposal using
an algorithm called Region Proposal Network (FasterRCNN
has a 10x speedup over FastRCNN). Firstly, FasterRCNN
uses a pre-trained CNN backbone as its first step. In case of



PyTorch, the FasterRCNN comes pre-trained with ResNet-50
and ResNet-101 backbones. The Region Proposal Network
(RPN) takes the output of the backbone as input and uses a
convolution to generate region proposals. These proposals
are pruned using non-maxima suppression and passed on
to the ROIPooling network which functions as it did in
FastRCNN. There are two levels of training involved here:
training the RPN to propose regions covering objects rather
than ground, and training the ROIPooling to recognize the
objects properly. Implementation details are given below.

B. Instance Detection: YOLOvS

YOLO is a family of object detection algorithms that work
by dividing images into a grid system. YOLO stands for
”You Only Look Once,” denoting that it’s a single stage
detection system (unlike FasterRCNN which is a two stage
system). Currently, YOLO has five generations. The latest
one is YOLOVS, which is the version we used. YOLOvV5S
has five different variants: YOLOv5n YOLOvVSs, YOLOvVS5m,
YOLOVS5], and YOLOv5x. The only difference is the number
of parameters and the complexity of the model. YOLOv5n
is the smallest network in the YOLOVS family. There exists
a trade-off here. If the network is smaller, training and
inference time will be faster. The network can handle a
higher frame rate input in real-time object detection and
segmentation tasks. However, its accuracy will be lower.
YOLOvVS5x is the largest network in the YOLOVS family,
and it is also the network we used in our project. Since, in
this project, our target data is static images, we could use
the relatively large model to pursue higher accuracy.

To train the YOLOvVS network, we must define a “YML”
file, including all the class names. In our training dataset,
each image links to another label file, which provides for
all the detection objects (the four corners of the bounding
box and its class). Each label file may contain multiple
rows; each row has class name and four 2D points of the
bounding boxes. YOLOvV5x is the basic model and Adam
is the optimizer. A YOLOv5x model was trained for 300
epochs, and the model began over-fitting after 100 epochs.
It could reach the highest Precision of 0.5768 (0.5-1 score).
The corresponding F1 score was 0.63. In our pipeline, we
passed road images into the pre-trained YOLOVS network.
The network gives a few bounding boxes which are used for
3D projection.

Fig. 6. Detection using YOLOVS5 on one example in the test dataset.

C. Semantic Segmentation: Fully Convolutional Networks

Fully Convolutional Networks (FCN) were first proposed
for use for semantic segmentation by [13]. FCNs solve the
problem of semantic segmentation by having the model first
down-sample the image and then up-sample it to get an
accurate semantic segmentation. First the image of resolution
H x W is convolved to % X % and then to % X %. Then the
reverse operation is done using deconvolution and adding
skip-connections. Skip connections are made to allow for
up-sampling to use a combination of coarse, high layer
information and fine, low layer information. The architecture
utilized is available from PyTorch called fcn_resnet50
that utilizes a resnet 50 backbone.

On the Brazilian NDTI Dataset, we were able to train
this model to label lane, pothole and crack segments in
images with a f1 score of 0.60. An SGD optimizer with
a OneCycleLR Learning rate scheduler was used. However,
this model did not generalize to the target Blyncsy dashcam
imagery - the results were poor when the model was used
on target images.

D. Depth Estimation: AdaBins

A key issue is to estimate depth given a singular monocular
image to help inform the road damage size estimation. This is
a difficult task given a single view image as depth must solely
be inferred by image context. Traditional computer vision
methods use geometry of multiple images or views of the
scene using structure from motion and stereo vision matching
as indicated by [14], however these methods are not effective
with a single monocular image. Moving to deep learning
methods this problem becomes approachable by leveraging
LIDAR and RGB-D data from datasets such as KITTI [11],
NYU Depth [15], etc.

Supervised methods directly learn how to map from im-
ages to a depth map using a loss function that involves the
LIDAR or RGB-D data, the architectures used follow many
state-of-the-art CNN networks such as encoder-decoder and
ResNet backbones. There is also interest in unsupervised
and semi-supervised methods but these methods often re-
quire multiple sequences of images to enforce geometric
constraints and learn the data distribution and suffer from
scale-ambiguity as mentioned by [14].

Currently, one of the state-of-the-art supervised monocular
depth estimation networks is AdaBins. AdaBins as proposed
by [16] is a standard CNN encoder-decoder backbone net-
work with an added “AdaBins Module” for the head of
the network that aims to globally bin depths using adaptive
bin sizes. This module utilizes a transformer to perform
non-local processing of the high-level features output by
the encoder-decoder, aiming to look at things in a more
global way. Pre-trained AdaBins models that were trained on
the KITTI dataset and the NYU Depth dataset are publicly
available.

The primary question was how accurate are relative dis-
tances predicted by the model, as absolute distances were ex-
pected to be inaccurate. Multiple dashcam images were taken
of a scene with a known size object and then correspondences



whose difference in depth value were known were marked.
It is important to note that it was assumed, as for many
parts of this project, that the depth values are relative to the
camera plane, not relative to the camera location (this may be
an issue for depth values in the corner of the image), often
in the literature it seems that this distinction is not made
clear, although it can be assumed for supervised methods
with a LIDAR data that the depth values are relative to the
LIDAR location. Much of the depth estimation literature does
not concern itself with the physical setup of the collected
data, but this can be important when it comes to practically
applying one of these models and shows the necessity of
things like transfer learning to bridge the difference in data.

The experimental dashcam images were run through the
pre-trained AdaBins models, bilinearly scaled to match the
input KITTT and NYU Depth dimensions, and then once
again bilinearly scaled to match the original size. It was
found that AdaBins could get somewhat close to the actual
object size values but inconsistently at best. It was also found
that the AdaBins model pre-trained on the KITTI dataset
gave more realistic results than the NYU Depth dataset, this
is due to the KITTTI dataset being road images while the NYU
Depth dataset being primarily indoor scenes. The results
can be seen in Figure 7, showing that differences between
the estimated and ground-truth depth differentials could be
anywhere from around 0.1 meters to 10 meters or more if
the chosen point was incorrectly identified as the same depth
as the background. This indicates the need to overcome the
scale-ambiguity and use depth data that is directly associated
with the Blyncsy input images.

AdaBins Predicted DepthMap (in meters), (1241, 376) resize before inference

v

)
"~ B Predicted distances pred dist = 10.771913528442383m, GT = 1.9m, diff=8 §71913528442382m
Predicted distances pred dist = 2.059011459350586m, GT = 1.9m, diff=0.15901145935058603m

50

Fig. 7. AdaBins physical evaluation results

E. Lane Detection: PINet

Lane detection using deep learning was another task that
was investigated. Lacking ground truth crack information
and having a scale-ambiguous problem meant that using a
known size object, such as lane width would be a way to
describe the width of a crack. A near state-of-the-art network
called PINet developed by [17] was used because of its
codebase being stable and developed using PyTorch with
only Python packages. This network had multiple pre-trained
models available that were trained on different datasets; the
one utilized for this project was trained on the TuSimple
Lane dataset [18]. This network outputs estimated lane points

which are classified into being part of a specific lane. It was
later found that for fitting a line to these points usage of the
Hough transform worked best, and this is discussed in the
pipeline section.

IV. PIPELINES

Three potential pipelines were exploited to solve this
problem.

1) Instance Detection model (FasterRCNN/YOLO) —
AdaBins — 3D size estimation (Reprojection/Using
lane width).

2) Segmentation — Clustering — 3D size estimation
using lane width.

3) Segmentation — Clustering — AdaBins — 3D size
estimation using reprojection.

After exploring the required methods in all three pipelines,
it was determined that segmentation using FCN did not
generalize well to the target dataset and that a better
dataset/model was needed. Therefore, we chose to build the
pipeline 1 with lane width estimation from pipeline 3 for our
proof-of-concept implementation.

Pipeline 1

Instance

Detection
_ (using FasterRCNN/YOLO) .
Semantic
Segmentation Clustering

(using FCN-Resnet)

Inverse
Perspective
Transform

Pipeline 2
Lane Width Estimating Pipeline 3
Detection crack sizes

Fig. 8. Pipeline architectures.

V. IMPLEMENTED PIPELINE

A proof-of-concept pipeline was implemented that predicts
the bird’s-eye view height and width of a crack from Blyncsy
dashcam images. The pipeline utilizes crack instance de-
tection through FasterRCNN (YOLOvS could have also
be substituted for it), depth estimation using AdaBins for
both crack height estimation and width estimation using the
perspective transform, and lane detection using PINet as
another estimator of crack width. This pipeline assumes that
the bounding boxes tightly encapsulate the crack, and that
the crack is parallel to one pair of bounding box edges. If
the crack does not meet these assumptions then this method
may not be accurate (e.g., a crack that goes diagonally from
top right of a bounding box to the bottom left, it would
be possible to recover either width or height of the crack
from the bounding box dimensions but not both). This also
indicates some of the drawbacks of using bounding boxes as
opposed to segmentation and also the uncertainty of what
crack dimensions really mean (where a crack starts and
ends may be subjective). Thus, the goal of the pipeline was
formulated as “predicting the physical dimensions of the
crack bounding box in world space” (rather than the physical
dimension of the crack). A GeoJSON “product” is produced



as the output of this pipeline, and an example output appears
in Figure 9.

Predicled Heigh

" mmm Predicled Width = 2.70

Fig. 9. Pipeline “product” predictions.

A. Crack Detection

To extract the crack’s bounding boxes, we trained a
FasterRCNN model using a subset of the RDD2000 Dataset
(using only the Japan and Czech images). We elected to
discard the India images because the road condition were
very different from local Utah conditions and image quality
was also subpar.

We started with the fasterrcnn_resnet50_fpn im-
plementation from PyTorch, which is pre-trained on the Coco
dataset. We trained this on our dataset for 5 epochs using
a batch size of 32. AdamW was used as the optimizer
and OneCycleLR as LRScheduler (with max learning rate
of 0.0003). Additionally we added some random cropping,
horizontal flip and color jitter to the training images to
make the model generalize better. To evaluate the model,
for each of the predicted bounding boxes, we checked if it’s
a true positive or not. Using that we calculated precision and
recall for each of the classes and fl-score. The best f1 score
obtained was 0.43.

B. Crack Height Estimation Using Depth

To estimate crack height it was assumed that the depth map
values were relative to a plane going through the camera.
This meant that the difference in depth values along the
detected bounding box provides the height of the crack. In
implementation, the predicted AdaBins depth was sampled
and averaged along the top and bottom edges of the bounding
box, giving an averaged top and bottom depth value. The
averaged top and bottom depth values were then subtracted
from each other to give a prediction of the crack height.
The error in this method could not effectively be evaluated
but from the physical evaluation of AdaBins this estimate is
likely not accurate and needs transfer learning to “scale” the
depth map values correctly for the underlying data.

C. Crack Width Estimation Using Inverse Perspective Trans-
form

The method to estimate crack width using the inverse
perspective transform assumed fixed camera parameters such

as focal length and camera pose. We approximated the “z”
homogeneous coordinate for inverse perspective transform
using the AdaBins depth map and then conducted the inverse
perspective transformation from image coordinates to world
coordinates. Thus the units of the AdaBins depth map
determined the approximated 3D world space coordinates.
This gave the world space coordinates of the bounding box
in the same physical units as the depth map. Then the width
could be estimated as the difference in the “x” coordinate
in 3D world space. In the future, we could use ground-
truth depth maps to calibrate the AdaBins model, use known
camera parameters specific to each input image, or train
a deep learning network to more generally calibrate this
transformation.

D. Crack Width Estimation Using Lane Width

The second method to estimate crack width was using
lane width. The idea of this method was that lane width
could be used as a sort of high level “ruler” in the scene,
similar to how humans use objects as visual cues to estimate
sizes. PINet was used to detect lanes, it output points
representing detected lanes which were clustered into classes
using a threshold. It was found that the classification used
in the published work often did not perform well enough at
correctly separating unique lane lines. Thus, clustering and
linear regression techniques were explored. These techniques
did not give better results and often had issues overcoming
outliers or the tight grouping of points near the horizon.

A more classical line fitting technique called the Hough
transform was leveraged which robustly identifies positions
of lines (and more generally shapes as described by [19]).
This method works by having edge points vote for lines
through them in an accumulator discretizing polar coordinate
parameter space, then using accumulator maxima to deter-
mine lines in the original space. This technique was able
to be tuned to robustly fit lane lines to lane points as is
illustrated in Figure 10. The Hough transform parameters
are sensitive but they were tuned to prevent too many non-
existent lines.

From here predicting crack width involves looking at the
average bounding box image height value and creating a
heuristic which finds the width of a lane in pixels at that
average height value. Then the ratio of bounding box width
in pixels to the lane width in pixels is multiplied by the lane
width’s known physical dimensions to give an estimate of the
crack width. In the future, transfer learning using Blyncsy
dashcam images with labeled lane lines will further improve
detection of lane lines. This lane detector could also find
many other applications outside of crack size estimation.

E. Discussion

Crack height estimation relies on the accuracy of the depth
estimation from AdaBins, which due to scale-ambiguity was
not able to be calibrated for the input images. The hope with
this approach is that this value can be improved with future
transfer learning when depth data for the dashcam images
becomes available.



& nexar

Fig. 10. Utilizing the Hough transform to fit lane lines to lane points.

For crack width estimation it was found that the per-
spective transformation was much more robust, due to not
failing when no lanes were found. Thus to give a single
width estimation, if both width estimations were found then
they were averaged, or else the perspective transformation
was taken. This weighting between these two estimation
methods could be tuned in the future when ground truth is
available and it is possible to determine which estimate is
more accurate. The height estimates were used directly.

Visualizing the results in Figure 11 we can see cases where
crack detection and crack size estimation appears to work
well in terms of width estimation. In other cases, especially
those of crack misdetections the pipeline does not convey
much useful information. This also shows how in a multi-
stage pipeline errors can compound down the pipeline and
why an end-to-end network would be the most flexible.

%.,fv\?d‘ . j‘: - ' :
ZEE N I

Fig. 11. Full pipeline visualization. From left to right, crack detections
with size estimates and lane lines used for size estimation, the predicted
depth map, and lane line point detections with Hough transform fit linear
lane lines.

A

FE. Pipeline Evaluation

Pipeline evaluation was not directly possible because we
had no crack size ground truth so only qualitative evaluation
could be conducted. The crack detection algorithm itself is
shown to produce good results on the target dataset.

From the results, it can be seen that the crack height
estimations are not very physically accurate, for example the
length of dashes in dashed lane lines is around 3 meters
in the United States [20]. There are many results shown
in Figure 11 that appear smaller in height next to dashed
lane lines yet are estimated to have heights over 3 meters.
Width estimations are much more believable because when
both the perspective estimate and lane width estimate are
available they are typically within a meter. This indicates
that the errors due to the assumed camera parameters of the
perspective transform are not too large, but this could not be
directly confirmed.

G. Future Work and Improvements

From what we have understood implementing this proof-
of-concept pipeline, we can make some suggestions as to
how this can be further improved and built into a robust
system. First, crack size and depth ground truth data need to
be gathered in order to truly understand how well the end-to-
end pipeline is performing on the target dataset. There was
some progress towards this during this project through using
the Mandli data, but issues with having full programmatic
access to the underlying data made this route difficult to
pursue. The best ground truth data would be associated with
images in similar form to the input dashcam images. This
data could be collected using a LIDAR scanner, a dashcam,
and a way to extract the ground truth from the LIDAR
data and annotate the dashcam images with the same. If
this ground truth cannot be collected like this, then getting
access to the underlying Mandli data or a similar dataset
and performing manual annotation would be another route
to pursue. Building a robust dataset like this would allow
for building and training a network which can do what the
pipeline is doing at a single shot.

Second, the current pipeline can be improved in a few
ways. For instance detection, continuing training of the
model with labeled crack images from the Blyncsy dashcam
data would likely result in even better model performance
than only using the RDD data. For depth detection, transfer
learning must be used to make AdaBins work well with the
input dashcam images. This involves collecting associated
depth data for the dashcam images. This is also crucial
for an accurate inverse perspective transform. To improve
the inverse perspective transform, having known camera
parameters for each dashcam image the inverse perspective
transform would give a better world coordinate estimate.
There seem to be some successful efforts at estimating
camera parameters directly from the image by [21]. Further
investigation in that direction might be fruitful. With enough
ground truth it might even be possible to use deep learning
to learn an inverse perspective transform that in principle
would internally estimate the camera parameters, making it
have less error than assuming a single camera model. Lane
detection could also be improved using dashcam images with
labeled lane lines but using currently available methods, this
seems to be less precise than the inverse perspective methods.

Third, the pipeline code needs to be “tensorized” to
become computationally scalable. Currently the pipeline will
work with a few thousand examples in reasonable amount of
time (under an hour) but this is not scalable. Turning most
operations of estimating width and height into batch tensor
operations would greatly speed up inference as currently
these operations a single image at a time. The notebook code
also needs to broken into modules and classes to simplify
future development.

Lastly, exploring different pipelines that use instance
segmentation (as opposed to object detection and semantic
segmentation) to identify cracks may be a better way to
identify the shape and size of cracks. This would require



development of a new dataset where each crack is seg-
mented individually. This would require implementation of
more accurate detection models like MaskRCNN [22] and
Detectron2 [23]. The inverse perspective transform too could
be leveraged on a per-detected pixel basis.

VI. CONCLUSION

We present a novel 3D crack size estimation pipeline
that uses deep learning to find crack instances and infer
depth information from a single dashcam image. Due to the
unavailability of ground truth, multiple publicly available
datasets and pre-trained models were studied. The UDOT
Mandli dataset is particularly promising but there are data
accessibility issues to making this a viable option.

Many tasks that would enable this pipeline were inves-
tigated including instance detection, semantic segmentation,
perspective transformation, depth detection, depth comple-
tion, and lane detection. Depth was used as an estimator of
crack height and also for crack width when combined with
perspective geometry. Crack width was also estimated using
detected lanes and known lane widths. This method was
not as robust as the inverse perspective transform but has
many potential applications outside of this project. Future
directions of collecting crack size data, depth data, and
segmentation information can improve this pipeline and
enable new ways of estimating depth.

VII. ACKNOWLEDGEMENTS

This project wouldn’t have been possible without
Blyncsy’s partnership and the Deep Learning program’s
computational and other resources provided by the State of
Utah for exploring these deep learning methods. We thank
Arad Mohammed, Cathy Liu and Nikola Markovic for their
inputs throughout the project. And finally, we would like
to thank Michael Butler with UDOT for assistance with the
UDOT Mandli data.

REFERENCES

[11 H. Munawar, A. Hammad, A. Haddad, C. Soares, and S. Waller,
“Image-based crack detection methods: A review,” Infrastructure,
vol. 6, no. 115, 2021.

[2] L. Zhang, F. Yang, Y. Zhng, and Y. Zhu, “Road crack detection using
deep convolution neural network,” in International Conference on
Image Processing. 1EEE, 2016, pp. 3708-3712.

[3] R. Fan, M. Bocus, Y. Zhu, J. Jiao, L. Wang, F. Ma, S. Cheng, and
M. Liu, “Road crack detection using deep convolution neural network
and adaptive thresholding,” in IEEE Intelligent Vehicle Symposium.
IEEE, 2019, pp. 474-479.

[4] M., H. Zhao, and J. Li, “Road crack detection network under noise
based on feature pyramid structure with feature enhancement,” IET
Image Processing, vol. 16, pp. 809-822, 2021.

[5] P. Fassmeyer, B. Funk, F. Kortmann, and P. Drews, “Towards a camera-
based road damage assessment and detection for autonomous vehicles:
Applying sacled-yolo and cvae-wgan,” in IEEE 94th Vehicular Tech-
nology Conference. 1EEE, 2021, pp. 1-7.

[6] Y.-C. Liu, W.-H. Chen, and C. Kuo, “Implementation of pavement de-
fect detection system on edge computing platform,” Applied Sciences,
vol. 11, no. 3725, 2021.

[7] D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, A. Mraz,
T. Kashiyama, and Y. Sekimoto, “Transfer learning-based road
damage detection for multiple countries,” 2020. [Online]. Available:
https://arxiv.org/abs/2008.13101

[8] “Laser crack measurement system (lcms).” [Online]. Available:
https://www.pavemetrics.com/applications/road-inspection/lcms2-en/

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]

[23]

“Roadview explorer 5: Mandli communications.” [Online]. Available:
https://roadview.udot.utah.gov/utah/index.php

B. T. Passos, M. Cassaniga, A. M. da Rocha Fernandes, K. B.
Medeiros, and E. Comunello, “Cracks and potholes in road images,”
2020.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances
in Neural Information Processing Systems, C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran
Associates, Inc., 2015.

E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 4, pp. 640-651, 2017.

C. Zhao, Q. Sun, C. Zhang, Y. Tang, and F. Qian,
“Monocular depth estimation based on deep learning: An
overview,” CoRR, vol. abs/2003.06620, 2020. [Online]. Available:
https://arxiv.org/abs/2003.06620

P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor seg-
mentation and support inference from rgbd images,” in ECCV, 2012.
S. F. Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth estimation
using adaptive bins,” CoRR, vol. abs/2011.14141, 2020. [Online].
Available: https://arxiv.org/abs/2011.14141

Y. Ko, J. Jun, D. Ko, and M. Jeon, “Key points
estimation and point instance segmentation approach for lane
detection,” CoRR, vol. abs/2002.06604, 2020. [Online]. Available:
https://arxiv.org/abs/2002.06604

TuSimple, “Tusimple/tusimple-benchmark: Download datasets
and ground truths: Https://github.com/tusimple/tusimple-
benchmark/issues/3.” [Online]. Available:

https://github.com/TuSimple/tusimple-benchmark

D. H. Ballard, “Generalizing the hough transform to detect arbitrary
shapes,” Pattern recognition, vol. 13, no. 2, pp. 111-122, 1981.
“Mutcd - 2003 edition revision 1 chapter 3a.” [Online]. Available:
https://mutcd.fhwa.dot.gov/htm/2003r1/part3/part3a.htm

T. H. Butt and M. Taj, “Camera calibration through camera projection
loss,” 2021. [Online]. Available: https://arxiv.org/abs/2110.03479

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” 2017.
[Online]. Available: https://arxiv.org/abs/1703.06870

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.



