
Some Explorations in SAT

Thomas C. Henderson, Amar Mitiche, Xiuyi Fan, and

David Sacharny

University of Utah

UUCS-21-016

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

14 July 2021

Abstract

We look at the SAT problem geometrically: for an n-variable problem, each corner of the hypercube

is a possible SAT solution, and the interior points are possible Probabilistic SAT solutions. Given

a Conjunctive Normal Form (CNF) sentence, S = C1 ∧ C2 ∧ . . . ∧ Cm, over a set of Boolean

variables A = {a1, a2, ..., an}, each conjunct, Ci, has at least one truth assignment that makes it

false. If there are k literals in the conjunct, then there are 2n−k truth assignments that make it

false. A hyperplane can then be found for each conjunct which separates the solutions from the

non-solutions. The intersection of the solution side of the hyperplane with the hypercube (the initial

feasible region) produces a convex feasible region. Continuing this process for each conjunct, the

result is a convex feasible region which may or may not contain a corner. Linear programming using

the interior point method can be applied along each dimension to find the solutions with minimum

and maximum values in that dimension. If neither of these has value 0 or 1, then there is no SAT

solution. Moreover, our conjecture is that the interior point method can be made to find a corner

solution if it exists. This is called the Chop SAT method. We also consider two other approaches

which may prove useful in analyzing SAT: (1) count the number of solutions ruled out by each

conjunct (this entails determining the number of new solutions eliminated by each conjunct), and

(2) perform the interior point search in a non-Euclidean geometry (e.g., hyperbolic space). Current

results are given for each approach.

1



1 Introduction

Suppose A = {a1, a2, ..., an} is a set of Boolean variables, and the set of A-formulas is the induc-

tive set of propositional well-formed formulas over A. A Conjunctive Normal Form (CNF) sentence

over A is defined as a conjunction of a set of disjunctions of literals.

S = C1 ∧ C2 ∧ . . . ∧ Cm

Ci = Di1 ∨Di2 ∨ . . . ∨Diki

Dij = aijorDij = ¬aij

The Satisfiability Problem is defined as[1]:

Find an efficient algorithm for testing an A-formula in CNF to determine whether it is

truth-functional satisfiable.

By efficient, we understand “of polynomial complexity.”

2 Basic Approach

The CNF SAT problem is cast as a linear programming problem:

Minimize ± e1 · x

Subject to: Ax ≤ c

where each constraint is given by:

−αi · x ≤ ci

A solution for the SAT sentence exists iff a solution exists for the LP problem with the x(1) value

equal to 0 or 1.

Given a set of m conjuncts, Ci, i = 1 : m, each conjunct is used to produce a hyperplane of

dimension n − 1 which separates the solutions (i.e., some subset of vertexes of the n-dimensional

hypercube) from non-solutions. The hyperplane for the ith conjunct is:

α(i) · x+ c = 0

Each of these hyperplanes produces an inequality:

−α(i) · x ≤ ci
2



A matrix, A, is produced where each row is the 1× n-tuple α(i). An n× 1-vector, c, is constructed

where the ith element of c is ci.

The way these hyperplanes are constructed, it is now possible to run the interior-point method for

linear programming to find feasible points which minimize fTx for x ∈ X , where X is the feasible

region and f is the e1 unit vector. If there is a satisfying solution with a1 set to 0, then the LP

solution found will have 0 value in the first dimension. Next, minimize fT · x, where f is −e1. If

there is a CNF satisfying solution with a1 set to 1, then the LP solution found will have a value of

1 in the first dimension. If neither of these is the case (i.e., no 0 value and no 1 value for the first

dimension of the LP solution), then there is no satisfying solution.

This result is made possible due to two aspects of the approach:

1. The projection onto one axis allows bisection of the solutions. Although the projection onto

dimension one determines the existence of a solution, the method can be iterated separately

for the x(1) = 0 and x(1) = 1 subsets, respectively, in order to find a particular solution in n
steps.

2. LP solves over the reals, so there is never any combinatorics of integer solutions.

Suppose a 0/1 solution is found for each dimension (i.e., for each Boolean variable). This does not

guarantee a SAT solution since the individual solutions in each dimension may be on the surface of

the hypercube and not at a corner. However, it is the case that if for any dimension, there is no 0 or

1 solution, then there is no SAT solution. The question is whether there exists a CNF sentence for

which SAT solutions exist, yet for which linear programming does not find any of those solutions.

After describing the details of this approach, we discuss directions of work which may be able to

lower the complexity of finding SAT solutions.

3 Chop SAT Algorithm

Given m conjuncts, Ci, i = 1 . . .m, then:

Ci = L1 ∨ L2 ∨ . . . ∨ Lk

Note that any complete truth assignment with ¬L1∧¬L2∧. . .∧¬Lk makes Ci false. Next, note that

the complete conjunction set can be associated with the vertexes of the n-dimensional hypercube.

Observe that:

• If k = n, then this eliminates 1 solution (1 vertex).

3



• If k = n− 1, then this eliminates 2 points (on a line).

• If k = n− 2, then this eliminates 4 points (on a plane).

• . . .

• If k = 1, then this eliminates half the points in the hypercube (all in a hyperplane of dimension

n− 1.

The individual hyperplane is determined as follows. Let A = {1, 2, . . . , n}, and I ⊆ A. Given

Ci = L1 ∨ L2 ∨ . . . ∨ Lk, then define αi, the hyperplane normal vector, as follows.

∀ij ∈ I, αi(ij) = 1 if Lj is an atom aij , else − 1

∀m /∈ I, αi(m) = 0

αi =
αi

‖ αi ‖

In order to get the constant for the hyperplane equation, a point must be found on the hyperplane.

This is selected so that the hyperplane cuts the edges of the hypercube at a distance ξ from the

non-solution vertex. This distance depends on the number k of non-solution vertexes:

d =‖ ξ
bk

k
‖

where bk is a k-tuple of 1’s. Next:

∀ij ∈ I, p(ij) = 0 if Li is an atom, else 1

∀m /∈ I, p(m) = 0

Then p is a non-solution vertex. To find a point, q, on the hyperplane:

q = p+ dαi

This allows a solution for the constant, c, in the hyperplane:

ci = −(αi · q)

This yields the hyperplane equation:

αi · x+ c = 0

and the resulting inequality:

−αi · x ≤ c

4



3.1 The Chop SAT Algorithm

Thus, to solve a CNF instance:

1. Find the linear inequality for each conjunct.

2. Set up an m× n matrix, A, with row i set to −αi (the negative of the hyperplane normal).

3. Set up an n× 1 vector b with row i set to ci (the constant from hyperplane i).

4. Apply the interior-point method for linear programming with A and b specifying the inequal-

ities, and with 0 ≤ x ≤ 1. Minimize fTx with x ∈ X , where X is the feasible region, using

f = e1, i.e., the unit vector in the first dimension. Call the resulting n-dimensional solution

x11 (the solution in dimension 1 where the maximum possible value is 1).

5. Apply the interior-point method for linear programming with A and b specifying the inequali-

ties, no equality constraints, and with 0 ≤ x ≤ 1. Minimize fTx with x ∈ X , where X is the

feasible region, using f = −e1, i.e., the unit vector in the first dimension. Call the resulting

n-dimensional solution x10 (the solution in dimension 1 where the minimum possible value

is 0).

6. If x10(1) = 0 or x11(1) = 1,then it is possible there is a solution for the CNF sentence, S. If

x10(1) > ξ and x11(1) < ξ, then there is no satisfying solution.

Steps 4 and 5 are guaranteed to find a solution with x10(1) = 0 or x11(1) = 1, if there is such a

point in the feasible region; however, this point may be on a face of the hypercube, and not at a

corner.

Algorithm Chop SAT

On input:

S: CNF sentence

On output:

res: for each dimension, the min and max values found

sol: 1 if complete SAT solution found, else 0 begin

A = matrix of negated hyperplane normals (1 per row)

b = vector of hyperplane constants for each atom a ∈ S

d is dimension associated with a

ed is unit vector in dimension d

x10 = linear programming solution projected on -ed
x11 = linear programming solution projected on ed
res(d,1) = x10(1)
res(d,2) = x11(1)
if x10 or x11 is complete 0/1 solution

5



sol = 1;

end

end

For Matlab code, see Appendix A.

Now consider the time complexity of the approach. Converting the conjuncts to hyperplanes is

clearly polynomial given that there are m conjuncts, and each has at most n literals. Given the sizes

of A and b, the interior-point method for linear programming requires only polynomial time (see

Potra[2]).

3.2 Some Examples

3.2.1 2D One Solution

Consider the two clauses in modus ponens:

1.a1

2.¬a1 ∨ a2

Then the feasible region is shown in Figure 1. The hyperplane found for conjunct 1 (with ξ = 0.9)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

a1 Axis

0

0.2

0.4

0.6

0.8

1

a
2

 A
x
is

Figure 1: The Feasible Region for Modus Ponens.

is:

1.0a1 + 0a2 − 0.9 = 0

6



while the hyperplane for conjunct 2 is:

−0.7071a1 + 0.7071a2 + 0.7071 = 0

The solutions are:

x10(1) = 0.9

and

x11(1) = 1

3.2.2 2D No Solution

For a second example, consider a CNF sentence with no satisfying solution:

1.¬a1 ∨ ¬a2

2.¬a1 ∨ a2

3.a1 ∨ ¬a2

4.a1 ∨ a2

Then the feasible region is shown in Figure 2. The hyperplane found for conjunct 1 is:

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

a1 Axis

0

0.2

0.4

0.6

0.8

1

a
2

 A
x
is

Figure 2: The Feasible Region for an Unsatisfiable CNF Sentence.

−0.7071a1 − 0.7071a2 + 0.7778 = 0

The hyperplane found for conjunct 2 is:

−0.7071a1 + 0.7071a2 + 0.0707 = 0

7



The hyperplane found for conjunct 3 is:

0.7071a1 − 0.7071a2 + 0.0707 = 0

The hyperplane found for conjunct 4 is:

0.7071a1 + 0.7071a2 − 0.6364 = 0

The linear programming solutions are:

x20(1) = 0.4999

and

x21(1) = 0.5001

indicating there is no satisfying solution for S.

3.2.3 3D Two Solutions

As a final example, consider the case with 3 variables, and such that (¬a1∧a2∧a3)∨(a1∧¬a2∧¬a3)
is true. Re-writing this in CNF yields:

1. : a1 ∨ a2

2. : a1 ∨ a3

3. : ¬a1 ∨ ¬a2

4. : ¬a2 ∨ a3

5. : ¬a1 ∨ ¬a3

6. : a2 ∨ ¬a3

Then the hyperplane equations are:

C1 : 0.7071a1 + 0.7071a2 − 0.7071 = 0

C2 : 0.7071a1 + 0.7071a3 − 0.7071 = 0

C3 : −0.7071a1 − 0.7071a2 + 0.7071 = 0

C4 : −0.7071a2 + 0.7071a3 + 0 = 0

C5 : −0.7071a1 − 0.7071a3 + 0.7071 = 0

C6 : 0.7071a2 − 0.7071a3 + 0 = 0

8



The linear programming solutions are:

x1 = [0; 1; 1]

and

x2 = [1; 0; 0]

This approach has been tested on thousands of randomly generated CNF sentences (both consistent

and inconsistent) and always returned a solution where there was one, and gave the empty set

where there was none. In addition, a test was made on a consistent 1000-atom, 30,000-conjunct

CNF in which the solution was found in about five minutes (this was in Matlab with no special

optimizations). On the other hand, for a CNF from satcompetition.org/2002 with 450 variables and

2025 clauses (each with 3 literals), Chop SAT produced a 0/1 in each dimension, but no complete

SAT solution.

Conjecture: The linear programming interior point method can be made to find a corner point of a

convex feasible region.

If this conjecture is true, then Chop SAT provides a polynomial-time method to solve SAT.

4 Further Ideas

4.1 Non-Solution Counting

As noted above, a conjunct on isolation eliminates 2n−k solutions, where k is the number of literals

in the conjunct. It is possible to solve SAT by counting the number of non-solutions, and it that

number is 2n, then the CNF sentence is not satisfiable. A clear way to do this is start the count at

0, and for each conjunct, determine the number of induced non-solutions, and then add the number

of those that are not in the current set of non-solutions. The basic way to do this involves set

intersection, and thus is of exponential cost. However, there may be other approaches, including

geometric to this, and that is under study.

4.2 Non-Euclidean Geometry

It is possible that interior point method convergence can be improved by performing the operations

in the hyperbolic geometry space. I.e., since parallel lines now intersect, if the solution trajec-

tory follows a face, then it may eventually pass by a (Euclidean) corner since there are no corners

anymore in the non-Euclidean space. Preliminary experiments are underway in lower-dimensional

spaces to see the effectiveness of this strategy.

9



5 Conclusions and Future Work

The Chop SAT method provides a polynomial-time method to determine if a SAT solution exists,

although there is no proof at the present time that this is guaranteed. That is, there may be a

consistent CNF sentence for which no version of the interior point method provides a solution at a

corner, but instead produces a solution in a hypercube face for each dimension.

Future work includes:

• Prove or disprove conjecture.

• Study non-solution counting approach.

• Determine linear programming interior point method convergence properties in non-Euclidean

geometry.

6 Appendix A

function [res,sol] = BR_chop_SAT(KB,all)

% BR_chap_SAT - Apply Chop SAT algorithm to find SAT result

% On input:

% KB (KB struct): CNF sentence; m clauses with field:

% (k).clauses (1xp vector): disjunction with p literals

% represented as signed integers

% all (Boolean): if 0 return just one solution; else all

% On output:

% res (2nxx array): solutions

% sol (Boolean): 1 if a complete 0/1 solution found; else 0

% Call:

% [res,sol] = BR_chop_SAT(KB,0);

% Author:

% T. Henderson

% UU

% Summer 2021

%

ZERO_THRESH = 0.0001;

res = [];

sol = 0;

10



m = length(KB);

if m==0

return

end

% Set up A and b

n = max(BR_vars(KB,[]));

res = zeros(n*2,n);

A = zeros(m,n);

b = zeros(m,1);

for i = 1:m

clause = KB(i).clauses;

k = length(clause);

I = unique(abs(clause));

alpha = zeros(n,1);

for j = 1:k

i_j = abs(clause(j));

alpha(i_j) = sign(clause(j));

end

alpha = alpha/norm(alpha);

b_k = ones(k,1)/k;

d = norm(b_k);

p = zeros(n,1);

indexes = find(clause<0);

atoms = abs(clause(indexes));

p(atoms) = 1;

q = p + d*alpha;

c = -dot(alpha,q);

A(i,:) = -alpha’;

b(i) = c;

end

index = 0;

for i = 1:n

index = (i-1)*2 + 1;

p = zeros(n,1);

p(i) = 1;

x1 = linprog(p,A,b,[],[],zeros(n,1),ones(n,1));

if isempty(x1)

res(index,:) = -ones(1,n);

else

res(index,:) = x1’;

end

11



p(i) = -1;

x2 = linprog(p,A,b,[],[],zeros(n,1),ones(n,1));

index = index + 1;

if isempty(x2)

res(index,:) = -ones(1,n);

else

res(index,:) = x2’;

end

OK1 = 1;

for h = 1:n

if ˜isempty(x1)&x1(h)>ZERO_THRESH&x1(h)<1-ZERO_THRESH

OK1 = 0;

end

end

OK2 = 1;

for h = 1:n

if ˜isempty(x2)&x2(h)>ZERO_THRESH&x2(h)<1-ZERO_THRESH

OK2 = 0;

end

end

if OK1==1&˜isempty(x1)|(OK2==1&˜isempty(x2))

sol = 1;

if all==0

res = res(1:index,:);

return

end

end

end

tch = 0;

References

[1] M.D. Davis, R. Sigal, and E.J.Weyuker. Computability, Complexity, and Languages. Morgan

Kaufmann, San Diego, CA, 1994.

[2] F.A. Potra and S.J. Wright. Interior Point Methods. Journal of Computational and Applied

Mathematics, 124, 2004.

12


