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Abstract— Symmetry-based wreath products have been pro-
posed as a cognitive representation combining actuation and
perception as derived from sensorimotor streams. Previous
work has described how 2D wreath product shape analysis may
be expressed in an appropriate neural network formulation,
and here we extend this to include 3D surface analysis. That
is, symmetry group operators with sensorimotor semantics are
exploited in a neural network computational framework to
provide a behaviorally relevant interpretation of a 3D scene.
In addition, we describe how this approach provides a high-
level abstraction which permits the recognition of similar
geometric categories. Finally, we argue that this analysis can
be implemented in a straightforward way as a neural network
computation.

I. INTRODUCTION

Gibson [4], [5] introduced the notion of affordance as

something a physical feature offers or provides a perceiver

in terms of possible action. The example he gives is that of

a flat, horizontal, and rigid surface that affords support, thus,

allowing mobility. Hartson [6] later refined the concept of

affordance into several types, but labels this one a physical

affordance and characterizes it as a physical relationship

between an actor and physical aspects of the world which

allow possible actions. We pursue this idea here wherein

we propose to extend our previous work on wreath products

as a cognitive representation [10], [11] to 3D behaviors for

autonomous systems. In particular, we show how the wreath

product allows for a representation which combines actuation

(control) information with perception (sensed) information

so as to allow the autonomous agent to act on the world

in a coherent and valid way. The novel contribution here is

the use of a neural network framework to exploit the wreath

product representation so as to discover traversable parts of

the environment.

Thus, the overall goal is to extract appropriate information

from sensory data so as to allow an autonomous agent to act

on that information in a useful (ecologically speaking) way.

In previous work, we showed how 2D shape analysis could

be effectively and efficiently expressed as a set of recurrent

neural net subsystems [7].

Other work in this vein includes that of Almassy and

Sporns [1] who propose a method for the perception of

invariance which leads to categorization of visual stimuli

based on the autonomous movement. Translation invariant

representations are developed from the sensorimotor data

resulting from the combined motor actions and concomitant

sensory input. Their position is that biological systems

require exploration and action in order to extract useful in-

variants from the environment, and furthermore, that success

has a critical dependence on the physical structure of the

organism.

Poggio and Anselmi [18] have explored invariant repre-

sentations and some of their group theoretic aspects in the

visual cortex and deep networks. They describe their results

as follows:

... we develop a mathematical framework de-

scribing learning of invariant representations in the

ventral stream. Our theory, called i-theory, applies

to a broad class of hierarchical networks that pool

over transformations. In particular, it applies to

deep convolutional learning networks where the

transformations are just translations in ℜ2. The

networks associated with the theory do not have

nonlinearities other than for pooling. In particular,

i-theory applies to networks with pooling non-

linearities (to compute a histogram or associated

statistics) such as sigmoidal threshold units or

linear rectifiers ...

It has also been argued that the way from neural processing

to behavior is not found by first deciding what to do and

then figuring out how to do it [2], or even building a world

representation separately from making action decisions. It

may be the case that sensory data is processed in parallel,

and that multiple actions are possible, and that these compete

until a single, final action is selected. They propose that: “the

dorsal visual system specifies actions which compete against

each other within the fronto-parietal cortex, while a variety

of biasing influences are provided by prefrontal regions and

basal ganglia.”

Most shape representations consider only sensed features

of the object, e.g., geometry, color, measures of geometry

like curvature or area, or relationships between such features.

A generative description is proposed here which includes

both actuation and sensory signals. This allows the shape to

be synthesized by executing the motor controls specific to

the shape. Leyton [15] proposed such a model for concept

formation and uses the wreath product group (WP) [3] to

encode the shape information. A wreath product captures



the symmetries on a set of points and does this in terms of

actions on subsets of points (these provide the connection

to the agent’s motor control system), and thus, these sym-

metries, represented as groups, must be extracted from the

sensorimotor signals. This is a special form of affordance

representation which exposes the interplay between percep-

tion and action in the world (see [4] for more on ecological

psychology). To achieve an effective representation requires

that: (1) symmetries be recognized in sensorimotor data, (2)

that error and noise in the shape description be accounted

for, and (3) that such an approach works within the agent’s

general cognitive framework. Wreath products are used to

represent agent beliefs (restricted to geometry here). This

approach has already been shown to be effective in the

analysis of engineering drawings as well [10].

Earlier work on this topic includes the examination of

innate theories as the foundation for cognition in robots [8],

[9], as well as a method to characterize the representation

of uncertainty using Bayesian methods [12], [13]. Those

works provide concrete mechanisms to annotate the more

abstract wreath products with well-defined coordinate frames

to express the actuation required to generate the shape. Con-

cepts then describe a specific thing (through the annotated

information) or the general class of the shape (through the

symbolic group structure of the WP).

More technically, a WP represents a shape as the semi-

direct product of two groups – a fiber group which is

acted upon by a control group. For example, the corner

points of a square may be abstractly represented as {e} ≀ Z4

or {e} × {e} × {e} × {e} ⋉ Z4, where ≀ is the wreath

product and ⋉ is the semi-direct product symbol. Con-

sider the second representation; four copies of a corner

point (i.e., {e} × {e} × {e} × {e}) are permuted by the

cyclic group. Given a specific set of four points, say S =
{[1, 1]T , [−1, 1]T , [−1,−1]T , [1,−1]T }, then the annotation

includes S and the vector about which the points are rotated,

e.g., [0, 0, 1]T . Note that it may also be necessary to specify

that Z4 has the same semantics as the group consisting of

four rotations (i.e., {Rot0, Rotπ

2
, Rotπ, Rot 3π

2

) since there

are several interpretations of the Z4 group. The annotation

information allows the generation of the shape, and, in fact,

this can be done in any new desired frame by the agent

since annotations are relative to the agent’s home coordinate

frame. In terms of the agent’s specific sensor and actuation

mechanisms, it is supposed that there is a map from the 3D

actuation to the specific agent motor systems; presumably,

these maps would be learned as part of the embodied agent’s

developmental process. Thus, a practical, yet robust and

powerful wreath product based cognitive system is provided

as well as a demonstration of the basic affordance capabilities

for interacting with the environment.

II. MOTION AFFORDANCE

As described in the introduction, flat, horizontal, rigid

surfaces afford motion to a mobile agent. This requires

acquiring visual sensor data, recovering range (depth) infor-

mation for that data, associating actuation with the perceived

range data, and determining what motion is allowed and

useful. Biological vision systems have been shown capable

of producing stereo information, e.g., as disparity maps, etc.,

and we begin with the assumption that a range map (image)

is available, e.g., as a set of values in a neural array.

Given a range image, f(x, y), the surface (x, y, f(x, y)) is

a Monge patch. From this we know that the surface normal,

n, can be found as follows:

∂f(x, y)

∂x
=

f(x+ 1, y)− f(x, y)

∆x
= fx(x, y)

∂f(x, y)

∂y
=

f(x, y + 1)− f(x, y)

∆x
= fy(x, y)

Now consider the cross product of vx and vy, where:

vx = [x+1, y, f(x+1, y)]− [x, y, f(x, y)] = [1, 0, fx(x, y)]

vy = [x, y+1, f(x+1, y)]− [x, y, f(x, y)] = [0, 1, fy(x, y)]

n = vx × vy

=
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This means that any two neighboring points in the same

plane will have the same normal vector. Thus, in order to

detect flat, horizontal, rigid surfaces, and agent must be able

to ascertain that these three properties hold:

• flat: a flat surface is a planar surface and can be

segmented by clustering the set of neighboring points

in the scene that have the same surface normal.

• horizontal: in previous work on physical agents using

wreath products for the cognitive representation of

shape, we posited the knowledge of a gravity vector

which indicates to the agent which way is down. This

is used here to allow the recognition of a horizontal

surface as having a normal vector whose dot product is

-1 with the gravity vector.

• rigid: The determination of whether a surface is rigid

or not is somewhat beyond the scope of our method, so

we assume that if the agent is on a rigid surface at the

current instant, then surfaces of similar appearance will

be assumed rigid as well.

We do not address the issue of rigidity of the surface here,

but seek flat, horizontal surfaces that afford motion (i.e., have

a normal opposite to gravity). Note that for the present work,

the chosen path is an element of the possible motions across a

planar surface (as represented by a wreath product). Figure 1

shows the sequence of operations proposed.

This process can be implemented in neural network form

as described in Figures 2 and 3. First, a Gaussian filter is

convolved with the range image. Next, dx and dy filters

are convolved. Convolution is easily produced in a neural

network by simply placing the appropriate weights on the

inter-layer connections. Given the gradient components, dx

and dy, copies are made of each (simply map each neuron in

the dx or dy layer to the corresponding neuron in the copy.



Fig. 1. Method to Determine Which Scene Elements Afford Motion. A
range image is first smoothed, then the gradient is found; after this the unit
surface normals are determined, and finally the acceptable motion area is
extracted.

Fig. 2. Convolution Steps from Range Image to Gradient.

Next, the copies are multiplied pointwise with the originals

(Siu et al. [19] describe how multiplication and division can

be accomplished with a 4-layer neural network). Next the

normal vector (i.e., [dx,dy,1]) length squared is determined

by adding dx2 with dy2 and 1; this value is then used to

produce a unit length normal vector ([n1, n2, n3]), and finally,

the dot product of the unit normal vector with the negative of

the gravity vector is computed and compared to the value 1.

That is, if the value in the floor array is zero, then the location

is flat and horizontal and affords motion. A post-processing

step (in terms of competing motion directions (this is in line

with Cisek’s proposal [2]) is performed to find the direction

of the maximum number of such pixels (discretized into left,

straight and right).

This process has been implemented (in Matlab), and the

results on several types of scene are shown in Figure 4.

Note that the colors in these images encode the normal

vector directions (based on the neural network computation

described above, except for red which indicates what parts

of the scene afford motion).

A. Simulation Experiments

The motion affordance process has been tested in a

3D simulation environment. Figure 5 shows some box-like

Fig. 3. Steps from Gradient to Motion Affordance Space.

Fig. 4. Motion Afforded Areas in a Variety of Scenes. Row 1 shows the
corner of a room with a box in the corner; from left to right, the Kinect
sensor was moved closer; for all of these, the direction selected is straight
ahead. Row 2 shows the room with no box and provides similar results as
Row 1. Row 3 has some furniture in near the corner of the room; as can be
seen, in the third column, there is not enough open floor to afford motion,
whereas in the fourth column, some amount of floor becomes visible. Row 4
is an office scene, and in this case, the last two columns result in a decision
to move to the left.

structures sitting on the x-y plane, and the patch of red

dots provides the location of the range sensor array (note

it is tilted down 45 degrees). Figure 6 shows a bit more

complicated layout.

The motion affordance test procedure is as follows:

while t < tmax

range ← acquire range image

normals ← compute normals

affordances ← compare normals to gravity vector

left ← affordance strength left

straight ← affordance strength straight

right ← affordance strength right

move ← choose max strength direction

increment t

end

Figures 7– 8, respectively, show the results of using the

motion affordance process on the two layouts.

III. 3D SPATIAL ANALYSIS

Wreath products also allow the representation of space as

more abstract entities. For example, the symmetries of the



Fig. 5. Simulated Environment Layout 1.

Fig. 6. Simulated Environment Layout 2.

cube may expressed as shown in Figure 9. Wreath products

provide not just a description of the symmetries of the cube,

but also an explicit plan for the production of the shape.

In the case of the cube described in Figure 9, the lowest

level group is a point, given as the identity group {e} (note

that in an implementation there is a corresponding annotation

providing the coordinate frame and location of the point in

that frame); this point is acted on (see [10], [15] for details

on the wreath product and its application to the analysis of

3D data) by the translation group, ℜ, to produce the side

of a square; the side of the square may be transformed to

any other side of the square by the cyclic group of order 4

(Z4), which in this case is the set of rotations by 0, 90, 180,

and 270 degrees (again – about an appropriate axis); each

square is related by a reflection symmetry to the square on

the opposite side of the cube (Ref ), and finally, there is a

cyclic group order 3 symmetry (Z3) among the pairs of sides

by the set of rotations (about a diagonal axis of the cube by

rotations of 0, 120 and 240 degrees.

We now show how this wreath product may be detected

in 3D range data in terms of a neural network that acts on a

lower dimensional representation of the data. Given a range

image (e.g., the first image on row 2 of Figure 4), the normal

discontinuity image can be found by marking where the

normal vector distance differs more than a specified threshold

(see Figure 10 which shows the depth image of a room

corner, and Figure 11 which shows the normal discontinuities

for the empty room depth image). In previous work [7] we

demonstrated a neural architecture to perform shape analysis

by first producing the Frieze Expansion Pattern (FEP) [14],
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Fig. 7. Results of Motion Affordance Process in Layout 1.

Fig. 8. Results of Motion Affordance Process in Layout 2.

a log-polar form of the image, and then finding translation

symmetries in the FEP. In the example here, the FEP is

shown in Figure 12. A 1D translation (along the x-axis

of the FEP) detects the Z3 symmetry in the data. This in

turn guides the discovery of the visible sides of the cube.

These matched groups in the wreath product template lead

to the prediction of the remaining symmetries (i.e., the other

sides of the cube). In addition, the wreath product tree easily

permits the association of an associated Bayesian network

to capture the uncertainties in the overall structure given the

uncertainties in the data (e.g., range data noise).

Note that if 3D point data is available in a neural repre-

sentation (e.g., as argued by Marr [17] in the 3D Sketch

model), then wreath product symmetry analysis provides

even more powerful methods for sensorimotor data based

object representation. For example, give sample points on

the interior surfaces of a cube (e.g., walls, ceilings, floor of

a room), it is possible to perform a 3D Frieze Expansion

Pattern by varying over two angles. This results in a reorga-

nization of the cube data shown in Figure 13 which as can

be seen, clearly brings out a set of 2D symmetries which

characterize the shape of the cube. A Z4 symmetry can be

found (considering this depth image as a gray level image),



Fig. 9. One wreath product representation of a cube. The top level
symmetry is a cyclic group of order 3 (rotations about a diagonal axis);
this moves pairs of reflected (Ref) faces (the Z4 symmetries) onto other
pairs.

Fig. 10. Kinect Depth Image of a Corner of an Empty Room.

and the translation axis for that is shown in the figure. Again,

this is in line with our idea of reducing the dimensionality

of the analysis space.

IV. CONCLUSIONS AND FUTURE WORK

A novel approach to 3D surface motion affordance analy-

sis is proposed based on the group theoretic wreath prod-

uct. We have provided a neural network framework for

its computation, and shown experimental results in a 3D

simulation environment. Moreover, this approach fits well

with our previously proposed wreath product based cognitive

architecture for robot agents.

There are a number of directions for future work:

• Although the experiments performed here are based on

computations analogous to neural networks, we intend

to develop the motion affordance process in terms of a

neuromorphic architecture. This will allow more insight

into the computational efficiency of the method in a pure

neural inspired framework.

• Once a neural computational element is available, we

propose to explore its effectiveness in the Neurorobotics

Platform (NRP) [16] being developed by the Neu-

rorobotics Subproject of the European Human Brain

Project. This platform provides (1) Robot Designer, (2)

Environment Designer, (3) Experiment Designer, and

Fig. 11. Normal Discontinuity Image.

Fig. 12. The Log-Polar Image of the Normal Discontinuity Image.

(4) Virtual Coach components to help develop and test

processes like ours. The NRP makes it easy to couple

neural networks to robots.

• We have proposed a general cognitive architecture based

on wreath products, and we intend to explore its use in

a mobile embodied system in which motion affordance

will play a key role.



Fig. 13. The Frieze Expansion Pattern of a 3D Cube using a 2 Angle
Sweep.
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