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Abstract—This paper provides a detailed airspace capacity
analysis for the Federal Aviation Administration’s Unmanned
Aircraft System (UAS) Traffic Management (UTM) concept of
operations. Prior work has addressed aspects of this problem
under specific assumptions about individual behavior of opera-
tors (human and autonomous) and the structure of the airspace,
however recent discussions held between NASA and industry
stakeholders indicate that cooperation will be necessary to
minimize the need for tactical collision avoidance. This problem
is referred to as Strategic Conflict Management and it imposes
constraints on the system that can become computationally
intractable. In this paper, an airspace structure inspired by
roadway roundabouts, and a computationally tractable trajec-
tory scheduling algorithm for UAS Service Suppliers (USS) are
presented to solve this problem.

I. INTRODUCTION

During a working-group discussion with the Utah Depart-
ment of Transportation (UDOT), Division of Aeronautics,
the prospective airspace regulator expressed a desire that
all Unmanned Aerial Systems (UASs) operating in Class G
uncontrolled airspace for unmanned package delivery and air-
taxi services [1] should be constrained to the airspace above
roads. The reasoning was two-fold: the roads are public
space, and people on the road would be protected within their
cars should a UAS fall to the ground. Industry stakeholders at
this meeting expressed their concern that such a requirement
would unnecessarily constrain and complicate their opera-
tions. Furthermore, it was not a requirement in any other
region where stakeholders were considering a deployment.
In this paper we analyze the relationship between airspace
capacity and the structure imposed by such a requirement.
A brief summary of related applications and research is
presented first to demonstrate the complexity of this problem,
then we reveal a lane-based design featuring roundabouts,
and a capacity analysis that represents a baseline for com-
parison to other methods of airspace organization.

What may not have been clear for the previously men-
tioned industry stakeholders is that the majority of mo-
tion planning algorithms that exist today rely on some
form of discretization, and the airway-over roads concept
is simply one form of this. For example, some popular
methods for discretization in motion planning research are
cell-decomposition or probabilistic sampling such as Rapidly

Exploring Random Trees (RRT) [2], [3]. The algorithms
that don’t rely on discretization either assume a functional
representation of trajectory (e.g., a spline) or are tactical
because they apply to controls directly. The decisions related
to discretization are vital in determining the effectiveness
and complexity of a motion planning problem. For instance,
in the RRT algorithm the line connecting sampled locations
must be discretely sampled to determine if any conflicts
exist. If the sample resolution is too fine, then computation
resources suffer. If the sample resolution is too coarse, then
there is the possibility that a conflict exists that would not
be discovered until it was too late.

In the layered [4] and “full mix” [5] airspace designs,
UASs are afforded the maximum amount of freedom and
must rely on tactical collision avoidance to maintain safe
separation. Tactical collision avoidance must be computed
during flight and includes a time constraint, therefore it is im-
portant to consider the time and space complexity for solving
this problem. While many heuristic methods have been devel-
oped, see for example [6], there still remains the possibility
that the number of conflicts may overwhelm the algorithms
(see [7] for an analysis of cascading effects of conflict
resolution). There has been a large amount of research into
quantifying the risk of conflict in this type of system (e.g.,
[5], [7]–[10]), indicating that there are numerous risk factors
that an operator would need to consider in order to reduce the
risk of collision. Lane-based airways were analyzed in [11],
however the UAS operations were not deconflicted pre-flight
and instead were simulated much like car-following models
(e.g., [12]). Recently, a report published by NASA detailing
negotiations among stakeholders regarding requirements for
USSs described the following overarching requirement for
operations within the UTM system: “A UTM Operation
should be free of 4-D intersection with all other known
UTM Operations prior to departure and this should be known
as Strategic Deconfliction within UTM” [13]. Furthermore,
they discuss the requirement that any scheme for strategic
deconfliction must be mandated by the airspace regulator.

Strategic deconfliction, or strategic conflict management,
refers to the first of three layers of conflict management
defined by the International Civil Aviation Organization
(ICAO), “achieved through the airspace organization and



management, demand and capacity balancing, and traffic
synchronization” [14]. The next layers are applied in order
of the shrinking conflict horizon, they are tactical in nature
and termed “separation provision” and “collision avoidance.”
Broadly speaking, strategic conflict management deals with
planning collision free paths, which in the most general
case of planning for multiple agents is PSPACE-hard [3].
Even the more narrow problem of tuning velocity profiles
is NP-hard [15]. In this paper we consider the simpler,
but more realistic scenario given the UTM architecture, of
scheduling UASs in real-time within lanes, reducing the
configuration space of the UAS to a single dimension. The
result is a practical, computationally tractable algorithm for
strategic conflict management. The experimental section of
this paper considers the capacity constraints imposed by this
system, which enables airspace regulators to make informed
decisions about how to address the demand from users.

A. Contributions
In this paper, we present an airspace structure inspired

by roadway roundabouts, and a computationally tractable
trajectory scheduling algorithm for UAS Service Suppliers
(USS) within this structure. A capacity analysis follows the
description of the airway structure to provide a baseline
for further research. Prior research into the capacity of
airspaces does not simultaneously consider the complexity
of planning the operations, however both concepts must be
considered together since the airspace regulator is expected
to manage both (as mentioned in the introduction). The
following section presents research from various application
areas that are directly, or indirectly, related to collision-free
trajectory planning and capacity analysis.

B. Related Work
The central problem is strategic conflict management for

many aircraft (autonomous or human controlled) in a large
area (e.g., 1-100 mi2). This problem shares characteristics
with many analogous application areas, as well as theoretical
work in discrete mathematics (see [16] in the context of
scheduling) and topology (see the chapter on configuration
spaces in [2]).

1) The Air Traffic Flow Management Problem: A natural
problem model comes from research into the Air Traffic
Flow Management Problem (TFMP) [17]. In this model
the airspace is partitioned into sectors that are controlled
by regional regulators who provide separation services. The
sectors are characterized by capacities that represent the
maximum number of aircraft that may be in a sector at
any time, and depend on factors such as weather. TFMP
implements two control strategies to ensure that sector ca-
pacity constraints are not violated: ground-holding and speed
adjustment. Ground holding shifts the entire flight in time
by delaying the departure of an aircraft. Speed adjustment is
applied to each sector in flight and represents an “air delay.”
Optimal ground-hold time and speeds for every planned flight
are calculated, but each operation does not deviate spatially
(this is called the Air Traffic Flow Management Rerouting
Problem (TFMRP) [17]).

Rios and Lohn [18] compare techniques for finding a
solution to the Bertsimas and Stock-Patterson (BSP) model:
binary integer programming, genetic algorithms, and sim-
ulated annealing. They also compare a greedy scheduler
that schedules flights on a “first-come, first-serve basis by
finding the first available departure time for each flight in
turn that will not violate sector capacities when combined
with previously scheduled flights.” The greedy scheduler is
so named because it is locally optimal for the flight in
question, but it does not guarantee globally optimal solutions.
Solutions to the BSP model provide time intervals during
which a flight must enter each segment, and the solution
is guaranteed to minimize total delay. Although the size of
the problem formulation is bounded by a linear relationship
between the number of intervals, the number of flights,
and the number of sectors, the integer linear programming
formulation suggests that there is no known time-polynomial
algorithm to solve it [19].

Despite its non-deterministic features, this representation
is appealing because it supports the goals of strategic conflict
management, namely “airspace organization” via sectors, and
“demand and capacity balancing, and traffic synchronization”
via ground-holding and speed adjustment. What it lacks is
an explicit representation for the intersection of routes in 4-
D space. The primary issue is that the sectors are large and
there is no way to tell if routes intersect. One way to adapt
this representation is to shrink the size of each sector such
that capacity is fixed to one aircraft per sector. Bertsimas
and Patterson explored this assumption and determined that
the computational complexity of the TFMP is NP-hard [17].
Also, reducing the size of the sectors dramatically increases
the space complexity.

2) The Job-Shop Scheduling Problem: By shrinking sec-
tor capacities to one, the TFMP can be reformulated as
a scheduling problem (see [19], [20] for a definition of
the general scheduling problem, and [21] and [22] for an
overview of the job shop scheduling problem). Bertsimas
and Patterson [17] reformulate the problem as follows: for
each job create an aircraft and for each processor associate
a sector (sectors include airports). Each job is composed of
tasks that represent a flight segment (time spent in a sector).
A solution to this formation is a total ordering of sectors for
every job, and a list of flight times for each task such that
the total delay is minimized, and all flights are performed
by a deadline. This formulation guarantees that no aircraft
will occupy the same sector at the same time and therefore
satisfies the non-intersection requirement.

There are however, several practical issues with this for-
mulation. To begin with, the job-shop scheduling problem is
NP-hard – this makes it a poor choice for USSs that may need
to contest with tens of thousands of “jobs.” Furthermore, it is
not clear what the sector size should be, given the variation
of UAS sizes expected to utilize the airspace. Too large a
sector could result in an unreasonable amount of tactical
separation maneuvers, while too small a sector could become
computationally intractable.

To account for uncertain speeds, the scheduling model



can incorporate probabilistic durations. This formulation still
suffers from the time complexity as before (and likely worse
if the durations are not assumed to be independent random
variables) [23].

3) The Multi-Robot Motion Planning Problem: Strategic
deconfliction may be cast as a multi-robot motion planning
problem. The key concept for any motion planning problem
is the configuration space, which combines the kinematic
constraints of the robot and the environment. Multiple robots
may be combined into a conceptual “composite robot” [24]
and the motions are planned in a joint configuration space.
Centralized, or coupled, algorithms provide a path for every
robot, while decentralized, or decoupled, algorithms usually
provide solutions for a subset of the robots. In [24], the
authors decompose a multiple robot planning problem into
partitions of robots that are planned together. While this ap-
proach does reduce the complexity of the joint configuration
space, it does not guarantee a reduced complexity of the
problem because each partition can still be very complex.
Other approaches, such as incremental coordination [25],
combine the centralized and decentralized algorithms into
a single iteration.

Multi-robot motion planning is also a more natural
representation because solution methods, such as rapidly-
exploring random trees, can incorporate dynamic constraints
and uncertainty directly. The desire for optimality, however,
results in a worse-case time complexity comparable to the
job-shop scheduling problem.

The two-phase decoupled approach [25] involves first
computing a path for each robot individually while ignoring
other robots, then operations are applied to the resulting path
set to avoid collisions. The advantage of this approach is
that the “search space explored by the decoupled planner
has lower dimensionality than the joint configuration space
explored by the centralized planner” [25]. The drawback is
that it is an incomplete algorithm, meaning it is not guar-
anteed to find a solution even if one existed by considering
the system as a whole. This approach resembles the greedy,
first-come, first-serve algorithm by Rios in the sense that
previously planned paths are considered as static obstacles
and each new flight is delayed until the capacity constraints
are met [26].

4) The Traffic Assignment Problem: The traffic assign-
ment problem (TAP) is a sub-problem in the transportation
planning process that models the route-choice behavior of
travelers given a set of possible routes [27]. This problem is
mentioned here because prior research such as [9] measure
the performance of the airway system by simulating origin-
destination data from population centers. When determining
the capacity of a particular network configuration, the traffic
assignment problem should be considered separately because
its benefit is mainly to predict the demand on the system.

Solutions to TAP result in aggregate measures, “a macro-
scopic description or prediction of the traffic volume” [27].
The relationship between volume of travelers and their aver-
age travel-time are modeled by link performance functions
[27]. Queuing models also play a role in the development of

Fig. 1. Time-space diagram for two UASs in a lane. The x-xis is time
and the y-axis is distance along the lane. ht is the time headway (distance
between UASs in time in lane), and hx is the space headway (distance
between UASs in lane). Note that ht and hx are are linearly related due to
the constant speed. The two trajectories in this scenario intersect at t = 4
and x = 2, however they violate space-headway before then.

link performance functions.
5) The Optimization Problem: The FAA expects tens of

thousands of UASs to utilize the airspace in close proximity,
therefore the problem model composition is important to
ensure that safety requirements are met. There are two ways
in general to represent the safety requirements, as a constraint
and as an objective function. The objective is to maximize
the separation (or headway) between UASs. Assuming the
solution is optimal, the question of whether it meets the
safety requirement is determined by a threshold, e.g., “the
minimum separation is at least 10 meters,” or “the minimum
separation is at least 10 meters with 99.9% probability.”
In this paper we only consider the constraint model and
cast the objective as a function of the time between desired
release times and scheduled release times (a more complete
description can be found in the section titled Scheduling
Algorithm).

II. LANE-BASED FORMULATION

Figure 1 shows a representative time-space diagram for
two UASs in a lane; a model borrowed from ground traffic
engineering. An airway lane constrains the trajectory of the
UAS to the center-line of the airway, referred to as the lon-
gitudinal direction of the aircraft trajectory in prior research
(e.g. [7]). The vertical and lateral directions are assumed
to be under control to remain inside the lane. Uncertain
altitude and lateral movements should be compensated for
in the design of the width and height of the airway; this
is a subject of ongoing research. Also, a constant velocity is
assumed within a segment; this constraint will also be relaxed
in subsequent research.

An important point is that the lane-based formulation can
apply in all cases where the trajectory is reduced to a single
dimension. It is not required that lanes follow the road



network on the ground; lanes may be organically created by
operators and reused by other operators. The critical aspect
of this formulation is that there are no crossing-conflicts;
this concept is described in detail in the Airway Design sub-
section below.

A. System Constraints

Under these constraints, the kinematic motion of the UASs
may be described as follows:

uas1 : x1 = v1g(t
1 − r1t ) (1)

uas2 : x2 = v2g(t
2 − r2t ) (2)

where xy is the longitudinal position (meters) within an
airway segment for uasy , vyg is the ground speed (me-
ters/second), ty is the time along the segment (seconds), and
ryt is the release time, i.e., the time at which the UAS begins
its trajectory across the segment. Also note from Figure 1
that x0 and xf represent the start and end of the segment,
so that xf − x0 = length(segment). The time headway
(distance between UASs in time) and the space headway
(distance between UASs in space, sometimes referred to as
spacing) are given by ht and hx, respectively.

The error bars in Figure 1 represent the required spacing
between UASs, also known as well-clear in the UAS liter-
ature. The vertical distance from a point on the line to the
error bar is the well-clear and is denoted hy

x for uasy . Due
to the linear nature of the problem, hy

t and hy
x are related

by:

hy
t =

hy
x

vg,y
(3)

This equation mirrors the relationship between density (or
occupancy in space), speed, and flow (or occupancy in time)
described in the Highway Capacity Manual [28]. This is
important because it connects the concepts of road capacity,
well known in road-traffic engineering, to airway capacity,
which is explored in the following sections.

The separation constraints for any two UASs may be
described as follows:

hx = |x1 − x2| > max(h1
x, h

2
x),∀xy : xy ∈ [xy

0, x
y
f ] (4)

ht = |t1 − t2| > max(h1
t , h

2
t ),∀t (5)

Since hy
t and hy

x are linearly related, it suffices to consider
only one constraint. These separation constraints are more
general than the one considered in [7] to describe the capacity
analysis in a foundational way. UAS operators may prescribe
a required headway as needed by their vehicle and other
operational considerations.

Consider the case where uas2 is already scheduled and
now a USS is presented with uas1 to schedule. Since v1g
is considered constant, r1t (the release time for uas1) is the
only decision variable. Let ht,max = max(h1

x, h
2
x) and r1t <

r2t ; we can describe the first position at which well-clear is
violated by the following equation,

xv(v
1
g − v2g) + v1gv

2
g(r

2
t − r1t − ht,max) = 0 (6)

where xv is the position along the segment where a violation
first occurs. When the velocities are equal, then this equation
reduces to the simple relationship,

r1t = r2t − ht,max (7)

The corresponding constraint for planning purposes is then,

r1t < r2t − ht,max (8)

This assumption of uniformity of velocities is assumed in the
experimental section to make network capacity constraints
more visible. In the general case, however, when v1g > v2g ,
then xv is negative for all r1t < r2t and therefore the only
constraint is the same as Eq. 8. When v1g < v2g , then the
violation point may lie within the segment (this is the case
in Figure 1). The constraint is therefore:

r1t < r2t − ht,max −
xf

m
, m =

−v1gv2g
v1g − v2g

(9)

B. Scheduling Algorithm

The algorithm that we propose for this system is a greedy
scheduler (Algorithm 1):

Require: rd, re, rl, path, vg
rd ← desired release time
re ← earliest release time
rl ← latest release time
path← requested segment ids
vg ← speed
seats← available time slots
ls ← 0 {The segment length}
for each segment in path do

seatssegment ← seats on segment at t ∈ [re, rl] +
ls
vg

seats← seatssegment | seats {Binary OR}
ls ← segment length

end for
rt ← open seat closest to rd
return rt

Algorithm 1: Greedy-Scheduler Algorithm

It is called “greedy” because the scheduler only considers
the currently requested operation and minimizes the distance
between the scheduled and desired release time. In other
words it is locally optimal with respect to the desired release
time. It is not globally optimal, in the sense that there may
have been a better solution if all operations were considered
simultaneously. In the UTM system, where operations are
scheduled online and desired release times are unknown to
the scheduler until the request is made, a globally optimal
algorithm may not exist. To see why, this problem may be
cast in terms of what Pinedo would describe as an online
job-shop scheduling problem with no-wait constraints [20].
Specifically, this is an online-over-time problem because the
scheduler “does not know at any point in time during the
process how many more jobs are going to be released in
the future and what their release dates are going to be”
[20]. It is also classified as clairvoyent because all relevant



Fig. 2. Two Ways to Fill Five Seats with Spacing Equal to One

information, such as speed, are available to the scheduler. It
may be possible that a USS knows when its operations will
be requested, however it is still true that it will not know
when another USS’s operations will be requested (at least
not in the currently envisioned UTM system). The no-wait
constraint refers to the fact that, in the scenarios considered
in this system, UASs cannot wait (park or hover) between
successive segments. The problem of minimizing maximum
lateness (a measure of the worst violation of due-dates), for
a single machine with requested release dates (in Pinedo’s
nomenclature 1|rj |Lmax), is NP-hard [20]. A polynomial-
time online algorithm therefore represents an approximation
of the optimal algorithm.

This algorithm applies equally well to homogeneous and
heterogeneous velocities, however only the homogeneous
setup is considered here. The heterogeneous version of this
algorithm applies additional time-headway as required by the
term xf

m in Eq. 9.
1) Occupancy and Utilization: To analyze the expected

segment utilization and capacity in a real-world scenario,
given Algorithm 1, we can begin by assuming that scheduling
requests are probabilistic and uniformly distributed across
a discretized time-interval, for example 5-second time slots
over a 12 hour period. We would like to know what the
expected time-occupancy (percentage of time slots filled) is
once no more UASs can be scheduled without violating their
time-headway requirements. This problem was solved by a
number of authors, in particular by Page [29], and Freedman
and Shepp [16], who contextualized the problem as An
Unfriendly Seating Arrangement. Both problems are discrete
versions of Renyi’s parking problem [30]. To help visualize
the problem, we analyze the greedy scheduler applied to the
unfriendly seating arrangement described by Freedman and
Shepp.

Consider the problem of filling five seats (representing
time slots for the scheduler) in Figure 2, where individuals
cannot be seated next to each other. The required headway
in this instance can be considered as one seat. Let occupancy
be defined as the ratio of occupied seats to total seats. As
each individual arrives, one at a time, if they are seated in
the remaining valid seats according to a uniform distribution,
then the probability of filling 2 seats, and therefore an
occupancy (the ratio of filled to unfilled seats, denoted En)
of 2

5 , is p(En = 2
5 ) =

8
15 . The probability of filling 3 seats,

and therefore an occupancy of 3
5 , is p(En = 3

5 ) =
7
15 . The

expected occupancy is E(En) = 0.493 or 49.3%.
With the greedy scheduler, filled seats tend to cluster

together since it finds the closest valid seat to the desired

Fig. 3. Greedy Scheduler versus Uniform Scheduler (Page Process)

one, resulting in a higher expected occupancy. Consider the
case where the first seat is taken in Figure 2. For the uniform
scheduler in the unfriendly seating arrangement problem, the
remaining valid seats (3, 4, and 5) are equally likely, p(K =
3) = p(K = 4) = p(K = 5) = 1

3 . For the greedy scheduler,
if the next desired seat is 1 or 2 or 3, then the scheduled seat
is 3, i.e., p(K = 3) = 3

5 , p(K = 4) = p(K = 5) = 1
5 . The

occupancy probabilities for the greedy scheduler in this case
are p(En = 2

5 ) = 12
25 and p(En = 3

5 ) = 13
25 . The expected

occupancy is E(En) = 0.504 or 50.4%.
The expected occupancy for the uniform scheduler, as

the number of seats (denoted n) approaches infinity, is
approximately E(En) = 1−e−2

2 = 0.4323 [29]. Figure 3
shows a comparison of the Page process versus the greedy
scheduler using the measure of utilization. Utilization takes
into account the maximum possible occupancy for each value
of n:

Un =
En

En,max
(10)

where, En,max = ceil(n/2)
n . The expected utilization for

the greedy scheduler was evaluated empirically in Figure 3,
where 1000 trials were run for each number of seats (from
1 to 1000), and found to be E(Un) = 0.9122 as n→ inf .

2) Flow and Density: The scheduler assigns time slots
for each route request, therefore the expected flow (E(F )),
in vehicles-per-second (vs ), is determined by,

E(F ) =
E(En)

tslot
(11)

where tslot is the sampling period in seconds, the discretiza-
tion of time. For example, if E(En) = 0.4561 (the expected
value for the greedy scheduler) and tslot = 1.25, then the
expected flow is, E(F ) = 0.365 v

s .
The expected density, in vehicles per meter ( v

m ) is calcu-
lated as follows,

E(D) =
E(F )

vg
(12)

where vg is the homogeneous ground speed in meters per
second (ms ). If we assume the ground speed is 10 m

s , then
the expected density of vehicles in the previous example is,
E(D) = 0.0365 v

m .



Fig. 4. Relationship Between Time-Headway and Seat Spacing

3) Discretization: The expected occupancy and utilization
for the greedy scheduler shown in Figure 3 represents the
expected maximum for those metrics assuming there is at
least one “seat” in between each filled one. This assumption
may be built into the discretization of time for the scheduler
by assuming homogeneous time-headway and a sampling
period is defined as follows,

tslot =
ht,max

2
(13)

Figure 4 demonstrates this relationship.
4) Lane Capacity: If the greedy scheduler is employed

and the discretization of time is as described in the previous
section, then the expected maximum flow, and hence capac-
ity, for a single lane is approximately,

E(Fmax) =
0.9122

ht,max
=

0.9122vg
hx,max

(14)

For example, if the maximum required space-headway is
25m and the homogeneous ground speed is 10m

s , then
E(Fmax) = 0.365. The corresponding density is E(Dmax) =
0.0365. For a lane segment that stretches 100m, at the
expected maximum density there will be approximately 3.64
vehicles per lane at any given time. If the airspace regulator
determined that all flights must begin within a 12-hour period
each day, then a single lane may be expected to support
approximately 15,768 vehicles per day.

C. Complexity

The input to the greedy scheduler are the open and filled
seats for each segment along a route. If the total number of
seats in a single schedule is n, and the number of segments
in a route is s, then the worse-case is that the scheduler
will traverse every slot in a schedule; hence the complexity
is O(s+n). Notice that because the segment schedules (the
seats) are represented as a binary string and OR’d together, as
shown in Algorithm 1, the scheduler only needs to consider
a single binary string of length n when looking for an open
seat.

D. Airway Design

To better utilize intersections, only merging or diverging
conflicts should exist because crossing conflicts require that
the scheduler manage nodes as well as segments. This would
add additional constraints on UASs requesting time within an
intersection that would be independent otherwise. Since each
segment is defined by exactly one schedule that manages
UAS arrivals, organizing the airspace in this way removes
the need for intersection management such as the signalized

Fig. 5. Airway Roundabout

intersections in [11]. In Figure 5, the node labeled “2” is
an example of a diverging conflict, where incoming traffic is
split into two traffic streams [31]. The node labeled “1” is an
example of a merging conflict, where two traffic streams are
joined into one [31]. Crossing conflicts may be eliminated
by implementing a roundabout, a concept borrowed from
ground traffic engineering [31]. Figure 5 displays the graph
model for a roundabout, which includes unidirectional edges
between eight nodes (each node represents the endpoint of a
segment) in a counter-clockwise direction.

Figure 6 shows an airway model featuring several inter-
sections, with a minimum separation of 25 meters between
segment endpoints. This model may be replicated and resized
to fit the underlying road network or other operational
constraints.

III. EXPERIMENTS

The experiments presented here serve two purposes: one
is to develop an intuition regarding the relationship between
airspace structure and capacity, and two is to understand the
relationship between demand and reliability. To measure the
capacity of the airspace structure, a large simulated demand
of 20,000 scheduling requests was sampled from a uniform
distribution of land and launch vertices in the network graph
shown in Figure 6. Launch vertices are nodes where UAS
may enter the network because the out-degree is exactly one.
This requirement follows from the airway design described in
section II-D. Likewise, land vertices are nodes where a UAS
route may terminate because the in-degree is exactly one.
The network shown in Figure 6 has a total of 48 vertices: 24
launch vertices and 24 land vertices. Figure 7 demonstrates
the network capacity as it relates to the speed of vehicles,
where the “mean total flow” represents the total number of
vehicles scheduled during the simulation.



Fig. 6. Example Airway Model with Lanes

Fig. 7. Total network flow versus the speed of vehicles

Reliability represents the variability in scheduled release
times versus desired release times. To show this relationship,
a simulation was run on the network in Figure 6, where
a fixed speed of 5 m/s was implemented and an increas-
ing number of scheduling requests were made. Scheduling
requests represent a demand on the system and result in
utilization of the airspace; Figure 8 demonstrates this rela-
tionship. The relationship between reliability and utilization
is shown in Figure 9, where the mean difference between
desired and scheduled release times are plotted along with
error-bars representing the standard deviation in the 10 trials
that were run for each data point.

IV. DISCUSSION

The linear relationship demonstrated in Figure 7 suggests
that greater capacity can be obtained by increasing the speed
of vehicles on the network. This fact provides a conceptual

Fig. 8. Airspace utilization versus the number of scheduling requests. In
this simulation the vehicle speeds were fixed to 5m/s and the headway to
25m.

Fig. 9. Difference between desired and scheduled release time versus
airspace utilization. The error bars represent the standard deviation and the
round markers show the mean.

framework for policy decisions regarding speed and capacity
for airspaces. For example, it may not be possible, or
desirable, to add lanes to popular corridors if the surrounding
airspace is crowded; airspace regulators can consider the
projected demand and operational capabilities of vehicles,
then use this straightforward relationship to design fast-lanes.

The simulations presented here assumed that USS were
scheduling fixed routes, i.e., they were not dynamically
routing based on the current utilization of the network. As
the utilization of the network grows, the probability that a
series of reservations exists to accommodate a route declines.
This relationship is demonstrated in Figure 8, where the
utilization first grows quickly because most routes can be
accommodated, but then slows as this reconciliation becomes
more rare. Eventually, the utilization approaches a limit that
is determined by the network structure. In this case, the
value for maximum occupancy that determines the utilization
was calculated by multiplying the maximum occupancy of



a single segment (edge) by the number of segments in the
network. The apparent 50% limit in Figure 8 stems from the
bottleneck produced by the division of vertices into land and
launch types. Since all traffic must pass through these nodes,
they become the limiting factors.

Figure 9 demonstrates the relationship between reliability
and utilization, where reliability is represented by the differ-
ence in time between the desired and scheduled release times.
When the release-time difference shows high variability, such
as when the network utilization is high, then a USS cannot
make reliable predictions for deliveries, for example. This
has repercussions for many important use-cases that are being
considered for USS, such as medical delivery and emergency
response. The airspace regulator should consider capping the
utilization of critical corridors to ensure reliable scheduling.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, a lane-based airspace structure and corre-
sponding scheduling algorithm were examined in detail. A
design consisting of a roundabout was also presented that
enables multiple aircraft to occupy an intersection, collision-
free. The metrics of capacity, utilization, and reliability are
critical to consider when designing an airspace to serve a
transportation demand, and the lane-based approach makes
the necessary calculations palatable. The structured and or-
ganized nature of the lane-based approach is important when
considering the complex requirements of users that want to
deploy within the system. It enables transportation planners
to reuse concepts from ground-traffic engineering, such as
flow and density, as well as provide tools for determining
the state of the transportation system.

Future research will include uncertainty in speed due
to environmental factors and study adjustments necessary
for the width and height of lanes to take into account
the operational requirements of vehicles. Generally, minor
variability in vehicle speeds can be compensated for by
increasing headway requirements, and larger variability can
be accommodated by dividing or adding lanes with speed
policies.

The approach presented in this paper can also be applied to
ground-based autonomous vehicles, however an assessment
of the uncertainty due to non-cooperative vehicles (those not
conforming to a scheduler) is needed. While the introduction
included a reference to the airspace-over-roads concept, this
lane-based approach functions more as a conceptual frame-
work for designing and organizing autonomous vehicles
in any situation where coordination is necessary to avoid
collision.
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