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Abstract— We investigate methods to define a probabilistic
logic and their application to multi-source fusion problems in
geospatial decision support systems1. We begin with a discussion
of augmenting propositional calculus with probabilities. Given a
set of sentences, S, each with a known probability, the problem
is to determine the probability of a query sentence that is
a disjunction of literals appearing in S. First, we examine
Nilsson’s [19] solution based on the semantic models of the
sentences; we develop two different approaches to solving the
problem as posed: (1) using a linear solver, and (2) geometrically
finding the intersection of a line with the probability convex
hull. Nilsson’s approach provides lower and upper bounds
on the solution. We then propose a new approach which
finds probabilities for the atoms found in the sentences, and
then uses these probabilities to compute the probability of
the query sentence. Finally, we describe how this probability
representation method can form the basis for a probabilistic
logic system to support a multi-source knowledge base for
decision support.

I. INTRODUCTION AND BACKGROUND

Given the uncertainty associated with statements about
the world, or with sensor data, or hypothesis formation
in general, it is important to be able to represent such
uncertainty appropriately for each source of information, and
to be able to combine those disparate types of uncertainty
in a consistent manner. For example, sensor data may have
associated Gaussian or other types of noise models, while
computational processes may have algorithmic uncertainty
due to truncation errors, roundoff errors, etc. Logical sen-
tences have commonly been used to represent knowledge,
and it is useful to associate an uncertainty with such sen-
tences.

Here we address the problem of finding a suitable repre-
sentation for uncertainty associated with logical sentences.
Although several approaches have been proposed in the
past (see [2], [10], [16], [18], [20], [23]), they generally
have some significant drawbacks. Usually, these have to do
with the computational complexity of the semantics of the
sentences (i.e., finding the set of consistent truth assignments
is exponential in the number of sentences). There have been
some attempts to address these issues, but even those gen-
erally have algorithmic issues. For example, Markov Logic
Networks solve the problem by creating a Markov network;

1This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA9550-17-1-0077.

however, this method is exponential in the number of max-
imal cliques in the graph [7], and usually MCMC sampling
is used to estimate a solution. More recently, Gogate and
Domingos [14] have proposed probabilistic theorem proving
(PTP):

by reducing it to lifted weight model counting.
Model counting is the problem of determining the
number of worlds that satisfy a KB (knowledge
base of sentences). Weighted model counting can
be defined as follows. Assign a weight to each
literal, and let the weight of a world be the product
of the weights of the literals that are true in it.
Then weighted model counting is the problem of
determining the sum of the weights of the worlds
that satisfy a KB.

This approach is based on Nilsson’s early work on proba-
bilistic logic [19] (for more details on Nilsson’s approach,
see Section 2). In particular, they use Nilsson’s framework
in which the probability of a query formula is equal to the
sum of the probabilities of the worlds that satisfy it, and give
a formula:

P (T | K) =

∑
x 1T (x)

∏
i Φi(x)

Z(K)
,

where P (T | K) is the probability of the query, T , given
the knowledge base of sentences, 1T (x) is the characteristic
function for when the query is true in a possible world, and
Φi(x) results from using a set of potential functions (see [14]
for details on this) to estimate the probability of the possible
world (i.e., P (x)), and Z(K) is a normalizing factor found
by a weighted model counting method. This method also
requires exploring the semantic models for the KB ∪ {T},
or using Monte Carlo to sample that space.

We describe here an alternative approach which avoids the
computation of the semantic models, and provides a solution
for P (T | K). Basically, this is done by exploiting the
probability of a disjunctive clause, and developing a set of
equations from the sentences and their probabilities, and then
solving those equations (where the number of equations is
equal to the number of sentences).



II. NILSSON’S PROPOSED METHOD FOR PROBABILISTIC
LOGIC

Our approach to probabilistic logic starts with an analysis
of Nilsson’s method [19] (note that Hailperin [15] gives
an in-depth description of this method which was first
proposed in the 1800’s by George Boole [8]). Given a set
of n sentences, S = {S1, S2, . . . , Sn}, in the propositional
calculus, where {S1, . . . , Sn−1} is the KB and Sn is the
query, he first finds the set of models of the sentences (i.e.,
the set of truth value assignments to the sentences that are
consistent). Figure 1 shows the general semantic tree [17]
for a set of sentences. A simple example given by Nilsson

Fig. 1. The General Semantic Tree for a Set of Sentences.

is shown in Figure 2 which is the semantic tree for the
sentences S = {S1, S2, S3} = {P,¬P ∨ Q,Q}; we will
call this the Modus Ponens Problem. That is, show that
KB = {S1, S2} |= S3. This set of models is formed (as
columns) into a matrix, V :

V =

 1 1 0 0
1 0 1 1
1 0 1 0

 ,
where V is determined by expanding the semantic tree
of all possible combinations of truth assignments to the
sentences; note that the determination of the models of a
set of sentences has computational cost exponential in the
number of sentences or O(2|S|), where | S |= n. Each row,
i, of V gives the truth assignment of sentence Si in the
models.

Fig. 2. The Semantic Tree for S = {P,¬P ∨Q,Q}.

Nilsson exploits the relation between the probability of
the sentences, Π, and the probabilities of the models of the
sentences, P , by means of the truth value models themselves,
V . Π is an n× 1 vector, P is an m× 1 vector, and V is an
n×m array such that:

Π = V P.

Note that each column of V is a distinct possible world
(model) for the sentences.

In order to determine Π(n), the probability of the last
sentence. Nilsson proposes to solve:

Π′ = V ′P,

where Π′ is the first n− 1 elements of Π, and V ′ is the first
n − 1 rows of V . In addition, to impose the constraint that∑m

i=1 P (i) = 1, a new first element, 1, is added to Π′, and an
all 1 first row is added to V ′ (this specifies that True is true in
all models). We can now solve for P . However, this system
is generally under-determined and can be severely so for
large n. Nilsson provides some ways to overcome this, but
the computational complexity of the approach makes solving
for n > 10 difficult.

A. Linear Solvers for Π′ = V ′P

A method is now given which can find the lower and
upper bounds for the probability of the query sentence using
standard linear solvers (in this case lsqlin in Matlab). Given
the matrix V , and a set of probabilities, Π, for the n sentences
(i.e., n − 1 from the knowledge base and the nth sentence
which is the query), do the following:

1) Add a row of 1’s as the first row of V ; call this new
matrix Vaug .

2) Add a 1 as the first element of Π; call this vector Πaug .
This means that Πaug(k) is Π(k−1) for k = 2 . . . n+1.

3) Set Πaug(n+ 1) to 0.
4) For y = 0 to 1 in steps of 0.01, set Πaug(n+ 1)← y,

and solve:
Πaug = VaugP.

The first two steps ensure that the probabilities of the possible
worlds sum to 1. The last step produces a solution for
each guess for the value of the probability of the query
sentence. Here we use lsqlin which returns a zero probability
for one of the world models when the guess value, y, is
not a valid solution. For example, in the Modus Ponens
Problem, we find [0.4, 0.69] as the bounds for the probability
of the query sentence, Π(Sn+1). The upper bound should
be 0.7, and the difference is due to the step size for y.
Alternatively, constraints can also be added to the Matlab
lsqlin call in order to find the bounds; this computation and
returns [0.4, 0.7] as the upper and lower bounds.
Summary: The basic method proposed by Nilsson does not
provide a unique solution for the probability of the query
sentence since the system is under-determined. Moreover,
the computation of the semantic tree is exponential in the
number of sentences.



Fig. 3. The Convex Hull for the Modus Ponens Semantic Tree.

B. A Geometric Approach to Find Lower and Upper Bounds

Nilsson also points out that consistent probability assign-
ments lie within the convex hull of the semantic vectors
(columns of V ). Figure 3 shows the convex hull for the set
of vectors in the Modus Ponens Problem. The axes are
the probabilities of the sentences; the figure shows that the
bounds on the probability of the query (i.e., Π(Sn)) can be
found by intersecting the line parallel to the probability of the
P (Q) axis (and in general, the axis for the last sentence or
query) that goes through the lower dimensional point in the
space of the probabilities of the sentences whose probabilities
are known, and the convex hull of the V column points.
The figure indicates that these bounds are 0.4 for the lower
probability and 0.7 for the upper bound. The results found
here were produced using Matlab.

III. A NEW METHOD FOR PROBABILISTIC LOGIC

We propose an alternative approach that overcomes the
complexity issue. First, we assume that the sentences are
given in conjunctive normal form. This means that each
sentence is a disjunct of literals (an atom or its negation). Our
second assumption is that P and Q are independent random
variables. In this case, P (P ∧ Q) = P (P | Q)P (Q) =
P (P )P (Q); note that if this assumption is violated, our
methods also allow the bounds on the probability to be
determined. Next, we determine the set of logical atoms (i.e.,
variables) in S; let V = {V1, V2, . . . , Vk} be this set. In this
case the probability of a sentence can be computed from the
probability of the literals as follows:

P (L1 ∨ L2 ∨ . . . ∨ Lp) =

P (L1) + P (L2 ∨ . . . ∨ Lp)

−P (L1)P (L2 ∨ . . . ∨ Lp),

where the probabilities of clauses on the right hand side are
computed recursively.

Assuming that the logical (random) variables are indepen-
dent, each sentence gives rise to a (usually) nonlinear equa-
tion defined by the recursive probability of the disjunctive
clause as defined above. The resulting set of equations can
be solved using standard nonlinear solvers (e.g., fsolve in
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Fig. 4. Error in Known Sentence Probabilities and Sentence Probabilities
based on Atom Probabilities.

Matlab), and a set of consistent values for the probabilities
of the atoms determined.

Consider Nilsson’s example: S1 = P , S2 = ¬P ∨Q, and
S3 = Q with Π(S1) = Π(S2) = 0.7. The resulting equations
for fsolve are:

F (1) = −0.7 + x1

F (2) = −0.7 + (1− x1) + x2 − (1− x1)x2

where x1 = P (P ) and x2 = P (Q). These are derived as
follows:

Π(S1) = P (P )

⇒ 0.7 = P (P )

⇒ 0 = x1 − 0.7

⇒ F (1) = x1 − 0.7

Π(S2) = P (¬P ∨Q)

⇒ 0.7 = (1− P (P )) + P (Q)− (1− P (P ))P (Q)

⇒ 0 = (1− x1) + x2 − (1− x1)x2 − 0.7

⇒ F (2) = (1− x1) + x2 − (1− x1)x2 − 0.7

A solution found by the nonlinear solver (fsolve in Matlab) is
x1 = 0.7 and x2 = 0.571. The equations for F are generated
automatically from the sentences and then solved (For F=0.
Figure 4 shows the norm of F (i.e., distance function between
the known sentence probabilities and the atom determined
sentence probabilities) over all possible atom probability
combinations. The gradient vectors are shown in the x-y
plane, and as can be seen, they all lead to the optimal
assignment of atom probabilities. (Note that although the
surface is shown as a max, fsolve finds the minimum of 1
minus this distance.)

Consider a second example with 16 sentences and 9 atoms:

1. A
2. ˜A v C v D



3. ˜B v C v D
4. ˜A v E v F
5. ˜B v E v F
6. ˜C v G v H
7. ˜D v G v H
8. ˜E v G v H
9. ˜F v G v H

10. ˜A v G v H
11. ˜C v ˜G
12. ˜C v ˜H
13. ˜E v ˜G
14. ˜E v ˜H
15. ˜D v I
16. ˜F v I
17. I -- query

The solution to this has P (A) = 1, P (B) ∈ {0, 1}, P (C) =
0, P (D) = 1, P (E) = 0, P (F ) = 1, (P (G), P (H)) ∈
{(0, 1), (1, 0), 1, 1)}, P (I) = 1. Assigning sentence proba-
bilities all 1 (i.e., P (Si) = 1, i = 1 . . . 16), the nonlinear
solver finds the following 3 solutions from starting at initial
estimate all 0’s, all 0.5’s and all 1’s, respectively:

1 0 -0 1 0 1 0.9998 0.9998 1
1 0.0644 -0 1 -0 1 0.9998 0.9998 1
1 1 -0 1 -0 1 0.9997 0.9997 1

A. The Nonlinear Probabilistic Logic (NLPL) Algorithm

Of course, one problem with the nonlinear solver approach
is that it may not find a solution, even when one or more
exist. For this reason and the fact that high-dimensional
spaces (in the number of atoms or sentences) may also pose
problems for such solvers, we have developed a robust non-
exponential method. This method (NLPPL) avoids the calcu-
lation of the semantic tree and provides a set of probabilities,
A, for the atoms where these probabilities produce the known
sentence probabilities. A can then be used to compute the
probability of the clauses in the KB (call this vector S̄A), as
well as the probability of the query since it is a disjunction in
the literals of the atoms. The NLPL algorithm works well on
knowledge bases whose disjunctions have only a few literals.

Summary: This method avoids the exponential cost of the
semantic tree expansion, and finds a unique (deterministic)
solution for the probabilities of the atoms in the KB, and
minimizes ‖p̄− S̄A‖.

IV. EXPERIMENTS

In order to demonstrate the performance of NLPL, a
method is required which allows knowledge of the exact
probabilities of any logical (disjunctive) clause formed from
the literals in the KB. Adams [1] describes a method which
allows for this using what he calls basic states. Note that
these are called complete conjunctions by Thimm [22], and
he uses them to determine the consistency of an assignment
of probabilities to a set of logical sentences. Let V =
{V1, V2, . . . , Vk} be a set of Boolean random variables. Let’s
represent the probability of each variable as a subset of the

Algorithm: Nonlinear Probabilistic Logic (NLPL);
Data: KB - a CNF knowledge base with

C = {Ci, i = 1 . . . n}, a set of disjuncts; p̄, an
n-vector of probabilities for the clauses

Result: A = {ai, i = 1 . . . k}, a set of probabilities for
the logical atoms in the KB

create a set of formulas, F , from C;
while ∃f ∈ F with only one unknown atom probability
do

solve for the atom probability in f
end
while error > tolerance and iteration < maxIter do

pick an atom whose probability is unknown;
change its value a small amount to reduce the
distance between the p̄ and the S̄A.

end

Algorithm 1: The Nonlinear Probabilistic Logic (NLPL)
Algorithm.

unit square. Then the power set of V provides a set of distinct
regions described by the k-bit binary numbers from 0 to 2k;
if bit b is 0, it means that region b is excluded, while a 1
means it is included (note that the low order bit is considered
to be bit 1). Thus, for a 3 variable case, 000 means the region
which is not in any of the regions of the 3 variables (i.e., the
probability of ¬V1 ∧ ¬V2 ∧ ¬V3).

For example, Figure 5 shows a 3-variable set of basic
regions. The left side shows the regions (each basic state is a
different color), and the right side shows the probabilities of
each basic state. This set was produced by randomly picking
3 circle centers and radii, and then computing the basic state
regions from their power set (each region corresponds to a
unique 3-bit binary number). Given the probabilities of the
basic states, the probability of any disjunctive clause can be
computed by converting the clause to conjunctive form (i.e.,
negate it), matching the resulting asserted set relations to
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the basic states, and summing the probabilities of matching
states. E.g., the probability of V1 is:

P (V1) = P (001) + P (011) + P (101) + P (111)

Given this tool, the experiment is performed as follows. A
set of 200 sample knowledge bases is generated, where each
randomly generated sample has between 2 to 10 literals, and
between 2 to 20 disjuncts. The ground truth probability for
the logical atoms is determined using the basic states, and
then the NLPL algorithm is given the KB and clause prob-
abilities, and produces its values for the atom probabilities.
The performance is measured as µ, the mean error in the
individual atom probabilities, and was found to be:

µ =
1

200

200∑
i=1

| p(i)− SA(i) |= 0.0424

with variance σ2 = 0.0039. Thus, we conclude that a mean
error of about 4% is to be expected in the atom probabilities
found by NLPL.

The above described experiment is only limited in the
number of variables due to the fact that the ground truth
requires the computation of the power set of the variable
regions. An alternative problem is now described which
highlights the computational effectiveness of the NLPL al-
gorithm. We define the k-fold Modus Ponens Problem as
follows: Given a knowledge base, KB with k variables and
k clauses, C, of the following form:

C1 ≡ V1
Ci ≡ ¬Vi−1 ∨ Vi, i = 2 . . . k

with the appropriate clause probabilities, find:

P (Vk)

The NLPL algorithm computes this directly from the equa-
tions, and is approximately linear in k (i.e., O(k)). Neither
Nilsson’s method nor Markov Logic Networks can solve this
for very large k. Figure 6 shows timing results for NLPL on
this problem for k = 2 . . . 150.

V. CONCLUSIONS AND FUTURE WORK

The NLPL algorithm produces very usable results proba-
bility (likelihood) assessment of statements in logical knowl-
edge bases with reasonably low complexity. However, there
are some possible improvements. A major one is to more
accurately determine P (A∧B); whereas we assume random
variable independence, it is possible use P (A∧B) = P (A |
B)P (B) and if information about P (A | B) becomes
available, use those. For example, if it is known that A ` ¬B,
then P (A | B) = 0; also, if B ⊆ A (or A is always
entailed by B), then P (A | B) = 1. Note that these are
the extreme values of P (A | B), and that the value we use,
P (A), is intermediate between these extremes, and serves as
a weighted estimate.

We also plan to explore the use of logical argumentation
theory to reduce the complexity of the query probability
calculation; for more on argumentation, see [3], [4], [5],

[6], [9], [11], [12], [13], [21], [24]. Given a query, Q, an
argument for the query is a minimal, consistent set of clauses,
α, from the knowledge base, such that α ` Q. A smaller
set of clauses will most likely reduce the execution cost of
NLPL. We also intend to explore how this approach can be
used in a non-monotonic knowledge base setting (i.e., where
the information updates may produce contradictions – this is
where argumentation will be most useful).

We have examined Nilsson’s probabilistic logic and dis-
cussed its shortcomings; moreover, we have provided new
ways to solve this problem and obtain the unique solution
(assuming the atoms are independent random variables). We
believe that this new approach offers an effective and efficient
approach to providing a probabilistic logic for argumentation.
We are currently extending this approach to First Order
Logic, as well as testing it on a set of geospatial intelligence
applications.
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