
BRECCIA: A Multi-Agent Data Fusion and Decision Support Framework
for Dynamic Mission Planning

D. Sacharny, T.C. Henderson, A. Mitiche, R. Simmons, and T. Welker
School of Computing

University of Utah
Salt Lake City, UT, USA
Email: tch@cs.utah.edu

X. Fan
Nanyang Technological University

Singapore
Email: xyfan@ntu.edu.sg

Abstract— Geospatial Intelligence analysis involves the com-
bination of multi-source information expressed in logical form
(as sentences or statements), computational form (as numerical
models of physics or other processes), and sensor data (as
measurements from transducers). As systems become more
complex, the uncertainty with any bit of entailed knowledge
becomes more ambiguous and difficult to rationalize. This fact
suggests that the core purpose for data-driven dynamic appli-
cation systems is to support the goals of human agents, which
ultimately includes making rational decisions, and therefore
must integrate neatly within the human decision-making frame-
work. Despite the fact that continuous models are the most
accurate model of the environment, decision making is a discrete
process that requires rational logic and a well-defined language
to support communication between agents. The process of
fusion of information from continuous and discrete models
and applying decision-making is analogous to the cognitive
process of humans, which suggests a cognitive framework for
computation is warranted. We propose BRECCIA, a Geospatial
Intelligence analysis and decision-support system, designed to
support rational decision-making in continuous environments
with the following characteristics: the fusion of discrete logical
processes and continuous models, the ability to simulate courses
of action that take into account real-time information, and the
ability to automatically and continuously plan based on real-
time information. In addition to the theoretical foundations
underlying this system, we apply the framework to a particular
scenario that includes planning and executing a simulated
multi-agent UAV mission in an urban environment.

I. CONTRIBUTIONS

The BRECCIA system is composed of multiple BDI agents
(called PL-agents, for Probabilistic Logic), each of which is
composed of a probabilistic inference module, detailed be-
low. Agents are designed using an extension of the language
AgentSpeak, called Jason [1]. Specializations of the PL-agent
in the context of mission-planning may include:

• Mission-planner: responsible for constructing high-level
plans such as reconnaissance missions.

• UAV-manager: responsible for managing the state and
schedule of multiple unmanned air-vehicles (UAV).

• UAV: responsible for managing the state of a particular
UAV.

• Weather-monitor: responsible for maintaining assump-
tions about the weather in named-areas-of-interest
(NAOI) or along particular paths.

• User-manager: responsible for maintaining assumptions
about particular users of the system. For example,

whether a prior simulation’s assumptions may have
changed due to current information.

BRECCIA is designed to integrate with human agents by
mirroring a simplified cognitive model, called the belief-
desire-intention (BDI) model, and incorporating fast prob-
abilistic logic to provide simple justifications for planned
actions. We assert that probabilistic logic provides the frame-
work for fusing uncertainty from continuous processes with
uncertainty from discrete logical models. In addition to the
fusion framework, a core requirement for adequate decision-
support systems is the ability to simulate courses of action
while integrating uncertainty about the justifications for such
actions. The central contribution of this paper is the design
of a system that supports such human decision-making.

The probabilistic logic module is a major contribution
to this multi-agent design (for a formal reasoning behind
using modules in BDI architectures, see [4]). Within the
module, justifications and probabilities are assigned to PL-
agent beliefs that are entailed from the knowledge base.
Probabilities and justifications are attached to beliefs via
annotations. For example, a belief that follows from beliefs
about the weather may be represented as:

weather ok[p(0.86),

justification(mat imp(weather ok))]

This belief states that the weather is ”OK” with probability
0.86 and with a justification that traces back to a material
implication rule in the knowledge base. Custom rules in the
knowledge base, such as the material implication referenced
in the above justification, enable a special backward chain-
ing in the probabilistic logic module. Probabilistic material
implication rules are defined as in the following example:

mat imp(weather ok,

[visibility ok, temperature ok])[p(0.95)]

This rule states the following, in traditional logic:
(visibility ok ∧ temperature ok) =⇒ weather ok, and
that this rule holds with 0.95 probability. The backward
chaining algorithm is shown in Algorithm 1. Critical to the
implementation of Algorithm 1 is the use of the non-linear
probabilistic logic (NLPL) function. This function represents



Data: L← List of antecedents
Result: p(C) - The probability of the consequent
matched beliefs = [empty list];
for each A in L do

belief ← match in kb(A);
p(belief)← extract probability(belief) ;
append(matched beliefs, belief [p(belief)]);

end
p(C) = run nlpl(matched beliefs);
add C[p(C), justification(mat imp(C)] to KB;

Algorithm 1: Probabilistic Backward Chaining

a novel approach to fusing probabilities of propositions, and
is detailed in [2].

At the heart of probabilistic logic is the notion of worlds
[3], the concept of which has been explored as a unifying el-
ement of knowledge representation in [5]. BRECCIA utilizes
the notion of worlds in two aspects, first in the context of
probabilistic logic, and second in the context of simulations.

BRECCIA agents are capable of reasoning about beliefs
in multiple worlds, or more concretely, namespaces [4], to
facilitate simulations by users and eventually autonomous
agents. The experimental simulation, detailed in the results
section, is executed by a user that endows the BRECCIA
agents with particular beliefs about a particular world.

Probabilistic logic represents a high-level form of data
fusion because uncertainty associated with low-level func-
tions are translated into the discrete domain of propositional
logic. For example, mission success may be defined by a
multitude of factors and one of which may include whether
an unmanned air-vehicle is able to reach a destination by a
specific time. That determination may depend on the weather,
which entails a certain probability. BRECCIA agents that
specialize in the domain of weather, for instance, execute
plans to gather data and translate it into logic statements with
probability. Finally a human agent may query the system for
mission success to obtain a high-level interpretation of all
the mission’s parameters.

BRECCIA embraces a data-driven approach by connecting
belief-revision to plans and actions. As a concrete example,
consider a user of BRECCIA that has completed a number of
simulations under the assumption that visibility is good with
probability 0.9. This fact is represented in the user agent as
follows:

visibility(good)[p(0.9), source(weather monitor)]

An associated data-driven plan, executed when certainty has
fallen below 0.6, to notify the user that their simulations may
be invalidated due to changed assumptions, is represented as
follows:

+visibility(good)[p(X)] : X < 0.6←!tell user

This concise representation of data-driven planning is the
hallmark of reactive systems. In addition to the reactive
nature of BRECCIA, the system also exhibits proactive

Data: L← List of justifications
Result: Reduced Uncertainty
matched beliefs = [];
for each A in L do

belief ← match in kb(A);
p(belief)← extract probability(belief) ;
append(matched beliefs, belief [p(belief)]);

end
!reduce uncertainty(min(p(matched beliefs)))
p(C) = run nlpl(matched beliefs);

revise C[p(C), justification(mat imp(C)] in KB;

Algorithm 2: Uncertainty Reduction

behavior by embracing the goal-driven nature of the BDI
architecture. Our main proactive component is our algorithm
for uncertainty reduction. Agents in BRECCIA may be
programmed to achieve this particular goal in the following
syntax:

!reduce uncertainty(proposition)

Algorithm 2 shows how BRECCIA currently reduces uncer-
tainty by recursively finding the minimum probability in a
dependency tree and adding the goal to reduce uncertainty
for that belief. Contingency plans may also be executed in
the case that the minimum probability belongs to a base
assumption that cannot change.

II. RESULTS

A simulated mission scenario containing a number of base
assumptions about the world is executed on the Jason frame-
work. There are 23 sentences distributed across three agents
(mission planner, uav manager, and weather monitor). Ma-
terial implication rules are each given a probability of 0.9,
while ground atoms all have probabilities of 0.8. The material
implication rules are as follows (the agent is shown as a
predicate to the rule):

mission planner(mat imp(collection done,

[raven infra red, target loiter ok])),

mission planner(matimp(path ok,

[raven power ok, raven battery ok

speed known, altitude known,

loiter time known,

route time known, naoi defined])),

mission planner(matimp(mission ok,

[raven platform available,

raven air control ok, weather ok,

collection done, path ok,

crew available, air defense known])),

weather monitor(mat imp(weather ok,

[wind under 17, precip low,

visibility ok, temperature ok]))



Fig. 1. BRECCIA Mission Simulation Output

The simulation is run by a user agent with the following
plan:

+!run sim < −
.print(”Running simulation”);
.send(mission planner, askOne,

p(mission ok,X), A);

.print(”mission planner returned: ”, A);

.send(mission planner, achieve,

reduce uncertainty(missionok, Y ), Z);

.print(”Uncertainty reduction produced result:”, A);

BRECCIA finds the following values for the implicit
atoms: p(weather ok) = 0.7559, p(collection done) =
0.84375, p(path ok) = 0.5232, and p(mission ok) =
0.2683. The uncertainty reduction locates the lowest prob-
ability, path ok and executes a simulated plan to increase
it. The simulated plan increases the probability of path ok
to 0.85 by increasing each of its dependent atom proba-
bilities to 0.95. The final query probability is resolved to
p(mission ok) = 0.5532. Figure 1 shows the console output
from the simulation.

III. ACKNOWLEDGMENT

This material is based upon work supported by the Air
Force Office of Scientific Research under award number
FA9550-17-1-0077.

REFERENCES

[1] R.H. Bordini, J.F. Huebner, and M. Wooldridge. Programming Multi-
Agent Systems in AgentSpeak using Jason. Wiley Series in Agent
Technology. Wiley, Hoboken, NJ, 2007.

[2] T.C. Henderson, A. Mitiche, R. Simmons, and X. Fan. A Preliminary
Study of Probabilistic Argumentation. Technical Report UUCS-17-001,
University of Utah, February 2017.

[3] N. Nilsson. Probabilistic Logic. Artificial Intelligence Journal, 28:71–
87, 1986.

[4] G. Ortiz-Hernández, J.F. Hübner, R.H. Bordini, A. Guerra-Hernández,
G.J. Hoyos-Rivera, and N. Cruz-Ramı́rez. A Namespace Approach
for Modularity in BDI Programming Languages. In M. Baldoni, J.P.
Müller, I. Nunes, and R. Zalila-Wenkstern, editors, Engineering Multi-
Agent Systems: 4th International Workshop, EMAS 2016, Singapore,
Singapore, May 9-10, 2016, Revised, Selected, and Invited Papers,
pages 117–135, Cham, 2016. Springer International Publishing.

[5] Jonathan R. Scally, Nicholas L. Cassimatis, and Hiroyuki Uchida.
Worlds as a unifying element of knowledge representation. Biologically
Inspired Cognitive Architectures, 1:14–22, July 2012.


