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Abstract— A Belief-Desire-Intention (BDI) framework closely
resembles human practical reasoning approach in day-to-day
life, and is a well-studied architecture. The wreath product
cognitive model, first described by Leyton is an abstract,
although powerful, model which closely couples perception and
actuation for representing shape. However, no implementation
of the wreath product model exists. Our work is an attempt to
combine the wreath product knowledge representation mech-
anism with a BDI architecture that works in a real-world
setting. A prototype implementation of this combination is
demonstrated on an iRobot Create differential-drive robot, with
a Kinect One structural sensor, in an indoor environment. The
effectiveness of our framework is demonstrated by its accuracy
for mapping the environment and localization of the robot for
navigation purposes.

I. INTRODUCTION

We have examined a representation which features com-
bined action and perception signals; i.e., instead of having
a purely geometric representation of the perceptual data, we
include the motor actions, for example, aiming a camera at
an object, which produces actions that generate the particular
shape. This generative perception-action representation uses
Leyton’s cognitive representation based on wreath products
[27]. The wreath product is a special kind of group which
captures information through symmetries on the sensorimo-
tor data. The key insight is the bundling of actuation and
perception data together in order to capture the cognitive
structure of interactions with the world. This involves de-
veloping algorithms and methods: (1) to perform symmetry
detection and parsing, (2) to represent and characterize
uncertainties in the data and representations, and (3) to
provide an overall cognitive architecture for a robot agent.
We have previously demonstrated these functions in 2D text
classification [21], and in this work we show it on 3D
spatial data acquired by a real robot operating in an indoor
environment, that uses this cognitive architecture, and maps
the environment and localizes itself in that environment. The
cognitive architecture called the Wreath Product Cognitive
Architecture is developed to support this approach.

We have previously proposed innate theories of symmetry
as the cognitive basis for embodied robot agents [19], [20]
and more recently, a specific cognitive architecture based on
Bayesian Symmetry Networks [18], [23]. This representation
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builds on the framework layed out by Leyton [26], [27]
wherein he proposes that the wreath product captures the
notion of a specific concept which is a representation of
what something is or how it works; this may capture either a
specific instance of an existing thing or an abstract descrip-
tion of a class of related objects. For Leyton, the wreath
product provides the basis for concept representation, where
a wreath product is a group formed by a splitting extension
of the direct product of the fiber group which is acted on
by a control group (usually a permutation group) and is
derived from related perception and actuation. The distinctive
feature of his representation is that it is based on how the
set of features comprising the object to be represented is
generated – it is a generative theory of shape. Thus, the
actuation control sequences are part of the description of
an object and determine the control group hierarchy. This
is important because objects are expressed in terms of the
specific embodiment of the robot agent perceiving them. Our
contributions in this regard are as follows: (1) We implement
a powerful representation - the wreath product representation
- which works practically, and for which no implementation
exists yet, (2) we demonstrate the effectiveness of this repre-
sentation for an absolutely essential, yet non-trivial, mobile
robot functionality – localization in an indoor environment
– using wreath products as landmarks.

II. RELATED WORK

The first problem to be addressed for robot autonomy
is that of building a cognitive framework. In recent years
robotics researchers have understood the importance of de-
veloping cognitive abilities of robots, rather than explicitly
programming the robots with the knowledge and algorithms
to process that knowledge for achieving results, and a lot
of research has been devoted to achieve this. For example,
Beeson [2] has explored using cognitive maps as analogous
to human spatial mapping process using the Hybrid Semantic
Spatial Hierarchy. Desai et al. [7], [8], [9], [10] have used
affine feature descriptors for the purpose of autonomous
navigation of an Unmanned Ground Vehicle (UGV). Krueger
et al. [25] have proposed an Object-Action Complex (OAC)
as the basis for closely coupling different objects and the
actions associated with them. Interested readers can refer
to [1], [16], [17] for more examples. Various paradigms of
cognitive frameworks have also been defined, each having
its own advantages and disadvantages (see Vernon et al. [31]
for an excellent overview of cognitive architectures). The
second problem to be addressed for robot autonomy is that
of Simultaneous Localization And Mapping (SLAM) deals
with the problem of navigating within an environment as



well as mapping it at the same time under motion and sensing
uncertainties. A significant amount of research in the robotics
community is devoted to solving this problem (see [11] for
a survey on current SLAM techniques). Our work in this
regards to cognitive framework and localization method deals
with creating a cognitive framework that incorporates the
wreath product representation and based on a well-studied
architecture; the belief-desire-intention (BDI) architecture,
and is practical. We illustrate its design and performance in
this work which is divided into sections as follows. Section
III gives the basics of the BDI architecture with a description
of high-level functionality of all blocks. Section IV elabo-
rates on the algorithms that form the core of our framework.
Section V demonstrates the localization algorithm used to
measure the accuracy of our system. Section VI describes
the experimental setting, and the accuracy of results obtained.
Section VII concludes with brief explanation of potential for
future developments.

III. BDI ARCHITECTURE

We use a Belief Desire Intention (BDI) framework which
has been studied in detail by researchers attempting to create
a practical and rational reasoning agent (see [28], [32], [33]).
Our main contribution in this work is to represent beliefs
about the environment as wreath products, and to exploit
these beliefs in a mapping and localization scenario. The lay-
out of the Wreath Product Cognitive Architecture (WPCA) is
shown at a high level in Figure 1. This architecture is based
on the BDI model, and allows object representations to be
constructed from symmetry groups discovered in sensorimo-
tor data, and combined to form wreath products.

Fig. 1. BDI Architecture

The WPCA consists of:
• a set of repositories:

– belief store: maintains all beliefs about the world.
– goal store: asserts the goals of the robot agent as

well as their priorities.
– intention hierarchy: keeps a small number of cur-

rently selected most important specific goals.
– plan library: consists of processes designed to

achieve specific goals.
• a number of short-term memories:

– percepts: information derived from sensorimotor
data

– options: a set of possible intentions which are then
filtered to get a small set of intentions.

– action: selected agent action (for example, take
data, move, communicate).

– reactive action: emergency control of robot (for
example, obstacle avoidance).

• and a set of processes:
– perceive: acquire and convert raw data into percepts

(the first step toward wreath product construction).
– belief revision: updates beliefs, including: add new

beliefs, revise old beliefs and update uncertainties.
– analyzer: considers beliefs, goals and current inten-

tions and produces a new set of intentions.
– filter: selects a small set of intentions from the

options.
– plan selection: given the current intentions, find

appropriate plans to achieve them.
– reactive control: interrupt normal cognitive pro-

cessing in emergency situations.
– execute action: robot platform level control.

The mapping from percepts to action for the robot sys-
tem is called from a higher-level module that interfaces
the WP architecture to the hardware. The blocks belief
revision, analyzer, options generation, filter, plan selection,
action generation are part of the robot’s cognitive function
which processes perceptual data (executes reactive behavior
if deemed necessary), revises its beliefs based on this data,
analyzes the current intentions, goals, and beliefs to generate
options (actions that can be taken), and then selects the
plan that lays out the sequence of steps (actions) needed
to achieve a particular goal. For example, one of the goals
in our framework is to discover a world frame, and the plan
provides a sequence of actions which gather data from its
environment searching for a world frame (a corner where
two walls and the floor meet to form an orthogonal bases),
and moves the robot around in its environment until such
a world frame is found. Every plan in our framework is
a finite state machine, which assesses current beliefs and
recommends a particular action. Actions include taking data,
translating (forward or backward), and rotating in place by a
given angle (positive or negative rotation). For more details
on the workings of various blocks not discussed here, please
refer to [22].

IV. ALGORITHMS
We now elaborate on the design of the BDI framework.

The most significant modules are described at a high level in
the following subsections, and the algorithms are simplified
and details about various helper functions are omitted for
readability. Interested readers can find more details in [22].
Significant functionalities include the Environment module
and the WP BOT module.

A. Environment Interface Module

The environment interface module (consisting of the per-
ceive and action functions) serves as the interface between
the robot brain and the environment, providing access to
its sensor and actuators. This module interfaces the WP
architecture to the hardware, i.e., the robot, and the Kinect,



and thus handles the image acquisition module (which col-
lects depth and RGB data from the Kinect), execution of
actions (robot motion), other housekeeping activities, such
as termination of execution upon completion, and logging
all these processes. For the purpose of this work, this indoor
environment is a cluttered environment of a lab, or an open
area (atrium/lobby) inside a building.

B. Robot Brain: WP BOT

WP BOT is the brain of the robot that utilizes the BDI
paradigm. It is comprised of the WP discovery, localization,
belief revision, analyzer, filter, and plan selection and action
generation functions. At the start, beliefs are initialized
with the innate knowledge available to the robot, and the
variables that will persist throughout the execution of this
program. The percepts are passed on as arguments to the
DATA TO WP function (discussed in subsection IV-C be-
low), which processes these percepts to create wreath product
sets (WP SETS) that contain (possibly newly-discovered)
wreath products. The robot starts its life with little innate
knowledge. For example, part of the innate knowledge is the
transform that maps the camera frame to the robot frame.
Based on this, the robot will first discover the floor vector
(i.e., the vector of the plane that is pointing up), to identify
the floor plane, which is a special plane on which the robot
moves, and updates beliefs with this information. Once the
floor plane vector is discovered, the robot will try to discover
the world frame, which is any corner in the surroundings that
has 3 orthogonal walls (one of which needs to be the floor)
that meet at a single point.

C. Data To Wreath Products: Wreath Product Construction
Cycle

This function transforms range data from the depth sensor
into wreath products. The process starts by building planes
from 3D data points in the camera frame that are segmented
using the RANSAC (RANdom Sample And Consensus)
algorithm ([14], [34]). For example, in Figure 2 (a), the three
orthogonal planes, found during the search for world frame,
segmented using RANSAC are shown in different colors,
along with the axes found (which are the normals to the
three planes located at the origin). Even though these normals
might be very close to, but not exactly orthonormal, they can
converted into three orthonormal vectors (Mortho) using the
following equation.

Mortho = M(MTM)−
1
2 (1)

where
M = [RTxR

T
y R

T
z ] (2)

is composed of the three rotational components Rx, Ry, Rz
for transforming points from robot frame to world frame
(this orthonormal transform is used later during merging
beliefs). Each plane point is then transformed from the
camera frame to the robot frame (using the innate knowledge
of the transform RTC - camera frame to robot frame). For
each plane, the plane parameters are found, namely, the

plane normal npi using singular value decomposition (SVD),
distance to the plane from origin dpi, and error, εpi, of the
plane points fit to the plane. Duplicate planes are removed by
merging planes that have similar surface normal and similar
distance from the origin. Thereafter, lines (R) and points
(E) are found by intersection of two (i, j), or three [R×R]
planes (i, j, k) respectively. More details on the E, R, and
[R × R] notation can be found in [24]. Figure 2 (b) shows
a simple illustration of the WPs discovered by this process.
The yellow star has been added which signifies the location
of the world frame origin. The plane points (in black) are
sparsely plotted to show the 3 planes (denoted by [R × R]
and green dotted lines added for demarcation). Each plane’s
normal is shown as blue arrows. Lines R’s are intersection
of pairs of planes and are shown in red, whereas points E’s
are intersections of three planes and are shown as blue dots.
This particular image was generated from a set of beliefs
that contained 12 innate beliefs (robot pose, camera to robot
transform, gravity vector, and other information), and an
additional 11 beliefs were discovered (four planes, five lines,
and two points), for a total of 23 beliefs.

Since an indoor office environment is mostly comprised of
planar surfaces, this algorithm effectively finds most of the
planes, lines, and points, and their parametric information, if
any. All these planes, points, and lines will be added to the
WP set. Note that the superscript R - not to be confused with
the wreath product R which is a line - of a wreath product
signifies that all these WPs have been transformed from the
camera reference frame to the robot reference frame; they
will be transformed into the world reference frame when the
world frame is discovered, in the MERGE function.

D. Belief Revision

This function merges newly discovered beliefs (as wreath
products) with existing beliefs. Newly discovered WPs are
transformed into the world reference frame - denoted by
superscript W - where they are compared against the ex-
isting planes, lines, and points in beliefs to check if they
are duplicates, and to merge them if so. Functions have
been developed to match planes, lines and points with their
counterparts in the existing beliefs, and those that match are
merged. The beliefs are then updated accordingly.

V. LOCALIZATION ALGORITHM

Our localization algorithm (based on [15], [30]) works
in two steps: motion localization, and WP landmark lo-
calization. These two steps are elaborated in the following
subsections.

A. Motion Localization

This procedure updates the robot pose based on control
commands sent to the robot. The algorithm accepts the cur-
rent state µ, covariance Σ, and control ut as the arguments.
Based on whether a translation motion occurred (vt 6= 0)
or a rotational motion occurred (ωt 6= 0), the state will be
updated accordingly. This algorithm is a standard motion
model update (more details in [30]). Since the robot has



Fig. 2. WP discovery from data: (a) Shows the different planes segmented using RANSAC. (b) Shows the detailed WPs discovered.

only two discrete motions - translation and rotation - and
not a combination of both at the same time, this model is
simpler than the motion update algorithm of robots with more
complicated drive systems (see [30, Chapter 5] for more
details on this).

B. Wreath Product (WP landmark) Localization
WP landmark correspondence matches newly discovered

landmarks, Zt (observations in current timestep t, trans-
formed from robot frame into the world frame), to existing
WP landmarks in beliefs (LMs), and adds the indexes to
correspondence C if they are close enough. We localize
the robot based on the geometric constraints that must be
satisfied if the type of WP landmark correspondence is
known. For example, lines (parallel to the floor) and planes
not parallel to floor plane with intersect with the floor
plane, to form line constraints. Lines parameters from such
intersections are determined for each line; note that we are
determining on which side of these lines the robot lies. Once
this side is determined, the robot has to be on a line that is
at a certain distance from, and parallel to this observed line.
For lines not parallel to the floor, we determine intersection
of such lines or vertical planes with the floor. If multiple
constraint lines are present, pairs of such constraint lines
will intersect to give us multiple possible locations the robot
might be in (one per pair of intersecting lines), whereas for
single lines the closest point on the constraint line is our
possible location (all these possible locations will be added
to µ hypotheses, including the one determined by the motion
localization). Similarly, lines intersecting the floor planes (for
example, vertical lines) will give us points, and coupled with
already known point landmarks signify that the robot is at
a certain distance from these points, i.e., the robot has to
be on the circle(s) with these point(s) as center(s). For a
single circle constraint, the closest point on this circle to
the current robot location is an additional µ hypothesis. If
multiple circles are present, intersection of pairs these circles

will give us additional µ hypotheses similar to the case with
multiple lines. Orientation estimate θ hypothesis is simply
the difference between the robot orientation with respect to
an existing landmark, and its orientation with respect to a
newly observed landmark (θcurr+θzt−θlm), added to current
µθ hypotheses. Multiple hypotheses (Hµ for location and
Hθ for orientation) might be generated, as mentioned above,
depending on how many constraint circles and constraint
lines are discovered as explained above. These hypotheses
are combined using weights assigned to the hypotheses based
on their uncertainties, that are determined using standard
applied optimal estimate, and are based on the variance
associated with each hypothesis (see [15] for more details
on this technique).

VI. EXPERIMENTAL SETTING AND RESULTS

Sprunk et al. [29] define a detailed benchmarking protocol
for evaluation of robot indoor navigation algorithms. We use
their localization performance as a benchmark to quantify the
performance of our representational framework. In addition,
we also refer to the localization performance of Biswas et al.
[3], [4], [5], [6], Microsoft Research (MSR), and Endres et al.
[12], [13] for benchmark values.

A. Performance Measures

Tables I and II show the performance measures (in terms
of localization error in x, y-location in meters and angular
error (orientation in degrees), respectively, for the mean,
median, minimum, and maximum error encountered during
test runs. Our system (BDI) is compared against Sprunk’s
benchmark system which uses the Pioneer P3-DX robot
platform, MSR’s P1 robot platform, Biswas’ Fast Sampling
Plane Filtering (FSPF) algorithm using the Kinect, and
Endres’ hand-held SLAM implementation using the Kinect
on a dataset. Specifically, the system that resembles our
framework the most, in terms of the sensor and spatial
features used, is the FSPF system from CMU. (Statistics



System→ WPCA Pioneer MSR FSPF Endres’12
Mean 0.0989 0.22 0.23 0.7 0.097

Median 0.0948 X X 1.08 X
Min 0.0511 0.12 0.03 0.17 0.034
Max 0.2574 0.32 0.43 3.47 0.16

TABLE I
LOCATION (x, y POSE) ERROR (IN METERS) COMPARISON BETWEEN

SYSTEMS.

System→ WPCA Pioneer MSR FSPF Endres’12
Mean 10.4221 X 0.5 X 3.39

Median 8.9267 X X X X
Min 2.3491 X X X 1.84
Max 29.1521 X 2.5 X 4.94

TABLE II
ANGULAR (ORIENTATION) ERROR (IN DEGREES) COMPARISON

BETWEEN SYSTEMS.

that were not available for some of these implementations
has been marked with an ’X.’). We observe that our system
performs better than the Pioneer, MSR and FSPF systems,
and is comparable to the Endres’12 system, with respect
to the localization error. Our system does not perform so
well for the orientation error, compared to the systems that
provided orientation error data. However, it must be noted
that our algorithms have very high tolerances for landmark
correspondence since landmark rediscovery is more impor-
tant to us than filtering out landmarks that are fairly close to
one another, but which might not meet tight tolerances, which
tends to oscillate our orientation measures significantly.

VII. CONCLUSIONS AND FUTURE WORK

We have demonstrated a novel practical implementation of
a BDI architecture using wreath product representation for
environmental data. We have also shown that this implemen-
tation works very well in the context of robot localization,
one of the most essential functionality of a mobile robot,
and a precursor to other intelligent capabilities. The perfor-
mance of our localization algorithm using wreath products as
landmarks compares fairly well to localization algorithms on
other systems similar to ours; it performs better than other
systems in terms of localization error, but does not perform
well in terms of orientation error which can be attributed
to trade-off between landmark correspondence discovery,
and matching thresholds. Future work in this regard would
involve improving orientation accuracy without negatively
affection location accuracy or landmark rediscovery. One
powerful capability (discussed in our other work) involves
converting beliefs into a linear representation - for e.g.,
a string - for sharing and recovery of WPs from data,
using context-free grammar and (deterministic) pushdown
automaton (PDA). WPs can also be converted to plans, for
e.g., using the line representation R to create a motion plan
for the robot. These capabilities will be addressed in future.
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