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Abstract— We propose an active perception paradigm which
combines actuation (control signals) and perception (sensor
signals) to form concepts of shape using recurrent neural net-
works; this representation characterizes not only what the shape
is, but also how it is created. The approach is based on the group
theoretic wreath product which specifies a sequence of actions
on a set of points which when completed comprise the shape.
Leyton originally proposed the use of wreath products for
concept representation (see [6]). Wreath product descriptions
provide an abstract generative representation of shape, but
can be annotated for specific actuation systems; this provides
a mechanism for knowledge transfer across different motor
systems (e.g., visual vs. arm control). We describe how wreath
products can be implemented as recurrent neural networks,
and demonstrate their application to shape recognition.

I. INTRODUCTION

Fig. 1. The Analysis of a Shape from Input Image to Point, Translation and
Rotation Symmetries. Edge Detection: Neural Networks provide Magnitude
and Orientation of Edges in Image. Translation Symmetries: These are found
by marking pixels that have similar locale after short translation in major
edge directions; actuation model is used for this. Point Symmetries: find end
points of line segments. Rotation Symmetries: translate Frieze Expansion
Pattern (FEP) from 0 to 359 in 1 degree steps and if similar to original
FEP, then rotation symmetry exists.

The goal is to extract abstract representations of 2D shapes

based on both sensor (image) data and actuation (pan-tilt

or robot arm control) data. This sensorimotor representation

is encoded as a wreath product based on shape symmetries

as defined by group actions on point sets. Shapes can then

be classified according to the resulting wreath product. In

particular, we propose a set of recurrent neural networks for

wreath product discovery and measure their performance in

terms of the robustness of the method on a variety of shape

deformations. In addition, we measure the effectiveness of

knowledge transfer between distinct motor system represen-

tations. A high-level flow of the analysis is given in Figure 1.

As shown in the figure, edges and corners are detected in

the input image. The other initial required information is an

actuation model for whatever actuation systems are available

in the robot; these models describe the kinematic relations

of the controls to the scene. For example, a pan-tilt model

relates the commanded pan-tilt angles to the orientation of

the camera. The translation symmetry is found by using

the actuation model to move the sensor in the directions

of the highest response edges orientations. The edges are re-

computed, and any edge in the original image which matches

an edge in the shifted image gives rise to a translation

symmetry response. Neighbors with similar responses are

grouped into linear segments (represented as {e} ≀ ℜ which

signifies a point ({e}) acted on (≀) by a translation (ℜ)).

Corners are found as the closest non-responsive locations

to line segments (this effectively allows for the full line

segment wreath product {e} ≀ Z2 ≀ ℜ where Z2 acts as

a characteristic function to select points on the finite line

segment). In addition, the image is also transformed to a

Frieze Expansion Pattern (a log-polar representation [5]).

The line segments are used with the polar coordinate image

and the actuator model to discover rotational and reflection

symmetries (using 1D operators in the polar representation).

We have described elsewhere the efficacy of these methods

for document analysis [2]. The major contribution here is

that we develop these algorithms in a form more suited to

neural network expression. Once these group actions have

been recovered, they are combined into the wreath product

as a final output.

II. BACKGROUND

Leyton [6] proposed the wreath product as the basis of

cognition, and we have recently provided an implementation

for 2D and 3D shape analysis in an effort to validate the

theory (see [2]). There we demonstrated the effectiveness of

actuation-based shape analysis in terms of virtual sensors and

actuators and applied the method to character recognition in

engineering drawing document analysis (see [4] for a detailed

survey of this research area). We give here a brief technical

description of wreath products; for more information, see

Leyton.

In order to understand a wreath product we briefly ex-

plain the concept of a semidirect product in group theory,



that underlies the concept of a wreath product. Consider a

homomorphism φ given by φh(n) = hnh−1 for all n ∈ N

and h ∈ H , where H and N are groups, and H is a group

that acts on N by conjugation. For each h ∈ H , conjugation

by h is an element of Aut(N) (automorphism group of N).

Given two groups N and H , and a group homomorphism

φ from H into Aut(N), N ⋊φ H denotes the semidirect

product of N and H with respect to φ and satisfies the

following:

1) N ⋊φ H contains elements from N ×H

2) Group operation ⋆ of N ⋊φH is defined as: (n1, h1)⋆
(n2, h2) = (n1φh1

(n2), h1h2), where n1, n2 ∈ N and

h1, h2 ∈ H .

Now consider a group L where L consists of the direct

product of k =| H | copies of N, i.e., L = N1×N2× ...Nk.

The wreath product, G = N ≀H, is formed by the semidirect

product of L and H. Thus G = N ≀H ≡ G = L⋊H.

III. RELATED WORK

Another approach which includes actuation in the repre-

sentation is that of Plamondon [10], [11], [12], [13], but that

work is based on some aspects of human rapid movements.

From a psychological perspective, Noë [8] argues that “sight

and touch can share a common spatial content” and that

some higher-level abstraction exists which links movement

and sensory perception; we propose that the wreath product

is one such an abstraction.

Of course, neural networks have been shown capable

of detecting image features (e.g., corners, gradients, edges,

blobs, etc.), and more recently, some work has been done on

implementing graphics like geometric transforms on image

data. In particular, Hinton et al. [3], have proposed trans-

forming auto-encoders to produce a vector of instantiation

parameters to deal with variations in position, orientation and

scale in images; also see their work on factored higher-order

Boltzmann machines [7]. An alternative approach is given

by Berkes [1] for transformation learning, but only learn

parameters that are linear functions of the input; however,

they argue that their “model corresponded closely to func-

tional and anatomical properties of simple and complex cells

in the primary visual cortex.” None of this previous work

formulates a unified group theoretic sensorimotor analysis

as proposed here.

IV. METHOD

Here we assume that networks exist for all the processing

shown in Figure 1, except for the discovery of translation

(ℜ) and rotation (Zn) symmetries which are newly proposed

here. The discovery of translation symmetry is achieved by

moving the virtual ’eye’ and finding invariant pixels (i.e.,

there is an edge of the same orientation where they wind

up). Rotational symmetry can be found in various ways, e.g.,

(1) rotate the image a small amount and check similarity to

the original image, or (2) use the Frieze Expansion Pattern

(FEP) in which rotational symmetry is found as a translation

symmetry along the theta (horizontal) axis. Implementation

details are given in the following subsections.

A. Translational Symmetry

The intrinsic meaning of a translation symmetry in a

specific direction is that a point set moved in that direction

is isomorphic to the original set. Thus, sliding all the points

on the x-axis one unit in the positive direction results in

the same set of points (the x-axis); i.e., T (S) = S. When

dealing with finite objects (e.g., a line segment with two

end points), the translation semantics is retained by adding

a characteristic function to each point which is 1 if the point

is in the set and 0 otherwise. When points move out of the

finite line segment, they are no longer ’on’ and when they

move onto the line segment, they are ’on.’

This notion can be achieved quite simply by combining

information about edge directions of interest (say directions

with large values in the orientation histogram), an actuation

model which allows simulating a small displacement, and

a similarity function between two images. Algorithm ℜ-

Symm describes how translation symmetry is detected at

each pixel. Most of the functions used in the computation

Algorithm R-Symm

Data: image, orientation, histogram, actuation model

Result: line segments

for each orientation above threshold

move image small amount in

orientation direction and record

invariant pixels

move edge image small amount in

negative orientation direction

and record invariant pixels

every invariant pixel with similar

neighbors put in linear segments

can be implemented as hard-wired neural networks. An

image shift of any amount can be achieved by repeated shifts

in x and y using a recurrent neural network. Figure 2 shows

the neural net connections for a 1-pixel translation in the

positive x direction; a similar network exists for shift in the

y axis.

dx is computed by shifting the image in the x direction

and then subtracting the two images; dy is formed in a

similar manner. The orientation (atan2(dy, dx)) and mag-

nitude (
√

dx2 + dy2) of the gradient ∂f
∂x

are then computed

as learned neural network functions. We have trained neural

networks to compute both the magnitude of the gradient as

well as the orientation. Figure 3 (upper) shows the results of

learning the atan2 function, and Figure 3 (lower) shows the

results for the magnitude function.

A comparison of two corresponding pixel values is deter-

mined as the absolute value of their difference. Finally, the

histogram function is represented as a neural network.
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Fig. 2. Neural Network Translation (0 degrees) Mapping.
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Fig. 3. The Learned atan2 Function (upper) and magnitude (lower)
overlayed on the Actual Values.

B. Rotational Symmetry

A major cost in detecting rotational symmetries arises in

finding the location of the rotational axis (typically at the

center of a shape). This is handled here by finding the center

of mass (CoM) location for each shape of interest, and then

transforming to a polar representation expanded about the

center of mass of the shape. The FEP is easily achieved by

a simple mapping of Cartesian layout pixels to a polar form;

Figure 4 shows the wiring diagram of such a mapping as a

neural network. Figure 5 shows just the middle row of the

FEP which consists of just the point of expansion pixel for

each θ. For example, a circle is transformed into a rectangle

(see left side of Figure 6), while a square is transformed as

shown on the right side.

Fig. 4. Wiring Diagram of Neural Network Mapping from Regular Image
to FEP.

Fig. 5. Wiring Diagram of Middle Row of FEP (which Consists of Just
the Point of Expansion).

Note that rotational symmetry is found by translating

the image horizontally (with wraparound); we have shown

previously that the only translations that need be considered

are those that align max (or min) points along the upper

boundary of the shape in the FEP since symmetry requires

that such a max (or min) maps to a similar max (or min),

but we do not exploit this fact here. Algorithm Zk-Symm

describes how rotational symmetries are found. The FEP is

produced by a hard-wired neural network as shown in the

previous figures. A recurrent neural network is used to shift

the FEP in the x axis in steps of one degree, and then the

result is compared to the original FEP; if they are similar,

then the angle is output as a symmetry.



Image of Circle Image of Square

FEP of Circle

FEP of Square

Fig. 6. Image and FEP of Circle (left); Image and FEP of Square (right).

Algorithm Z k-symm

Data: FEP (one for each CoM)

Result: θ vector (symmetry angles)

forall shifts t

if similar to untranslated FEP

add t to theta vector

V. RESULTS

The method was tested on a set of standard shapes

(square, rectangle, circle, tri-lobed shape) as well as distorted

versions of these in which noise was added by deleting and

adding shape boundary points. Correct edge elements, as

well as translational and rotational symmetries were robustly

recovered. Figures 7– 14 show the results of the rotational

translational analysis on several shapes and noisy versions

of those shapes as well. As can be seen the analysis is very

robust to noise added to the shape. Note that in Figure 7,

there are four symmetries found (with near 100% similarity

measure), and these are at theta equal to 0, 90, 180, and

270 degrees; in the noisy square data analysis, the same

result holds, albeit with a lower similarity measure. Noise

is introduced by means of disturbing the boundary pixels of

the shape, and this causes a perturbation of the FEP as well.

The rectangular shape yields two rotational symmetries, 0

and 180 degrees, respectively, and these are also discovered

in the noisy data. The circle shape results in a high similarity

measure at all angles (note that the range of the similarity

measure in the plot is from 0.996 to 1 in both the perfect

data and the noisy circle shape. By way of a more detailed

comprehensive analysis of these results, consider the three

parts of Figure 14. The upper part of the figure shows the

rotational symmetry measures as the continuous curve, and

plotted on top of that are the discrete locations (i.e., displayed

as red circles) where the similarity measure had a value of

0.90 or greater. Thus, it can be seen that these maximal

matches occur at just the three rotational symmetries of the

shape. What is interesting about this is that the method is

extremely robust to the amount of noise introduced into the

shape. The noise mechanism works as follows: (1) some

percentage, p, of edge pixels are selected for distortion, (2)

a maximal distortion neighborhood size,d, is selected, and

(3) the edge pixels are chosen randomly according to p, and

then the edge pixel is displaced to another pixel location in

the d by d window surrounding the selected pixel (note that

connectivity of the figure is maintained during the process).

For the specific shape used here, p was set to 0.9, and d was

set to 1. Thus, Figure 14, middle, shows the resulting noisy

shape. The lower part of the figure shows the FEP produced

from the noisy shape. We also studied rotated versions of

the shapes and those worked well, too. The wreath product

outputs are just the catenation of the translation and rotational

symmetries.
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Fig. 7. Square Analysis.
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Fig. 8. Noisy Square Analysis.
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Fig. 9. Rectangle Analysis.

theta
0 50 100 150 200 250 300 350 400

S
ym

m
et

ry
 M

ea
su

re

0.85

0.9

0.95

1

theta

di
st

 fr
om

 fo
cu

s 
of

 e
xp

an
si

on

Fig. 10. Noisy Rectangle Analysis.

In addition to discovering the wreath product represen-

tation of the shape as a set of actuation (pan-tilt angles)

and perception signals, a neural network was learned for the

transformation from the pan-tilt actuation system to a two-

link robot arm (see Figure 15).

E.g., once the square shape is represented as a sequence

of rotations of a line segment, then the two-link manipulator

end effector can be driven through the same point set using

the wreath product description. The mean error of the neural

network produced (x,y) locations was 0.13 units.

The main conclusion to be drawn from these experiments

is that the neural network representation successfully and

robustly computes the wreath product representations (i.e.,

produces a combined perception and actuation formulation

of sensorimotor data), and has the potential to be much

lower computational complexity when fully implemented on

a native neural network hardware architecture. The results

can then be used in some form of cognitive architecture for

an embodied agent.

VI. CONCLUSIONS AND FUTURE WORK

The major contribution here is that we have shown how

neural networks can be used to derive an abstract repre-

sentation (wreath products) of 2D shape that ties actuation

theta
0 50 100 150 200 250 300 350 400

S
ym

m
et

ry
 M

ea
su

re

0.996

0.997

0.998

0.999

1

theta

di
st

 fr
om

 fo
cu

s 
of

 e
xp

an
si

on

Fig. 11. Circle Analysis.
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Fig. 12. Noisy Circle Analysis.

to sensory perception. Moreover, multiple actuation systems

can be mediated through the abstraction to translate between

distinct generative actions. Another target is to implement

the system in some hardware-based neural net system, e.g.,

SpiNNaker [9]; although execution on a system allowing

modeling with spiking neuron systems is not necessary

theoretically, it would be interesting to explore this avenue

in brain emulation. Furthermore, the work needs to be

extended to temporal sequences to actually generate the

shapes. Finally, in future work, we intend to embed this

capability in a mobile robot and extend the representation

to 3D.
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Fig. 13. Three-Figure Analysis.
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Fig. 14. Noisy Three-Figure Analysis.
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