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Abstract: In an effort to meet the changing landscape of education many departments and universities are offering more

online courses – a move that is likely to impact every department in some way (Rover et al., 2013). This

will require more instructors create online courses, and we describe here how agents and dynamic Bayesian

networks can be used to inform this process. Other innovations in instructional strategies are also widely im-

pacting educators (Cutler et al., 2012) including peer instruction, flipped classrooms, problem-based learning,

just-in-time teaching, and a variety of active learning strategies. Implementing any of these strategies requires

changes to existing courses. We propose ENABLE, a graph-based methodology, to transform a standard lin-

ear in-class delivery approach to an on-line, active course delivery system (DuHadway and Henderson, 2015).

The overall objectives are: (1) to create a set of methods to analyze the content and structure of existing

learning materials that have been used in a synchronous, linearly structured course and provide insight into

the nature and relations of the course material and provide alternative ways to organize them, (2) to provide a

Bayesian framework to assist in the discovery of causal relations between course learning items and student

performance, and (3) to develop some simple artificial student agents and corresponding behavior models to

probe the methods’ efficacy and accuracy. In this paper, we focus on our efforts on the third point.

1 INTRODUCTION

As the demand for online and hybrid courses in-

creases (Allen and Seaman, 2013) teachers that are

experienced and talented at designing and present-

ing synchronous, face-to-face courses are being asked

to adapt their material and presentation to an asyn-

chronous, online format. To many this is an unfa-

miliar approach and the process of making the tran-

sition is unclear. Since there is already an investment

in existing material and methods it is not desirable to

abandon them entirely. At the same time, this new

approach provides opportunities for new methods and

material to be of benefit. We describe how AI tools

can greatly enhance this undertaking.

Sometimes an educator is so familiar with the cur-

rent course organization that it becomes a stumbling

block for visualizing alternative options. When an-

ticipating change, it is valuable to see how existing

learning materials can be organized and used in new

ways. The purpose of ENABLE is to provide assis-

tance in making informed changes. Educators making

this transition benefit from a deeper analysis of the

contents and structure of the course material provided

by a set of AI-based methods (see Figure 1).

Figure 1: The ENABLE Course Transformation System.

This set of methods is called ENABLE, which is

not an acronym, but rather a name that reflects the

purpose to enable the implementation of quality ed-

ucational strategies. With ENABLE, educators are

able to see the relations of the existing learning items

using a visual, non-linear presentation, to predict the

impact of the organization of learning items, and to

discover poorly organized or presented material. As

an example, consider the data from a sample CS0

course, Foundations of Computer Science, taught at

Utah State University. The information about the



learning items for this course was gathered from Can-

vas (a standard learning management system) and a

graph was produced representing the current organi-

zation of the course; see Figure 2 (upper). This shows

all the learning items for the course laid out in order

across the days of the semester. The middle figure

shows the relations discovered in the course learning

items using temporal and natural language analysis.

The lower figure shows the final on-line course layout

developed by the instructor using ENABLE.

Figure 2: CS0, Foundations of Computer Science Original
Course Organization (upper). CS0, Initial Course Graph
Relations (middle). CS0, Transformed Course Organization
(lower).

For later reference, we now provide some tech-

nical notation of the course material provided by EN-

ABLE. A course map is a graph, M = (N ,E), where

N is the set of learning item, topic and unit nodes,

and E is the set of precedes, topically precedes, pre-

requisite, occurs in and is in edges (relations). Then

the class map is C = (L ,R ), where L ⊂ N is the

set of learning item nodes and R ⊂ E is the set of

prerequisite edges. A path of length k is any legal

sequence P = {n1,n2, . . . ,nk+1}, where ni ∈ L and

¬∃i, j ∋ n j prerequisite ni and i < j. Let PS be the

set of nodes in the path P. Then a traversal of C is a

sequence of paths T = (P1,P2, . . . ,Pq)∋ ∀i Pi is a path

and ∀i jPS
i ∩PS

j = /0.

2 ARTIFICIAL STUDENT

AGENTS

An automated agent is a process that exists in

some environment and is capable of flexible au-

tonomous action within that environment in order to

meet its design objectives. Such agents are used in

many applications covering a wide range of systems

that vary from small email delivery systems to large,

complex, mission critical systems such as air traffic

control (Jennings and Wooldridge, 1998). Agents are

defined by the way they perceive their environment

and how they act on that environment. Perceiving the

environment is done through sensors. Sensors range

from cameras and infrared range finders to keystrokes

and data. Acting on the environment is accomplished

with actuators that might be mechanical devices op-

erated with motors or output displayed to a screen

(Russell and Norvig, 2009). Both the way an agent

perceives its world and how it acts on its environment

are very different based on the purpose of the agent.

This promotes the use of agents in a broad range of ac-

tivities. The research presented here focuses on their

use in educational applications. Automated agents are

used in a variety of educational applications. Intelli-

gent tutoring systems have been in development and

use for decades. An intelligent tutoring system is a

system in which a computer simulates a tutor (Chou

et al., 2003). (Sleeman and Brown, 1982) describes

the major intelligent tutoring systems that were imple-

mented early on. These covered a range of subject ar-

eas including arithmetic, informal gaming, electron-

ics, and medicine. Later many intelligent tutoring sys-

tems incorporated the use of automated agents (Ca-

puano et al., 2000; Antonio et al., 2005; Giraffa and

Viccari, 1998; Hospers et al., 2003; Moundridou and

Virvou, 2002).

User modeling is exhibited by a wide range of sys-

tems. Specifically, student models have been created

and used in educational systems. Most of the work

involving student agents has been done in the field

of intelligent tutoring systems. These learner models

developed in the research laboratory are now used in

advanced commercial learning environments. These

intelligent learning systems have successfully inte-

grated learner models and have achieved widespread

usage (Desmarais and Baker, 2006). The study of stu-

dent modeling and their potential usage continues to

be an active area of research. For more on these top-

ics, see (Anthony and Raney, 2012; Baker et al., 2008;

Brusilovsky et al., 2005; Carmona et al., 2008; Conati

et al., 2002; Garcia et al., 2007; Gardner and Belland,

2012; Gordillo et al., 2013; Kobsa, 2007; Li et al.,

2011; Pardos and Heernan, 2010; Soliman and Guetl,



2013; Vomlel, 2004).

One of the differences between face-to-face

courses and online courses is the possibility of indi-

vidual students moving through the learning items in

different orders. In a classroom setting it is not likely

that students could be working on different learning

items. However, in an online course each student

could be on a different learning item at any given

time. This introduces an entirely different component

to a course. Is it possible to allow students to choose

for themselves what order to complete the learning

items? Can such flexibility be supported by the EN-

ABLE system? Is it important to establish some lim-

itations to the ordering? Can those limitations be en-

forced? To explore these questions, student agents

were created. These agents are able to traverse the

class map in a variety of orders. This represents a

student moving through learning items in different or-

ders. The agents are limited only by prerequisite re-

lations; a learning item cannot be attempted until the

agent has visited all the prerequisite learning items.

Each automated agent has a set of characteristics and

implements decision making. Each agent can perform

multiple and varied traversals through the course map.

These traversals are quantified by two values, the final

overall score and a rating for topic cohesion. The final

overall score is a percentage computed from the indi-

vidual scores and weights of the learning items. The

topic cohesion is a value that indicates how topically

related the order of the traversal is. A high number for

topic cohesion means the traversal ordered the learn-

ing items closely by topic. A lower number indicates

there was more topic deviation between the learning

items during the traversal. Topic deviation is when

there are no common topics between adjacent learn-

ing items.

In an effort to more closely replicate real stu-

dents, each agent has four characteristics: Intelli-

gence, Work Ethic, Background and Distractability.

These characteristics impact how often an agent de-

cides to not complete a learning item, how well they

do on a learning item, and how they choose which

learning item to do next. The characteristics are ab-

breviated as I, W , B, and D. Each of these character-

istics can have a value of 1, 2, or 3, where the value 1

represents the least favorable and 3 the most favorable

value for each characteristic. An agent first decides

which learning item to consider next. The ones that

are allowed are any learning item which has no re-

maining prerequisites, but there is a bias about work-

ing on learning items in the same unit. This bias is

based on the agent values for Background and Dis-

tractability. The assumptions are that students with

greater background are more comfortable moving be-

tween multiple units and the higher the agent’s Dis-

tractability the more likely they are to move from unit

to unit. Low distractability is the desired trait; a value

of 3 inicates low distractability and a value of 1 in-

dicates high destractability. The number of units to

consider is determined using the following formula:

U = B+(β−D)

where B is the agent’s rating for Background and D

their rating of Distractability, and β is an appropri-

ate constant determined from actual classroom expe-

rience. The agent randomly selects one item from the

consideration list. This becomes the current item un-

der consideration.

Once an agent selects the current item for consid-

eration, it will determine whether it will work on the

item or not. When an agent decides not to do a learn-

ing item, it receives a zero score for that item. In the

real data the zeros are significant. Although they have

low probability they have considerable impact on the

final score. The decision of whether to do a graded

learning item or not is made based on the characteris-

tics of work and Distractability. The assumptions are

that those who rate high on work are more likely to

complete a learning item while those with high Dis-

tractability are more likely to skip them. The percent-

age of how often a student agent will choose not to

work on a graded learning item is computed from ex-

isting classroom score data. The percentage of ze-

ros is determined for each assignment group and three

groups of students. Assignment groups are identified

during the course analysis phase and a group num-

ber is associated with each learning item. The groups

of students used in this analysis are determined us-

ing percentiles and the final course score. The high

student group are those with a final score between 90-

94 percentiles, inclusive. The middle group are those

students with a final score between 45-54 percentiles,

inclusive. The low student group are the students with

a final score between 5-9 percentiles, inclusive. For

each group of students and each assignment group the

percentage of zeros is computed with the following

formula:

P = Nz/N

where P is the percentage of zeros, Nz is the number

of zero scores, and N is the total number of scores.

Each percentage is evenly split between Work and

Distractability.

To determine whether a student agent works on

an ungraded learning item, work, Distractability, and

Background are considered. As with graded learn-

ing items the assumptions are that those with a high

Work Ethic rating are more likely to complete a learn-

ing item while those with high Distractability are less



likely to complete an item. In addition, Background

is considered for ungraded items. The assumption is

that those with more background are less likely to en-

gage with the supplemental material. The following

formula computes a percentage of how often an agent

chooses not to work on an ungraded learning item:

P = α0(2−Wα1 +Bα2 −Dα3)

where W is the agent’s value of Work Ethic, B is the

agent’s value of Background, D is the agent’s value

of Distractability, and αi are coefficients determined

from analysis of previous classes.

Each learning item has a different maximum num-

ber of points possible, and the distribution of scores

from the existing course varies significantly from item

to item. There were assignments that resulted in a nice

Gaussian score distribution and others that had a more

uniform distribution. To accommodate such variation

in the possible scores the first formula for determining

the score computes a percentile:

P = max(I,W )γ1 +(B+D)γ2 − γ3

where I is the agent’s value of Intelligence, W is the

agent’s value of Work Ethic, B is the agent’s value

of Background, D is the agent’s value of Distractabil-

ity, and γi is determined according to previous classes.

The score associated with this percentile is computed

using the following process. First remove all zero

scores. Zero scores have already been accounted for

when the agent determined whether to complete a

learning item or not. To include them here as well

would give greater weight to zeros than is justified by

the data. The remaining scores are then sorted in as-

cending order. Using this sorted list of scores the rank

is determined using the following formula:

R = P(N +1)

where P is the desired percentile and N is the total

number of scores. If R is an integer, the Pth percentile

is the score with rank R. When R is not an integer, the

Pth percentile is computed by interpolation. Define RI

as the integer portion of R. Define R f as the fractional

portion of R. Find the scores with Rank RI and with

Rank RI +1. Interpolate by multiplying the difference

between the scores by R f and add the result to the

lower score, and then round this result to the nearest

integer.

An exam grade computation depends on the value

of all four agent characteristics. The greatest weight

is on Intelligence. The assumption is that intelligence

will be the most likely indicator of success on an

exam. The next greatest weight is on the value of

Work Ethic. The assumption is that hard work on pre-

vious learning items will result in a better exam score.

Table 1: Seven Agent Types.

Type Agents

Background 3 2 1 3 3 3 1

Intelligence 3 2 1 1 2 3 3

Work Ethic 3 2 1 3 2 1 3

Distractability 3 2 1 2 3 1 1

A smaller weight is put on Background and Dis-

tractability. The assumption is that increased back-

ground and better focus will help with satisfactory

completion of the exam. The following formula is

used to compute the percentile for this exam:

P = η0 + Iη1 +Wη2 +(B+D)η3

where I is the agent’s value of Intelligence, W is the

agent’s value of Work ethic, B is the agent’s value of

Background, D is the agent’s value of Distractability,

and ηi is determined from previous courses.

ENABLE determines an individual weight for

each learning item:

Wi =WG j
(

Pi

PG j

)

where WG j
is the weight of the assignment group, Pi

is the points possible for this learning item, and PG j

is the points possible for the entire assignment group.

The final score can then be computed using the fol-

lowing formula:

F =
N

∑
i=1

(WiSi)

where Wi is the weight of the learning item, Si is the

score for the learning item, and N is the number of

learning items.

At this point the agents have been created and

their decision-making has been encoded. The system

can now use the agents to generate data. Each agent

has the four characteristics described earlier: Intelli-

gence, Work, Background, and Distractability. Each

of those characteristics can have three values: most

favorable, medium and least favorable. There are a to-

tal of 81 unique character combinations. Seven agents

were created with the characteristics shown in Table

1. Now we have each agent traverse the course a cer-

tain number of times. For each run, a trace is pro-

duced that identifies the order the agent traversed the

learning items. A score is kept of each learning item.

At the completion of the run a final score is calcu-

lated. At the end of a series of runs, the mean, max,

min, and standard deviation of the final scores is com-

puted. Table 2 shows the cumulative results from a

1000 run experiment with a variety of agents. These

artificial student agents can be used when analyzing

certain types of student modeling methods for better

understanding the mastery of the learning items.



Table 2: Agent Grades Produced over 1000 Trials.

B I W D Mean Max Min Var

3 3 3 3 97.98 100 91.24 1.88

2 2 2 2 87.43 95.24 74.54 11.77

1 1 1 1 43.83 74.94 17.58 61.47

3 1 3 2 89.25 96.83 74.10 9.73

3 2 2 3 91.98 98.39 80.48 7.40

3 3 1 1 69.34 88.78 36.64 90.44

1 3 3 1 82.13 95.94 57.22 48.44

3 KALMAN FILTER TRACKING

OF MASTERY OF MATERIAL

Given a course map and a method to accurately

assess a student’s mastery level of a specific learning

item (e.g., assign grades to graded learning items), we

now describe a technical approach to model and track

student mastery of the learning items during a traver-

sal of the course map. That is, at each step in the

traversal a mastery level can be determined for each

learning item for the particular student.

Let M = (N ,E) be a course map with nodes N
and edges E . Let C = (L ,R ) be the corresponding

class map for M , where L is the set of learning items

and R is the set of relations on L . Construct a vector,

x, where xi represents the mastery level of the student

for learning item Li; we have xi is in the range [0,1],
where xi = 0 means no mastery and xi = 1 means full

mastery.

Furthermore, let xt represent the mastery state at

step t. If the student knows nothing at all at the

start, then x0 = 0; however, if the student has some

background knowledge concerning a learning item Li,

then x0
i can be set to the appropriate amount.

We assume that the prerequisite relation entails

some amount of causal relation between the mastery

of the respective learning items. I.e., if A prerequisite

B, then the probability that the student masters learn-

ing item B depends on the mastery of learning item A.

We further propose as a starting point a linear function

to describe the dynamic learning process (also called

the transition model):

xt+1 = Axt +But + ε

where the matrix A describes the relation between

learning item mastery and the matrix B describes the

impact of the control variable, ut , at time t. The con-

trol variable describes what learning items the student

works on at time t as well as the amount of work,

while the first term in the transition model (i.e., Axt )

characterizes the learning impact of the mastery of the

previous learning items.

The transition model also includes a characteriza-

tion of the noise of the learning process by means of

the random variable ε ∼ N (0,σpi), where σpi is the

variance in the learning process for each individual

learning item, Li. The covariance matrix for the full

vector, x, is called R.

It is also necessary to have a model of the obser-

vation process. Mastery will be measured by means

of graded learning items, and the measurement model

is:

zt =Cxt +δ

where C is a k × n matrix providing observations of

the graded learning items. Furthermore, δ ∼ N (0,σz)
where σz characterizes the noise in the measurement

(testing) method. For the full z vector this is given by

the covariance matrix Q.

Given these transition and measurement models,

it is appropriate to use a Kalman Filter (Thrun et al.,

2005) to track the mastery level during a traversal.

Given such a model, then control vectors can be se-

lected to maximize mastery of the learning items

while minimizing needless repetition and effort.

In order to exploit this dynamic Bayesian network

approach, it is necessary to specify the matrices A,B,

and C; the covariance matrices can be set based on

actual class data or based on data generated by the

artificial agents previously described. As a first cut at

a learning material mastery model, let:

x =
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where we assume ut has one element set to 1 (or some

amount of effort between 0 and 1) meaning that only

one learning item is worked on at a time. For A, ai, j =
0 for j > i; for j ≤ i, ai, j is set to 0 if ¬(xi prerequisite

x j); otherwise, ai, j =
1

ni j
, where ni j is one plus the

number of learning items that are prerequisites for x j.

Consider the simple class map, C , shown in Fig-

ure 3. Then

A =
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Figure 3: Class Map for Simple 5-Learning Item Class;
Learning Items 3 and 5 are Graded.

and

x0 =
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Then a simple traversal such as [1,2,3,4,5] yields the

mastery level estimates shown in Figure 4.
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Figure 4: Mastery Estimates for Five Learning Item Traver-
sal.

4 CONCLUSIONS AND FUTURE

WORK

We have developed ENABLE, a course transfor-

mation system, that helps an instructor develop bet-

ter organized on-line versions of standard classroom

courses, and it has been tested on 3 introductory com-

puter science courses at Utah State University. Tech-

nical contributions include:

• course content analysis and transformation using

natural language processing and graph transfor-

mation methods to produce a course map (see

(DuHadway and Henderson, 2015)),

• artificial student agents to traverse the course map

(this paper),

• a learning item mastery model with associated

Kalman Filter mastery tracking (this paper).

This is an innovative and novel application of agent

and AI methods to computing education problems.

In the future, we intend to study the exploitation

of ENABLE in actual on-line versions of computer

science courses in order to validate the approach by

using it with human instructors and students; in the

present work, we have developed new algorithms and

showed their correctness and in simulation experi-

ments based on data from actual classes. Future work

will be undertaken both from the instructor’s perspec-

tive; e.g., using the system to detect content or struc-

tural weaknesses in the course, as well as the student’s

perspective; e.g., projected grades on future items as

well as advice on what to do to improve mastery of

the learning material – this would be accomplished

through the control vector in the Kalman Filter ap-

proach.

Another direction of interest is to extend this sim-

ple linear mastery model to a more realistic nonlinear

model using the Extended Kalman Filter, and use it

to learn the weights in the A matrix, as well as possi-

bly the I, W , B, and D values for individual students.

These issues would first be developed technically, and

then studied in the context of actual on-line versions

of these (or other) courses.
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