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Abstract— Efficiently monitoring environmental conditions
across large indoor spaces (such as warehouses, factories or data
centers) is an important problem with many applications. De-
ployment of a sensor network across the space can provide very
precise readings at discrete locations. However, construction of
a continuous model from this discrete sensor data is a challenge.
The challenge is made harder by economic and logistical
constraints that may limit the number of sensor motes in the
network. The required model, therefore, must be able to inter-
polate sparse data and give accurate predictions at unsensed
locations, as well as provide some notion of the uncertainty on
those predictions. We propose a Gaussian process based model
to answer both of these issues. We use Gaussian processes
to model temperature and humidity distributions across an
indoor space as functions of a 3-dimensional point. We study
the model selection process and show that good results can be
obtained, even with sparse sensor data. Deployment of a sensor
network across an indoor lab provides real-world data that we
use to construct an environmental model of the lab space. We
seek to refine the model obtained from the initial deployment
by using the uncertainty estimates provided by the Gaussian
process methodology to modify sensor distribution such that
each sensor is most advantageously placed. We explore multiple
sensor placement techniques and experimentally validate a
near-optimal criterion.

I. INTRODUCTION

Consider the problem of monitoring various environmen-
tal conditions over an indoor space. In settings such as
warehouses, factories or data centers, accurate estimates of
environmental conditions (such as temperature, humidity, air
particulate and composition, sound levels, static discharge,
etc.) can be crucial. Modern computing technology provides
both the hardware and software capabilities needed to solve
such a monitoring problem. A single sensor mote may
be capable of simultaneously monitoring many different
conditions and logging data over time. Work has been done
in developing such systems (see [1], [2]). There is no
lack of commercial systems to gather such data. However,
obtaining a spatially complete model from the data remains
a challenge. Regression techniques address the hard problem
of translating scattered sensor readings into a cohesive,
continuous model. In the context of our problem, the indoor
spaces to be monitored can be quite large (estimates in [3]
put the average volume of a warehouse in the United States at
over a million cubic feet). Driven by logistical and economic
constraints, a feasible sensor network for monitoring the
environment may be quite sparse, making the problem of
accurate interpolation even more difficult. Determining the
best sensor placement locations, so as to gather the most
useful data, is therefore an important problem to address.

Dynamic alternatives to a fixed sensor network using
mobile robots to take readings have been proposed (such
as in [4]). This may provide a more scalable approach for
monitoring large spaces, but the problems of interpolating
the collected data and determining the ideal locations for the
robots to visit remain. Though we focus on a static sensor
network in this work, the results are directly applicable to
environmental monitoring using mobile robots.

In response to these challenges, this paper proposes the
use of a Gaussian process based approach to modeling the
environment. The Gaussian process approach answers the
above problems. First, it allows for effectively combining dis-
crete sensor data in a continuous-domain function, allowing
queries on the value of a variable to be made at any location.
Second, the Gaussian process approach provides methods for
calculating the uncertainty associated with a given estimate.
This knowledge can be applied to determine ideal locations
for taking sensor readings, which allows for achieving the
desired precision using fewer resources.

The contribution of this paper is a novel approach to
monitoring environmental variables across a 3-dimensional
space. Specifically, we show that a Gaussian process model
based on the Matérn class of covariance functions is able to
successfully model the environment, outperforming the more
commonly used squared exponential and rational quadratic
covariance functions. We look at methods of optimizing
sensor placement, extending these techniques to sensors that
monitor multiple conditions, thereby finding the best location
to gather all relevant data.

The object of our study is the temperature and humidity
distribution over an indoor lab space. For initial investigation,
we make use of realistic data sets obtained through simu-
lation. For real-world experimentation, we deploy a sensor
network across the lab to gather temperature and humidity
data. In keeping with our aim at a solution that can scale,
we limit our use of sensors while still obtaining meaningful,
useful results.

II. GAUSSIAN PROCESSES

A Gaussian process is simply a collection of random
variables which have a multivariate normal joint distribution.
For any subset X consisting of k of these random variables,
we can construct the vector µ of their expectations and
matrix Σ of the covariance between variables. Then the joint
distribution of X is given by:

P (X = x) =
1√
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We can index a single random variable by x. The value
then of a particular random variable x represents the value
of some function f at the location x. For example, a
Gaussian process may consist of a collection of random
variables that represent the function f, where f(x, y) is
the temperature at a given location in 2-dimensional space.
If we index the random variables by xi = (xi, yi), then
f(xi) represents the temperature at location (xi, yi). The
example is 2-dimensional, but Gaussian processes can be
extended to higher dimensions. A Gaussian process, then,
can be thought of as a distribution over functions. Given a
mean function m(x) and covariance function k(x,x′) for a
Gaussian process, we can estimate the function it represents.

Gaussian processes are useful because they provide a
powerful means of regression. In the context of our prob-
lem, this means effectively combining discrete sensor data
into a continuous model, allowing us to estimate the true
temperature and humidity functions at any location in our
region of interest. Additionally, the Gaussian process model
supplies us with information about the uncertainty of our
predictions.

Constructing a Gaussian process model amounts to per-
forming a few steps. First, some assumption about the
covariance function (or kernel) must be made. The choice
of covariance function reflects our assumptions about the
characteristics of our data, so care must be taken in selection.
Generally, the kernel is chosen from among a number of
well-known functions. Free parameters in the covariance
function (called hyperparameters) must be tuned to fit the
particular data set. The process of choosing a kernel function
and learning the hyperparameters from the observed training
data is known as model selection. The selected model
can then be used in the inference process: given a set of
observations, inferring values at unobserved locations.

Details of this process as they relate to our problem are
given in the following sections. For a more thorough expla-
nation of the theory and various applications of Gaussian
processes, the reader is referred to [5], from which these
procedures are primarily drawn.

III. APPROACH

The purpose of this section is to detail the process we will
follow in constructing and refining our environmental model.
Our method for the initial deployment of the sensor network
is explained. Details of the model selection process—the
process of choosing a covariance function and learning the
hyperparameters—are given. Using the learned Gaussian
process to perform inference across the entire region—giving
estimates about environmental conditions and the model’s
uncertainty on those predictions—is explained. Finally, we
show how the model can be refined by using the information
gained from the initial model to redistribute the sensor
network in a more optimal way.

A. Initial Sensor Deployment

With no prior knowledge of the environment, initial de-
ployment of the sensor network requires uninformed deci-

sions about the placement of sensor motes. Our approach
uses the Halton sequence [6] to generate 3-dimensional
points evenly over the space. The Halton sequence is a quasi-
random sequence—the point distribution tends to be uniform
and avoids the clumping and gaps that generally occur
in random placements. Figure 1 compares 100 randomly
generated points (sampled from a uniform distribution) in
the unit square with 100 points generated using the Halton
sequence.

Fig. 1. Uniform random points (left) versus points from the Halton
sequence (right).

We take this approach as a simple means of ensuring
that our sensors have good coverage of the region. Sensor
readings from this initial distribution serve as training data
for the initial model selection process.

B. Covariance Functions

The process of model selection begins with choosing an
appropriate covariance function. The covariance function en-
codes our assumptions about the structure of the underlying
data, hence the choice is key to constructing a good Gaussian
process model. Common choices are the squared exponential
and the rational quadratic kernels. The Matérn kernel is
suggested by [7], as the squared exponential may be too
smooth for modeling many physical phenomena. We evaluate
all three kernels for application in our environmental model.
The covariance functions are shown in Table I. Note that here
we have shown one particular case of the Matérn kernel.

TABLE I
COVARIANCE FUNCTIONS
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For the given kernels, we define r = (x− x′) with x
and x′ as the input variables. The matrix L contains the
lengthscales for each of the different dimensions of x, in
our case:

L =

lx 0 0
0 ly 0
0 0 lz





The lengthscales, along with α and the output variance
σ2
f , constitute the hyperparameters for the different kernels.

These hyperparameters need to be chosen to particularize the
kernel to a given data set, as discussed in the next section.

In practice, modeling problems must account for some
inherent error on the observations; however precise, a sensor
will have some amount of noise. It is a common and
reasonable assumption that the noise is additive Gaussian.
In this case, we add a noise term σ2

n to the diagonal entries
in the covariance matrix. This parameter can be left free and
learned with the other hyperparameters, or can be constrained
to a set value. Having a detailed characterization of our
sensors, we constrain σ2

n to the known value.

C. Hyperparameters

Learning the hyperparameters for a Gaussian process
particularizes the chosen covariance function to a given data
set. We refer to this as training the Gaussian process. For
the Matérn kernel, with σ2

n constrained, the vector θ =
{lx, ly, lz, σf} represents the hyperparameters. Learning the
best hyperparameters is an optimization problem in the 4-
dimensional hyperparameter space. The objective function
we wish to maximize is the log marginal likelihood, given
in equation 1.

log(z|X, θ) = −1

2
zTK−1z z− 1

2
log|Kz| −

n

2
log(2π) (1)

Here, X is the set of n training inputs—the set of locations
at which sensor readings are taken. We define z as the
set of training outputs—the set of temperature or humidity
levels read at the sensor locations. Let K(X,X) denote
the n × n covariance matrix formed by taking the pairwise
covariance between the elements in X . Then we define
Kz = K(X,X)+σ2

nI , where I is the n×n identity matrix.
Equation 1 gives us the likelihood of our observed readings,
given the locations at which the readings were observed
and the selected hyperparameters. Maximizing this likelihood
gives the best set of hyperparameters for the chosen kernel.
We perform this process for temperature and humidity data
separately, resulting in a different set of hyperparameters for
each variable.

Many possibilities exist for performing this optimization.
Various gradient-based approaches have been proposed ([8],
[9], [10]). We also evaluate a simulated annealing algorithm
for maximizing the likelihood ([11]).

D. Applying the Initial Model

The model selection step results in a Gaussian process
trained to the observed sensor readings. Let x∗ index the
random variable in our Gaussian process corresponding to
the 3-dimensional point we wish to predict. As stated earlier,
the value of the random variable represents the temperature
or humidity at that point, the distribution of which is speci-
fied by some mean and covariance. Equations 2 and 3 specify
the distribution of x∗ conditioned on the training data. Let f̄∗
and V [f∗] denote the mean and variance of the distribution,
respectively. Application of the model is done by evaluating
these equations at every point of interest.

f̄∗ = kT∗K
−1
z z (2)

V [f∗] = k(x∗, x∗)− kT∗K−1z k∗ (3)

Here, we take k∗ to be the vector of covariances between
x∗ and the training inputs and k(x∗, x∗) to be the variance
of x∗.

Work done in [12], [13], [14], [15] proposes the use of
a KD-tree structure for a fast local approximation. For a
training set of n observations, the inference process requires
calculating and inverting an n× n covariance matrix, which
gets computationally expensive as n gets large. For inference
about x∗, the KD-tree approximation method selects the k
spatially closest points to x∗, where k is some predefined
number. For our work, we found this approach useful when
dealing with the large, simulated data sets. It allowed us to
evaluate our training methods on dense sets of simulation
data in reasonable amounts of time. We did not apply this
method in modeling the data from our sensor network as the
training set was relatively small.

E. Refining the Model

Equation 3 can be used as the basis for refining the model;
knowledge about the uncertainty of the initial predictions can
be used to guide modifications to the placement of the sensor
motes. By optimizing sensor placements, we aim to improve
the model quality.

A common and intuitive technique is to place sensors at
the locations with the highest variance ([16]). This is done
in an iterative process. Beginning with no sensors placed, at
each iteration the next sensor is placed at the location with
the highest uncertainty, given the previous sensor placements.
The process continues until all available sensors are placed.
Unfortunately, this technique tends to place sensors far away
from each other, resulting in placements along the edges of
the space. This was noted by [17] and we also observed this
in our own experiments. The result is poor prediction in the
center of the space due to lack of sensor coverage.

A better placement technique is proposed by [18]. Their
algorithm seeks to approximately maximize mutual informa-
tion—rather than placing sensors at the most uncertain loca-
tions, the mutual information algorithm places sensors at the
locations that best reduce uncertainty over the entire space.
The algorithm is again iterative, greedily placing each sensor
at the location that maximizes mutual information, given
the previous sensor placements. As we are concerned with
multiple distributions—for both temperature and humidity—
we extended the algorithm to select locations that maximize
mutual information for both distributions.

In this work we use the mutual information criterion to
optimize sensor placements in the model refining step, as it
produces the best results. Details of the algorithm are given
in [18].

IV. EXPERIMENTS

We used simulated data for initial exploration into the
model selection process. This allowed for easier automation



of the process. Figure 2 shows an example simulated temper-
ature distribution. Simulated data was used to evaluate the
effectiveness of different search techniques for learning the
hyperparameters and to evaluate the suitability of the various
kernel functions.

Based on initial experiments, we opted for a simple
gradient descent search (Quasi-Newton with BFGS Hessian
update) to learn the hyperparameters. We generated a set of
feasible initial points and performed the optimization starting
from each, retaining the best solution reached from the set of
points. Knowledge of our particular environment suggested
upper and lower bounds on the various hyperparameters.
Initial start points were generated randomly across this likely
space, as [19] argues that random search outperforms a grid
search. To ensure even coverage of the space, we again used
the Halton sequence for generating well distributed points.

Using this search method and equation 1, we computed
the marginal likelihood for the covariance functions listed
in Table I. Averaging the likelihood over numerous trials on
simulated data sets, we obtained the results in Table II. The
results give reason to expect the Matérn kernel to perform
best in the real-world case.

TABLE II
KERNEL LIKELIHOOD

Kernel Temperature Humidity
Squared Exponential -49.75 -53.33
Rational Quadratic -63.24 -68.80

Matérn -42.02 -49.45

Actual data collection was done using twenty-seven wire-
less sensor motes. Each mote was equipped with highly
accurate temperature and relative humidity sensors (reported
in degrees Fahrenheit and percent, respectively). Readings
were taken continuously and logged for an extended period
of time. For our experiments, twenty of the sensors were
used for training points and distributed across the lab space
as previously explained. The remaining seven were withheld
from use in creating the models to be used as test points and
were randomly distributed across the lab.

Using data collected from the initial sensor deployment,
we computed the temperature and humidity distributions
across the lab space. Figures 3 and 4 show the inferred
temperature and humidity, respectively, across the lab. For
ease of viewing, we plot just a horizontal slice of the
distribution.

As a measure of the model performance, we calculated
the mean squared error (MSE) of the model predictions
at our seven test points. Table III shows the results for
the temperature and humidity models based on the various
kernels.

As expected, the Matérn kernel outperformed the others.
Using these initial models, we adjusted the sensor placements
as previously described to improve the model. Table IV
shows the performance of the Matérn based model after
being refined. Sensor placement according to the mutual
information algorithm resulted in significant improvement.

Fig. 3. Temperature model of actual lab space, mean (left) and variance
(right). Values displayed are on the horizontal plane, midway between the
ceiling and floor.

Fig. 4. Humidity model of actual lab space, mean (left) and variance
(right). Values displayed are on the horizontal plane, midway between the
ceiling and floor.

Besides using Gaussian processes to interpolate spatially
distributed sensor readings, we also investigated the use of
Gaussian processes in predicting environmental conditions
over time. Using data logged by the sensors over a set time
period (for this experiment, we collected data over a 400
second interval), we constructed a training set consisting of
readings from the twenty training sensors at various times.
Thus, the training set consisted of 4-dimensional inputs. Test
data was collected similarly. Extending the techniques dis-
cussed previously to incorporate time as well as position, we
created a Gaussian process model to predict environmental

TABLE III
INITIAL MODEL PERFORMANCE

Kernel Temperature MSE Humidity MSE
Squared Exponential 0.84 sq deg 2.28 sq pct
Rational Quadratic 1.07 sq deg 2.28 sq pct

Matérn 0.79 sq deg 1.36 sq pct

TABLE IV
REFINED MODEL PERFORMANCE

Kernel Temperature MSE Humidity MSE
Matérn .42 sq deg .67 sq pct



Fig. 2. Point cloud displaying simulated temperatures (left). Temperature on horizontal plane, midway between the ceiling and floor (right).

conditions across the space at any time. Figure 5 shows
the test sensor readings at a single location along with the
predicted temperature at that location, obtained from our
Gaussian process model. Surrounding the predicted value,
we show uncertainty bounds on the prediction computed
using equation 3. For interpolation, the prediction performs
reasonably well. Note though that beyond the 400 second
mark—where no training data was collected—the uncertainty
on the predictions grows rapidly. This characterization of
uncertainty over time could be particularly applicable to
dynamic monitoring systems in deciding when mobile robots
ought to be deployed to gather additional readings.

Fig. 5. Temperature prediction at single test point over time.

V. CONCLUSION

This work explored a novel approach to combining mul-
tisensory input to monitor multiple spatially distributed en-
vironmental variables. Specifically, it explored a Gaussian
process based approach to interpolating discrete sensor data
and showed that the approach produces meaningful and
useful results, even on sparse data sets. Various covariance
functions were evaluated and the Matérn kernel was shown
to be a preferable alternative to the more common squared

exponential and rational quadratic kernels. Various aspects of
the model selection process were studied on simulated data
sets. Deployment of a sensor network across an indoor lab
space provided real-world data sets. Experiments performed
on these data sets verified the utility of the Gaussian process
approach. Uncertainty about predictions was used in conjunc-
tion with existing algorithms to improve sensor placement,
resulting in more accurate environmental models. Sensor
placement optimization was extended to consider different
variables—each with its own model—monitored by the same
sensor. Prediction of variables over time was considered. The
final result and contribution of this paper is an approach
to monitoring environmental conditions in a 3-dimensional
space, applicable to statically placed sensor networks as well
as mobile robot systems.
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