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Abstract— We propose a novel approach to 2D character
recognition by incorporating actuation data into the shape
representation. Sensorimotor data is analyzed in terms of
actuation sequences which generate the data. We illustrate the
use of Wreath Products (WPs) to represent robot sensorimotor
experience in a way that ties together perception and actuation.
WPs naturally represent not only the Euclidean symmetries
possessed by an object, but also the sequence of actuations
used to generate those. Two distinct approaches using actuation
signals to represent shape are compared: (1) the Kullback-
Leibler measure is applied to histograms of translation sym-
metries in the shape, and (2) a distance metric is defined on
pure actuation signals. Experimental results show that these
methods achieve excellent classification rates (99 %) on text
extracted from scanned images of engineering drawings for the
top five hypotheses.

I. INTRODUCTION

Most shape representation methods work directly in terms
of features of the geometry of the particular shape. That
is, a collection of 2D or 3D points is segmented from a
2D or 3D image or point cloud dataset, and then shape
invariants are determined which uniquely identify the shape.
Such features may or may not allow the recovery of the
original set of points (see [2]). We have been exploring the
use of the wreath product (WP) group as defined by Leyton
[7] as a means of shape and concept representation. This
approach is different from standard methods in that it defines
action processes which generate the point set constituting the
shape. These actions are defined as symmetry groups (e.g.,
translation, rotation, reflection, etc.) and a hierarchical shape
representation results; this is achieved by having groups
act on other groups (e.g., translate a point, rotate a set of
points, etc.) (for more details see [3], [4], [5], [6]). For
example, a square results from taking a point and translating
it along a line for some distance, then rotating this line
segment by 0, 90, 180 and 270 degrees to form the square.
This inclusion of action processes in the shape description
allows for straightforward knowledge transfer to a variety of
actuation systems.

One major issue with this approach is that the symmetry
groups (operators) are defined in some specific Cartesian
coordinate frame; i.e., a translation is along a line defined
in that frame. One of our goals in this work is to find a
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representation in terms of the natural motor actuation signals
of the observing robot agent. This leads to our hypothesis:

Shape representation based on the generative
actuation process of the observing agent can be
effective and efficient.

This is the basic idea explored in this paper; we propose
a shape recognition method based on encoding the shape
in terms of the actuation signal needed to generate (or
observe) the shape. The method is effective in that it robustly
characterizes shape, and it is effective in that it has low
computational complexity.

II. RELATED WORK

In a more general setting, autonomous robots are embed-
ded in some static or dynamic environment, and are expected
to represent and carry out tasks in this environment in the
presence of sensing and actuation uncertainty. This requires
the agent to have a robust representation of its environment,
as well as of the plans and actions that it can execute in that
environment [8]. Our work here deals with creating such a
representation that is robust by (1) being abstract in nature
and grounded in (symmetry) theory so that it is more general,
and (2) being mathematically well-structured so that it is
practical. Leyton [7] hypothesized that wreath products form
the basis for cognition by giving a generative representation
of shape and structure, which not only gives the Euclidean
symmetries present in a shape, but also encodes the actua-
tion sequences (sequences of symmetry operations) that are
used to generate a shape; however, he gave no details for
a practical implementation. These representations are also
based on a group theoretical concept, the Wreath Product,
that is a special form of a semi-direct product [1], and lends
itself to a practical implementation. We propose to validate
this theory by creating a framework that constructs and
exploits WP structures as the basis for robot cognition. Such
an implementation needs processes for WP discovery from
sensor and actuator signals, storage and retrieval of WPs,
converting WPs to plans, and structured knowledge transfer
within a single or multi-robot system. We have proposed
a framework for implementing the WPs and demonstrate
their effectiveness at representing shape and structure, the
symmetries and actuations they encode, as well as spatial
relations between objects. This framework is exploited to
classify 2D characters.

Here we extend our previous work [6] to include direct
incorporation and exploitation of actuation data in the anal-
ysis of shape. Note that Noë [9] provides a philosophical and



psychological argument for the primary role of actuation in
perception. He states (p. 102):

The sensorimotor dependencies that govern the
seeing of a cube certainly differ from those that
govern the touching of one, that is, the ways cube
appearances change as a function of movement
is decidedly different for these two modalities.
At an appropriate level of abstraction, however,
these sensorimotor dependencies are isomorphic
to each other, and it is this fact – rather than
any fact about the quality of sensations, or their
correlation – that explains how sight and touch can
share a common spatial content. When you learn to
represent spatial properties in touch, you come to
learn the transmodal sensorimotor profiles of those
spatial properties. Perceptual experience acquires
spatial content thanks to the establishment of links
between movement and sensory stimulation. At an
appropriate level of abstraction, these are the same
across the modalities.

We can illustrate this by means of a simple ex-
ample. If something looks square, then one would
need to move one’s head in characteristic ways
to look at the corners. One would have to move
one’s hands the same way at the appropriate level
of abstraction to feel each corner.

Note that Noë’s discussion may involve more of the human
actuation system (e.g., neck, torso, etc.) than we exploit in
the character recognition problem.

III. WREATH PRODUCT CONSTRAINT SETS

In order to understand a wreath product we briefly ex-
plain the concept of a semidirect product in group theory,
that underlies the concept of a wreath product. Consider a
homomorphism φ given by φh(n) = hnh−1 for all n ∈ N
and h ∈ H , where H and N are groups, and H is a group
that acts on N by conjugation. For each h ∈ H , conjugation
by h is an element of Aut(N) (automorphism group of N).

Given two groups N and H , and a group homomorphism
φ from H into Aut(N), N oφ H denotes the semidirect
product of N and H with respect to φ and satisfies the
following:

1) N o H contains elements from N ×H
2) Group operation of N o H is defined as:

(n1, h1)(n2, h2) = (n1φh1
(n2), h1h2), where

n1, n2 ∈ N and h1, h2 ∈ H .

Now consider a group L where L consists of the direct
product of k =| H | copies of N, i.e., L = N1×N2× ...Nk.
The wreath product, G = N oH, is formed by the semidi-
rect product of L and H. Thus G = N oH ≡ G = LoH.

We propose Wreath Product Constraint Sets (WPCS) as a
mechanism to represent shape (here: lower and upper case
English letters and the digits 0 to 9). A WPCS:

1) Uses < and O(2) wreath product groups as the basic
shape constituents.

Fig. 1. Wreath Product Constraint Set for Letter ’A’

2) Enumerates further wreath products that hold between
constituents (even singletons).

3) Adds specific (geometric) constraints between shape
constituents (e.g., set operations).

Note that we use < to represent the 1D translation symmetry
group, O(2) for the 2D rotation symmetry group (both of
these are continuous), and Zn to represent the cyclic group
of order n (e.g., discrete set of rotations). As an example,
consider the representation of the upper case letter ’A’ shown
in Figure 1. The left side of the figure shows the basic
constituents of the letter ’A’ – in this case five < groups;
the right hand side of the figure shows the two constraints in
the WPCS: (1) C1 describes the triangle in the letter, and (2)
C2 describes the reflection symmetry between the left and
right side line segments. Note that Z2 is the cyclic group of
order 2 and models several geometric symmetries. We denote
reflection by adding the annotation : Ref , and rotation by
: Rot. Each of these groups has its own specific coordinate
axes (e.g., the z−axis for rotation, and a specific line in
the plane for the reflections. For the top-level Z2 : Ref
group in C2 this axis is the y−axis, while for the lower
level reflections, it will be the line bisecting the respective
side at the points indicated in the drawing (on the left of
the figure). Ri in the figure is the ith straight line segment.
Note that there will be additional information added to the
representation to describe the actuation processes which give
rise to these constituents (see below). Compare this to the
WPCS representation of the capital letter ’H’ shown in
Figure 2. It can be seen that there is only one constraint in the
set (the triangle is not found), and the highest level reflection
symmetry describes the horizontal reflection of the entire
’H’ figure. Thus, the WPCS representation exposes both the
similarities (e.g., the common subgraph) between the two
letters, as well as the differences. Also, note that there are
multiple WPCS representations for a set. For example, the
letter ’A’ can also be represented as the two sides and the
cross bar in the middle (i.e., 3 < groups, instead of 5).

The basic WPs for letter representation are < (straight line
segments) and O(2) (circles). Therefore, we have developed
special analysis algorithms to produce < and O(2) hypothe-
ses.



Fig. 2. Wreath Product Constraint Set for Letter ’H’

Fig. 3. < Hypotheses for Letter ’A’

A. < Hypotheses

In order to discover < hypotheses, we use the connected
component image and its skeleton image (i.e., medial axis
transform). Figure 8 shows a skeleton overlaid on the original
image. The basic logic of the < hypothesis approach is:

for every pixel, p, in the skeleton
V := skeleton pixels visible from p
R hyp := pixel sets with p as endpt

Figure 3 shows the < hypotheses found in a sample capital
letter ’A’ skeleton image. V is formed by checking visibility
in terms of the a straight line of pixels in the original image
connecting p and the visible skeleton pixel. p is an endpoint
if it is one of the two most distant points of the projection
of the points in V onto the best fit line to the points in V .

B. O(2) Hypotheses

Circular sections (or parts thereof) are more difficult to
find. Figure 4 shows the letter ’C’ and its skeleton. The basic
logic of the O(2) hypothesis approach is:

for every pixel,p, in the skeleton
flow := distance of pixel from p
T := pixels within distance 15 of p
O(2)_hyp := best fit circles in T

Fig. 4. Skeleton overlaid on Original Image for Letter ’C’

Fig. 5. O(2) Hypotheses for Letter ’C’

Figure 5 shows the O(2) hypotheses found for the sample
letter ’C’ image. As another example, Figure 6 shows the
lower case letter ’a’ image, and Figure 7 shows the O(2)
hypotheses found for it. Distance here is in terms of chain
code distance (8-neighbor steps).

C. Character Templates and Segment Classification

Given < and O(2) basic constituents, it is possible to
define WPCS templates for all the character shapes; e.g.,
those for the letters ’A’ and ’H’ shown above. It is also pos-
sible to learn the templates by taking a set of training sam-
ples, extracting the constituents and finding the constraints
between the constituents. This would involve either setting
a hard threshold to produce predicates for the constraints
(e.g., for when a reflection holds between two point sets), or
adding a probabilistic framework. In the course of this study,
we discovered that the actuation signals which encode the
basic constituents provide an effective and efficient shape
representation for the WPCS; this is described in the next
section.

IV. ACTUATION SIGNALS AS REPRESENTATION

Since we do not have an embodied agent in this applica-
tion, we resort here to virtual actuators, and in particular,
a virtual camera for image acquisition and a virtual hand



Fig. 6. Image of Lower Case Letter ’a’.

Fig. 7. O(2) Hypotheses for Letter ’a’

for shape generation. We show that a character can be
represented as a wreath product constraint set which provides
an abstract representation of the shape and allows for

1) recognition and classification of text characters, and
2) structured knowledge transfer from the camera actua-

tion system to the robot hand actuation system in order
to achieve shape synthesis.

A. Virtual Camera

Since we are working with images that have already
been scanned, we have developed virtual actuators and
corresponding actuation command streams for the given data
acquired from the image. This works as follows:

• Each individual connected component is set in a cir-
cumscribing rectangle ( Figure 6 shows the subwindow
for the lower case letter ’a’).

• A virtual camera is positioned in the middle of the
image and above the image by one-half the length of
the longer rectangular side.

• The skeleton of the connected component is found next
(see Figure 8).

• The camera is aimed at each of its constituent pixels
in turn, and the pan and tilt angles are recorded. E.g.,

Fig. 8. Skeleton of Lower Case Letter ’a’ overlaid on Original Image.

Fig. 9. The pan and tilt Signals for Lower Case ’a’

Figure 9 shows the pan and tilt angles for the lower
case letter ’a’.

B. Virtual Hand

The specific virtual hand considered here is an RR robot
(i.e., two revolute joints). The base of the arm is located at
the center of the character sub-window, and the lengths of the
links are equal and set to one-fourth the length of the greater
diagonal of the sub-window (see Figure 10). This allows the
virtual hand to place its endpoint anywhere within the sub-
window. Given that a shape will need to be generated in
a standard Cartesian coordinate frame, it will be necessary,
in general, to learn the transform from (pan,tilt) space to
(θ1, θ2) space so as to obtain the same (x, y) point. However,
in this specific case, the transform is given as:

c2 = D =
(dtan(θpan))

2 + (dtan(θtilt))
2 − 2a2

2a2

s2 =
√
1−D2

θ2 = atan2(s2, c2)

θ1 = atan2(dtan(θtilt), dtan(θpan))− atan2(s2, 1− c2))



Fig. 10. A Simple 2-Revolute Joint (RR) Robot Hand.

Fig. 11. Lower Case Letter ’a’ Representation by (θ1, θ2).

E.g., the (θ1, θ2) signal representation for lower case ’a’ is
shown in Figure 11. In the experiments described below, we
use the (pan,tilt) representation of the WPCS constituents.

V. CLASSIFICATION BASED ON TRANSLATION
SYMMETRY

It is possible to represent shapes in terms of just the local
translation symmetries. This means that for every pixel in the
shape, the maximal translation direction is determined; this
is done by finding the maximal set of pixels forming a line
through the given pixel and that stay inside the shape. It is
not necessary to recover the < or O(2) constituents for this
approach. Statistics of the pixel-based translation symmetries
provide enough information for shape classification. For
experiments we use segments from the image shown in
Figure 12. There are 1174 legitimate characters (although
seven of these do not satisfy the classification assumptions –
e.g., wrong Euler number, etc.); of these 1161 are correctly
classified in the top five hypotheses (we allow multiple
hypotheses and then reduce them when words are found).

Consider a character such as that shown in Figure 6. At
each pixel, the direction and extent of the 1D translation
is determined. Figure 13 shows the results for this charac-
ter. Our first classification approach exploits the first order

Fig. 12. Image used in Experiments.

Fig. 13. Translation Symmetry Directions for Lower Case Letter ’a’.

statistic of orientation. The directions are aligned with the
closest of 0, 45, 90, and 135 degrees.

In order to constrain the orientations somewhat according
to their 2D distribution in space, we construct a histogram
for each of four sub-regions of the image: (1) upper portion,
(2) lower portion, (3) left portion, and (4) right portion (in
this study the portion is 2/3’s). The method also uses Euler
number and horizontal and vertical symmetry measures.
Figure 14 shows the four histograms catenated, and for
comparison, the histogram from another letter ’a’ from a
test image. In practice the four histograms from a test
character, and the norm of the resulting 4-tuple is used
as the distance measure (in this case, the vector was p =
[0.0425, 0.0409, 0.0459, 0.0069]). Each unknown character
(connected component) in a test image is compared to
each character template, and the top five matches are kept.
Using this approach, we obtained a 95% classification rate;



Fig. 14. Comparison of Combined Symmetry Translation Direction
Histograms from Four Subwindows in Two Different ’a’ Segments.

Fig. 15. Precision and Recall Plot for Symmetry Translation Classification.

when only the top 1, 2, 3, and 4 hypotheses are kept, the
classification rate are 80%, 90%, 95% and 98%, respectively.
Figure 15 shows the precision and recall plot for this method.

VI. CLASSIFICATION BASED ON PAN-TILT ACTUATION
SIGNALS

It is also possible to use explicit actuation data to classify
unknown characters. Given a set of pixels along the skeleton
of a character, the pan and tilt angle for the virtual camera
are found as described earlier. For the template character ’a’
the pan and tilt angles are shown in Figure 9. A distance
measure between the shapes is then based on the difference
of the two (pan,tilt) signals for the different characters. We
use the following simple measure:

µ((p1, t1), (p2, t2)) =
∑
i∈I1

argminj∈I2(| (pi, ti)−(pj , tj) |)

where I1 and I2 are the index sets for points in shape
1 and 2, respectively. This is the sum of the distances to
closest (pan,tilt) pair in the other set. Using this method, we
obtained a 99% classification rate for the top five hypotheses;

Fig. 16. Precision and Recall Plot for Pan-Tilt Actuation Data Classifica-
tion.

when only the top 1, 2, 3, and 4 hypotheses are kept, the
classification rate are 88%, 96%, 97% and 98%, respectively.
Figure 16 shows the precision and recall plot for this method.

VII. CLASSIFICATION BASED ON RR ROBOT ACTUATION
SIGNALS

We also explored the use of explicit 2-revolute joint robot
actuation data to classify unknown characters. Given a set of
pixels along the skeleton of a character, the two joint angles
for the virtual robot hand are found as described earlier. For
the template character ’a’ the pan and tilt angles are shown
in Figure 9. A distance measure between the shapes is then
based on the difference of the two (θ1, θ2) signals for the
different characters. We use the following simple measure:

µ((p1, t1), (p2, t2)) =∑
i∈I1

argminj∈I2(| (θ11i, θ12i)− (θ21j , θ22j) |)

where I1 and I2 are the index sets for points in shape
1 and 2, respectively. This is the sum of the distances to
closest (θ1, θ2) pair in the other set. Using this method, we
obtained a 98% classification rate for the top five hypotheses;
when only the top 1, 2, 3, and 4 hypotheses are kept, the
classification rate are 79%, 93%, 97% and 98%, respectively.
Figure 17 shows the precision and recall plot for this method.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed using an actuation based representation
of shape and demonstrated its effectiveness on a character
classification problem useful in engineering drawing analysis
– in this case for text images in the engineering drawing
image set. In future work, we intend to perform more
experiments on larger and more varied datasets to better
characterize the strengths and weaknesses of the method.
In addition, we intend to explore the use of the full WPCS
representation to help reduce the error rate. For example, the



Fig. 17. Precision and Recall Plot for RR Robot Actuation Data Classifi-
cation.

lower case letter ’t’ is sometimes confused with the lower
case letter ’i’ because the cross bar is not identified; this
can be determined if a lower threshold is used for the <
hypotheses in the analysis of the skeleton. We also intend to
extend this work to 3D shapes.
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