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Abstract—Symmetry (similarity under transformation) in sen-
sorimotor data streams can be used to derive and represent con-
cepts from percepts, and exploit them in a cognitive framework.
This entails finding mechanisms to extract symmetries out of
sensorimotor data and convert them into intuitive representa-
tions; ”intuitive” implying that the representations created should
have a semantic meaning to them. We design these concepts
in an object-oriented framework. These concepts, known as
wreath product comprise of a control group that acts on a
fiber group, and are generative concepts in that they encode not
only the symmetry information, but also the process employed
to achieve those symmetries. Moreover, probabilistic information
can be added to these wreath products in the form of Bayesian
networks for quantifying uncertainty in the data and for inference
and generalization, which would help the agent achieve tasks
requiring cognitive abilities in the real world. In this paper
we present the theory behind such a cognitive framework,
propose and implement design of concepts from sensor data, and
demonstrate this approach on data collected from Kinect.

Keywords—Robot Cognition, Symmetry analysis, Wreath Prod-
uct, Generative Representation.

I. INTRODUCTION

Robots with cognitive behavioral requirements need an
effective representation of the world they operate in. Vernon
et al [8] define Cognition ”as a process by which the system
achieves robust, adaptive, anticipatory, autonomous behavior,
entailing embodied perception and action.” Adaptive, anticipa-
tory and autonomous behavior implies that the robot should
have capabilities to build its own knowledge base out of
presence and interaction in its surroundings, and to build on
previously acquired knowledge to achieve further autonomy
(structural boostrapping). To achieve such behavior the robot
needs innate theories for concept representation and perceptual
fusion. This paper aims at addressing the problem of concept
representation in cognitive robotics. In our case ”knowledge”
is a set of concepts, and each concept in turn is a bundle of
sensorimotor data streams and correlated symmetries present in
that data which represent using a wreath product as described
by Leyton [4]. The wreath product encodes the symmetries
present in the data as well as the process that generates those
symmetries, and thus we recognize concepts as generative
entities (see section III for details). These generative concepts
are key factors to achieve sensor-motor coupling since they
have an inherent sequence of actions associated with them that
generates the symmetries in the first place! In our represen-
tation the perceptual data that satisfy certain group axioms

are encapsulated in an object corresponding to a mathematical
group which inherently has symmetry associated with it. To
build these generative concepts we extract symmetries in the
perceptual data and motor signals, and convert them into
mathematical group objects (also known as fiber group and
control group objects). These group objects are then structured
hierarchically - which is the natural form of a wreath product
- and encode the generative process followed to achieve those
symmetries.

Our contribution is the implementation of the generative
wreath product theory using symmetries in sensorimotor data
in order to inform concept formation in embodied robots. We
attempt to advance the state-of-the-art in robot cognition using
mathematical group and symmetry theories embedded a priori
in the robot. These innate theories act on sensorimotor data
streams to produce concepts and build knowledge over time
based on the robot’s experience in the world. Rather than
having all the knowledge the robot needs to operate built
explicitly into it by the system engineer, using innate theories
and minimal a priori knowledge allows the robot to respond to
unknown situations, thus lending itself to structural bootstrap-
ping. Figure 1 from [2] is a high-level cognitive architecture
where innate knowledge is provided to the embodied agent in
the form of:

1) Theories: Axiom sets; e.g., the four axioms of group
theory.

2) Modeling Processes: In order to apply a theory to a
specific world, the sets, operators, functions, constants,
etc. must be mapped to a specific domain. In addition,
identifiable sets must be determined from the data,
as well as operators. Once a mapping between the
world and theory is proposed, the model is validated
by checking that the axioms hold for this mapping.
For instance, if the robot observes a set of rotations,
and uses apply rotation as the operator, then it can
determine that this set, i.e., the rotations, and operator,
apply rotation, form a group since every rotation
followed by another rotation is also a rotation, the
identity for the group is rotation by 0 degrees, the
inverse rotation is rotate by the negative of the angle,
and rotations are associative.
→ Note that the theories and modeling processes
allow the recognition of symmetries in the data, that
is, groups.



3) Wreath Products: Innate knowledge provides mech-
anisms to construct wreath products from symmetries
detected in the data. Details will be given below, but
as an example consider the 2D boundary of a square
shape. The symmetry elements (groups) provided by
sensorimotor data would be points on the boundary,
translation symmetries provide the line segments, and
a rotation symmetry group Z4 maps each line segment
onto the others. The wreath product is formed by the
constraints imposed by the relations of the symmetry
elements. The evaluation of the concept involves a
characterization of its likelihood and this includes a
Bayesian formulation (details given in section VI).

Fig. 1. High Level Cognitive Process.

Fig. 2. Symmetry Detection and Wreath Product Formation for a 2D square.

II. BACKGROUND AND RELATED WORK

A large number of cognitive archtitectures have been
proposed over the last few decades, and they can be split
into three high-level categories: (1) symbolic, (2) emergent
dynamic systems, and (3) hybrid. For a careful review of these,
see [9]. Binford ([1]) proposes a directed acyclic graph (DAG)
approach to represent Bayesian networks based on generalized
cylinders. These Bayesian networks accrue probabilities for
physical models and relations based on a match to a database
of a priori physical objects and relations. In [2] we have given

an introduction to wreath product concept representation and
symmetry expression in the concept, as well as illustrated
the theory of converting a wreath product representation into
an equivalent Bayesian net; our approach in [2] differs from
[1] in that we use more general wreath products that can
represent generalized cylinders, and also encode the actuation
used to generate those shapes; furthermore, we propose to
derive Bayesian network directly from hierarchical structure
of the wreath product. The current paper is an extension
of our aforementioned paper, where we expand by building
a working system comprised of an object-oriented wreath
product representation.

III. GENERATIVE CONCEPTS

The wreath product framework is laid out by Leyton [4]
where he proposes that the wreath product captures the notion
of a generative concept. A wreath product is a group formed
by a splitting extension of the direct product of the fiber group
which is acted on by a control group (usually a permutation
group). Moreover, the wreath product may be derived from
perception data, and also includes the actuation sequence that
was used to generate that data (or features of the data).

Leyton divides the wreath product into the Fiber Group
(G(F)), where F is the set of fiber group elements which
gets acted upon, and the Control Group (G(C)), where C
is the set of control group elements that acts on the fiber
group elements. Figure 2 shows how this generative process
applies to represent the concept of a square shape along with
underlying symmetries. The square is understood as being
formed by following along one edge (denoted by the real
line R as translation), then this side rotated 0, 90, 180, or
270 degrees to generate the other sides (see [2] for details).
Of course, symmetries and their relations in real data are
rarely if ever, perfect, and thus the error in the label must
be provided. For example, an R in the figure corresponds
to a straight line segment; these are generally comprised of
edge pixels which are combined to make the line segment.
The error in fit of the line to the point data can serve to
measure the linear symmetry in the data. Above that level, the
sides may not be perfectly equal in length, or may not form
exactly perpendicular angles where they meet. This means that
the figure may not be a square, but rather a rhomboid. These
uncertainties can be characterized by Bayesian networks which
have a priori probabilities as occurence statistics that improve
over time (posterior probabilities).

IV. SYMMETRY EXTRACTION FROM RANGE DATA

A. Segmentation

Depth images obtained from a Kinect sensor have a natural
image structure to them (Figure 3) that helps in segmenting ob-
jects based on the surface normal variations at neighborhoods
of individual pixels (rangels).

Given neighborhood patch around a pixel (Figure 5 (a)),
the normals in the planar patch are given by (b̄ − ā) and
(c̄− ā). If the directional derivatives are given by

p = ∂f
∂x and q = ∂f

∂y ,

then the unit surface normal is given by [−p,−q,1]√
1+p2+q2

.



Fig. 3. Depth image analysis of a rectangular box. (a) Raw depth image. (b)
Surface normals displayed as an RGB image. (c) Surface normals clustered
into planes using k-means. (d) Edges found using maximal surface normal
deviations.

Fig. 4. Depth image analysis of a cube. (a) Raw depth image. (b) Surface
normals displayed as an RGB image. (c) Surface normals clustered into planes
using k-means. (d) Edges found using maximal surface normal deviations.

Given the surface normals at each pixel, significant changes
in depth result from significant change in the direction of
surface normal. Surface normal edge detection technique de-
veloped by Uckermann et al. [7] is used to find these edges.
Their method finds the difference in neighboring normals as
cos(∠(n̂1, n̂2)) = n̂1.n̂2, in eight directions of a given pixel

(Figure 5 (b)). For a given direction, say North (N), the score

for that direction is given by cos(θN ) = 1
3

3∑
i=1

n̂x,y.n̂x,y+i. The

strongest angular deviation between a pixel and its neighbors
in all directions is selected by

min(cos(θN ), cos(θNE), ..., cos(θW ), cos(θNW ))

which is thresholded at a value of 0.85 where anything less
than 0.85 denotes a depth edge at that location.

Fig. 5. (a) Neighborhood of a pixel. Cross product of vectors (b̄ − ā) and
(c̄− ā) is the normal at pixel designated by point a. (b) The 8 directions in
which normal deviation is calculated.

Figure 3 (a) shows raw Kinect depth image of the rect-
angular box and Figure 3 (b) shows the surface normals
displayed as an RGB image. Due to inherent noise in the
depth estimation, surface normal calculation contains noise
as is visible in the RGB image resulting in false positive
edges. To solve this problem we use k-means (where k=3) to
cluster surface normals having similar orientations belonging
to same plane (Figure 3 (c)). These clustered normals are again
subjected to surface normal edge calculations to yield a clean
edge map Figure 3 (d). Figure 4 shows similar analysis for a
square box.

B. Symmetry Operators

We segment the planes based on the cluster results seen
above. For a set of points belonging to each plane, the normal
to the plane is determined using least squares fit of the points.
For a pair of these normals (one for each plane) the line of
intersection of the two planes is determined using the cross
product of this pair. Figure 6 shows the 3 lines (for 3 faces
of the box). For each of these lines, the points on the surface
normal edges of the rectangular box that are closer than a
certain threshold distance (20 in our case) are marked as
belonging to one edge of the box. Thus points displaying
closeness within a cylindrical (radius = threshold) volume are
considered for further processing.

In order to retrieve the higher order symmetry groups on
a planar face, we use the Frieze Expansion Pattern (FEP)
proposed by [3]. (See figure 7 (b) and figure 8).

The local minima lines (Figure 8 (d)), when projected back
to the original convex hull represent the reflection planes (Z2

symmetry group) of the face (Figure 7 (b)). Note, however, that
local maxima in the FEP would correspond to end points of
sides; another similarity measure - Planar-Reflective Symmetry
Transform (PRST) [5] - can be used to distinguish between
square and rectangular faces when reflected across diagonals.



Fig. 6. The 3 orthogonal (dotted) lines parallel to, and close to surface normal
edges (line of intersection of 2 faces of the box). Normal to one of the face
is also visible as a solid line

Fig. 7. (a) Points close to plane-intersection lines are shown in red. All
marked points are less than 20 units of distance away from plane-intersection
line. (b) Z2 reflection axes represented by the red lines

C. Focal Interest Operator (FIO)

The process for detecting translational symmetry is given
in algorithm 1.

Data:
P ← All points displaying symmetry
E ← φ (Objects belonging to {e}))
R ← φ (Objects belonging to R)
for ∀p ∈ P do

d← φ
for θ = 0 to 2π do

d = d ∪ distance to edge
end
max distance = max(d)
max dir ← direction(max distance)
Pts← translate along max dir(max dir)
E ← Create objects(Pts, {e})
R ← assign(E)

end
Algorithm 1: Extract Symmetry Group Representation

The symmetry extraction phase involves the use of a
point of focus as an interest point around which we look for

Fig. 8. FEP analysis: (a) A rectangular face projected onto a plane and
the convex hull of the resulting points. (b) The convex hull. (c) Convex hull
converted to an FEP. (d) Distance to edge of FEP plotted. Local minima of
the FEP correspond to mid points of each side.

Fig. 9. Translational symmetries in points belonging to an edge of a (a)
Rectangular Box. (b) Square Box.

symmetries. Initially the focal point is randomly chosen from
a set of points in the data that display geometric symmetries in
3D space (e.g.: points within a cylindrical volume above). The
amount of movement of the focus point is subject to the con-
straint of maintaining, at all times, a symmetry measure above
a certain threshold. If d̄t = [(xt − xt−1), (yt − yt−1), (zt −
zt−1)]T , is the vector representing the direction in which the
focal point is moving at time t, the direction in which the FIO
should move at time t+1 is given by maximizing a symmetry
detection function, f , which considers the neighborhood of
focal point at [xt, yt, zt]

T , given by Dt

d̄t+1 = arg max
d̄t

f(Dt)

This FIO will move in the direction of maximum symmetry
until:

1) the function f can no longer be maximized above a
certain threshold, or

2) there are no more data points to move to, in the
direction given by dt+1.



The list of points, say P , comprising the path of FIO from
start (time 0) to end (time t) is recorded and those points are
assigned to a group class based in the following manner:

1) Each point ∈ P is assigned a class {e}, which
represents the identity element of a group. Call set
of all {e}s as E.

2) If E satisfies the equation of a line within a certain
error threshold, then E is assigned a class R which
represents a line.

We use FIO approach to detect translational symmetries in
points. In our example, the translations detected by algorithm 1
- applied to the edges detected within a cylindrical volume - are
shown for a rectangular box (figure 9 (a)) and for a square box
(figure 9 (b)) by red arrows indicating the direction of maximal
symmetry measure. Note that two directions are detected since
both are valid translations maximizing translational symmetry.
Figure 10 demonstrates the translational symmetry detection
at pixel level on range data for the rectangular box. The set of
identity elements (pixels, or {e}) are assigned as a fiber group
to the control group R.

Fig. 10. Translation in pixel space on depth data.

V. WREATH PRODUCT REPRESENTATION:
OBJECT-ORIENTED DESIGN

We follow the object-oriented approach to realize the
theoretical wreath-product framework. In this approach, every
node of the wreath-product tree {fiber group control group} is
an object with its own class definition, which is semantically
equivalent to a mathematical group.

The wreath product is constructed as a tree of such object
instances where a control group object instance is the parent of
one or more fiber group object instance(s), which in turn can
be the control group of its own fiber group(s). This hierarchical
tree structure lends itself for a direct conversion to a Bayesian
network with probabilities assigned to the individual nodes.

The most basic class in our representational semantics is
{e} which represents a point in space. Some of the properties
associated with {e} are:

1) Position: Location of the point in 3D space.
2) Normal: Normal at this point.
3) Color: RGB value of the pixel.
4) Gray value: Grayscale value of the pixel.
5) Binary value: Indicates whether the pixel is turned

on or off (corresponds to the Z2 group).
6) Textures: Texture patches around this point. This will

be a list of texture properties with associated texture
values.

7) Control Group: Indicates parents (control group),
which this object is a fiber group of.

8) Control Group: Indicates parents (control group),
which this object is a fiber group of.

9) Property List: [Name Value] pairs of additional ad
hoc properties that might be associated with this
object during operation.

To represent a line, we would need the group R which
represents the control group that moves the fiber group {e}
along the reals (R). A line is thus represented as {e} oR. The
class R will have the following properties:

1) Endpoints: A line can be represented by its two end
points in space.

2) Line parameters: Parametric equation (ax + by +
cz + d = 0) coefficients (a, b, c, d), can be stored.

The resulting object-oriented representation of a line will
be a hierarchical tree structure where the parent node (the
control group object R) has its children as alll the points (the
fiber group objects {e}). In theory there will be infinitely many
points along the reals (R), however in practice the data will
be discretized to a certain granularity (eg., pixels in images
or points in point clouds) thus limiting the number of G(F )
belonging to G(C).

A rectangular face of the rectangular box example above
can be represented as a WP shown in Figure 11. Using the
translational symmetry ({e} o R) and reflection symmetry
feature (Z2) extracted above, the entire WP can now be
assembled to represent a rectangular face.

Fig. 11. Wreath Product for a rectangular face.

In order to represent permutation, and other symmetry
groups, we exploit the fact that any transformation of data
points can be expressed as a transformation matrix acting on
those points. Since a group consists of a set and an operator
that satisfy certain group axioms, we can view this set as the
set of matrix transformation that operate on points through
multiplication operator.



VI. CONCLUSIONS AND FUTURE WORK

We have given the motivation behind creating a symmetry-
based cognitive framework along with a demonstration of
a working WP generation flow for simple world objects.
Symmetry is ubiquitous in most man-made operational en-
vironments and many natural operational environments. The
present work is a stepping stone towards achieving symmetry
exploitation for cognitive concept representation. However,
most environments are more complex than the one presented
in this paper and better segmentation methods need to be
developed to group interest points that belong to one feature
of a world object (e.g.: an edge/plane/section that belongs to
a part of an object). Once these points are discovered, various
symmetry operators can be used to extract symmetry groups
out of real-world data.

Another challenge in detecting local symmetries is the
noise inherent in any depth imaging device (e.g.: Kinect).
Since Kinect uses structured lighting (pattern projection) and
triangulation to detect depth, it is susceptible to ambient
light effect, range limitations, and disparity calculation er-
rors, which results in noisy depth images. Generalized de-
noising techniques need to be developed that would work
in any scenario. Any remaining noise needs to be quantified
and incorporated in WP concepts such that it will support
inference and generalization. This implementation would be
tested on our SYMMBOT platform – a small rover currently
under development – which would use the Kinect sensor and
operate in the real world taking data and extracting symmetry
information out it.

We conclude by acknowledging two issues that pertain
to using the proposed techniques and the robot platform for
building our cognitive framework.

A. Uncertainty Quantification

WPs have a tree structure which lends itself to an overlay
of a Bayesian network on top of this WP structure. As
demonstrated in [2], this overlay would help in quantifying
uncertainty at each level (feature or subset of feature) in
our data, and thus help in generalization of concepts. Depth
data is inherently noisy due to the structured light mechanism
used to generate it, and it reflects in the object segmentation
technique discussed above. This noise needs to be quantified
as a distribution around the true depth (and the true edge of
the object).

B. Point Clouds

Our goal is to adapt depth image analysis to analyze point
clouds. True 3D data consists of (X,Y, Z) points rather than
(row, column,Z) depth pixels in case of a depth image. Point
clouds do not have an inherent image structure associated
to them as depth images do, and although point clouds can
be converted to depth images, this process results in loss of
information as pixels have to be interpolated, some 3D points
need to be discarded and depth scaling issues occur. However
point clouds have true 3D structure information associated to
them, unlike depth images, and have the potential to generate
more accurate WP structure annotations.

We use the optimized RANSAC method for shape detec-
tion formulated by Schnabel et al. [6] to achieve an initial

segmentation. This method uses an octree structure to limit
RANSAC minimal subset selection to points that have spatial
proximity to each other, and uses an optimized scoring function
for fitting shape models to these subsets of points. Thus
shape detection is achieved in realtime. Although their method
extracts the labeled points corresponding to, and along with,
the types of shapes detected, we only use the labeled 3D
points for further processing. The segmented point cloud can
be seen in Figure 12 (Top) with unsegmented point clouds of a
rectangular box (observed in the direction of z-axis), a cylinder
(observed in the direction of y-axis) and a sphere (observed in
the direction of -z-axis). (Bottom) The segmented point cloud
with labelled points for corresponding shapes.

Fig. 12. (Top) Point clouds for box, cylinder and sphere, respectively.
(Bottom) Corresponding segmented point clouds.
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