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Abstract

We propose to exploit reaction-diffusion (RD) patterns ag pf the wireless sensor networ®-(e} high-

level structure building toolkit; e.g., to support leadelestion or to provide pathways through the network.
In particular, we study the formation of RD spot and striptgras inS-Netsor which no coordinate frame
exists; i.e., the nets have only topological connectivitgedmined by the inter-node broadcast range. We
further demonstrate how macro-features of the RD patteande used for Bayesian model accuracy assess-
ment of the difference between a uniform grid layout of thde®versus an irregular grid due to error in node
placement.

1 Introduction

Alan Turing introduced a revolutionary reaction-diffusimodel as the chemical basis of morphogenesis [35],
and this method lends itself particularly well to pattermtiesis in distributed systems. For more detailed
explanations, see his original paper (which provides amekar of the scientific paper — theory, analysis
and numerical solution on the Manchester machine whichngunielped design and build!), as well as the
works of Murray [25], Meinhardt [23], and more recently, Maand Othmer [22]. Turing’s key insight was
that diffusion of an inhibitory morphogen could lead to thenfiation of stable and variegated patterns. This
is related to nonlinear far from equilibrium thermodynaspiand dissipative structures (e.g., see Prigogine
[27, 30, 31] who received the Nobel prize in chemistry for kvor this area). One goal of our work is to
understand how these principles may be exploite8énsor Networks (S-Nets)

We have previously proposed to use Turing’s reaction-giiffa mechanism to generate patternSiets
[10, 15]. The basis of this mechanism is a set of equatiortctyzture the reaction and diffusion aspects of



certain chemical kinetics: 5
C
9 f(e) + DV?¢c 1)

wheref(c) describes the reaction a2V c expresses the diffusion component. The simplest suchregste
have twomorphogen®r variables; one of these acts as the activator and the atiteias the inhibitor. The
two variable system can be modeled by:

v
Uy =

0
whereu andv are the concentrations of the morphogehss the diffusion coefficient and is a constant

measure of scale. The functiofiéu, v) andg(u, v) represent the reaction kinetics. As an example, we have
explored the generation of spatial patterns using the Ggystem of equations:

= vg(u,v) + dV>v @)

flu,v) =B —uv, g(u,v) =uwv —v—«

whereu andv are the morphogen concentrationsand 5 are the decay and growth rates, respectively, and
~ sets the speed of the reaction. They define a domain in whicatten (2) becomes linearly unstable to
certain spatial disturbances. This domain is referred ftugisig spacewhere the concentrations of the two
morphogens will become unstable and result in the pattdrosrs in Figure 1. The pattern is the result of
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Figure 1: Turing Spot Pattern.

each cell running the equations locally whil#fusingto its neighbors; a stable solution may be thresholded
to produce a binary value at each sensor, and the total of thiess the pattern. Note that the distribution of
these spots is close to hexagonal.

We introduced the use of Turing’s reaction-diffusion patt®rmation to support high-level tasks 8iNets

This has led us to explore various biologically motivatecchaisms. We address below some issues that

arise in trying to get reliable, efficient patterns in irrlaggugrids. Others have explored the use of both

reaction-diffusion and more general diffusion methodsomputer vision and robotics. For example, Fukuda

et al. describe the use of reaction-diffusion techniquestiot motion[7]. Moreover, as described by Peronna
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Figure 2: Robot Path in Reaction-Diffusion Pattesriq the fire control pointy is the robot load point)

et al.[29], multi-scale descriptions of images (i.e., sesphace) can be produced by embedding the original
image in a family of images obtained by convolving the orédiimage with a filter; Koenderink[20] showed
that this is equivalent to finding the solution of the diffusiequation:

I = V2I = Ipe + Iyy

We believe that it will be quite useful f@-Netgo use similar methods to analyze sensed data of various sort
Other proposed diffusion models include, for example, MBp proposes directed diffusion - a datacentric
communication coordination technique that “enables gnsagings by selecting empirically good paths and
by caching and processing data in- network.” The focus dfi suark is more on the networking and operating
systems aspects of the sensor network, whereas our workris comcerned with the sensor network as
a computation engine itself. More closely related to ourknisrthat of Justh and Krishnaprasad [17] who
propose the active coordination of a large array of micnegtctrs by means of diffusive coupling implemented
as interconnection templates, and Nagpal [26] who destriethods to create patterns of diverse geometry.
We believe that this style of research will reap great bemefithree aspects: (1) netwamkorphogenesjg2)
sensed data analysis, and (3) display pattern synthesis.

For example, consider a forest fire scenario: sensor deaieedropped into a wide geographic area, establish
a network, and produce a stripe pattern of off-on signalsaaia be used by fire fighting agents to go to a fire
control point by followingon devices (pattern == 1) and return by followinff devices (pattern == 0) (see
Figure 2). Such patterns can be computed by very robustioeadiffusion systems derived from models of
biological pattern formation.

Our general research program is to explore a small set obdiidl sensing and signaling mechanisms,
and we hope to make significant contributions by providingkiblogically realistic models and efficient
computational counterparts, (2) fault tolerant framewarkwhich to run them, and (3) demonstrations of
their application in human interface and large-scale senstworks. In addition, we are building-Net
simulation, emulation, and experimentation testbeds [Hié}e we describe some initial results in the first of
these areas.
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Patterns in th&-Netcan be used to support many high-level algorithms or aigsuit

e stripe, spot or ring patterns can be used as encoders foicphgs logical purposes; for example, a
robot can keep track of how far it has traveled (physicall;@nmunication packets can travel along
certain stripes to minimize power, cost or to avoid congestiogical).

e certain sets of patterns form a basis set for 2D images (daqatr or Hadamard basis sets); any map
(topo, etc.) or image can then be encoded in terms of the cieeffs associated with the respective
basis images.

e the patterns can be used as a reference wave so that sensdédrdatitures derived from it) can be
encoded as an interference pattern (i.e., a hologram)

e moving waves can also be computed, and thusStiNetcan serve as a signal carrier or modulator.

Understanding the precision and reliability of pattermifation is then of high importance.

Given a set of sensor elemenBELs, in the plane, it may be useful to store and exploit a pattetime S-Net
For example, stripes may be useful as described above geq[4, 13] for calculating shortest paths for
robots to follow through terrain with varying traversatyilproperties).

2 Reaction-Diffusion Patterns

Some work has already been done to determine the range andftgptterns possible with the Turing pattern
formation approach. Theoretical aspects have been stadigdegions of the parameter space characterized
as they relate to pattern formation (i.e., the parametershar coefficients in the PDES) [2, 8, 21]. Others
have investigated how pattern formation is influenced by lmemof cells, time scale, and initial condition
variation. In particular, Bard and Lauder [3] showed thaalde repeating peaks of chemical concentration
of periodicity 2-20 cells can be obtained in embryos in pdsiof time less than an hour. We do find however
that these patterns are not reliable. Small variationsitiairtonditions give small but significant changes in
the number and positions of observed peaks.” They showedhisamethod has difficulty producing exact
patterns reliably. We have found other difficulties in proidg the patterns necessary to support higher-level
tasks. We describe these here and propose some solutions.

A more significant issue for us is that the reaction-diffuspattern formation equations assume that the
inter-cell distance is uniform (and usually equal to 1). Guiletshowever, do not form a uniformly spaced
grid in 1D or 2D nor do they have wrap-around connectivityfanot, we generally assume that the sensor
devices are randomly dropped in the environment. In additioe diffusion part of the equations uses the
inter-node distances in the computation of the secondatéra: Two concerns are: (1) these distances are not
uniform, and (2) in an actual implementation, there will loen® amount of error in the inter-node distance
determination. This has led us to investigate the impacbafuniform spacing on the pattern computation.

The basic 1D Turing reaction-diffusion mechanism on a rifigetls produces a pattern as shown in Figure 3
(the left side shows the ring layout of the cells and theirnamivity; the right side shows the morphogen
concentration in each cell after convergence), and takeatah040 iterations to converge for a set of 60
cells. The mean number of stripes (given random initiallee& morphoger) is around 10.
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Figure 3: Typical 1-D Turing Pattern.

Next consider what happens when error is introduced intotite locations, resulting in non-uniform dis-
tances between them. The point locations are determinedllag/$: (1) start withn points equi-spaced
on the unit circle, 2% units apart, and (2) add uniform noise to the location withxmangular (radians)
distance from the uniform positions. Figure 4 shows theltesdia uniformly sampled error frod (-5, 5)
degrees, while Figure 5 shows what happens with a 10 degifseraly sampled error. The graph shows
the neighborhood relations formed by the radio broadcasteaand in the RD process, theighborhood

Laplacianis formed as:

Aa; = ( Z ap) — |Nei(i)|a;

neENei(i)

where Nei(i) denotes the neighbors af As can be seen, the change in the node neighborhood redation
alters the macro feature results; there are only eightestrip the 5 degree error case, and four in the 10
degree error case, and the magnitudes of the peak conéemsraary significantly from the regular graph

(cycle).

This result carries over into 2-D as well; Figures 6 througbh8w part of a displaced 50x50 grid (uniformly
sampled error ot/ (0,0), U4(—0.2,0.2), andi/(—0.5,0.5) in x andy, respectively), and the resulting spots
formed. As can be seen, the spots appear well-distributddegyular. Moreover, the neighborhood Laplacian
works well. This is advantageous 8iNetsecause inter-node distances are often hard to ascertaailyf
note that the radio broadcast range of a node can vary betsggaa min and max range (as a function of
power), and this can change the network topology signifigaifitneighborhoods extend over a larger area,
then the spots will be larger in size (and fewer in number).

In order to form stripes in 2-D, Ermentrout [6] provides a inate-free RD mechanism for the creation of
a stripe pattern. The equations are:

ou

i (a11 + Nu — ag1v + Cu® + Qu? + dy Au
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Figure 8: Turing Spot Pattern Result for 0.5 Error in Nodeitross.

Ov
— = Q12U — Q220 + dgA’U

ot
wheregt is approximated witldt = 0.01, (a11 + A) = 0.6, ag1 = 1, a12 = 2, aga + 4, d; = 0.08,dy = 1,
C =1, and for@ = 0 stripes form (wher) = 0.08, spots form). The grid is intended to lie on a domain of
27 x 2w, and thusiz is a function of the grid size. For our work here, we assumettiediameter of the
S-Netcan be found, and from this a good estimate of eV size of the (displaced) grid. Figure 9 shows
the result of this process; note, however, that this gricwrap-around connectivity. Of course, wrap-around
connectivity is difficult to achieve in a8-Nef but as shown in Figure 10, a useful result can still be obtiin
although the orientation of the stripe is not aligned witthei of the coordinate axes.

3 RD-Based S-NetAlgorithms

Given the ability to form 2-D RD patterns in &+Net we now give examples of useful algorithms which
exploit these patterns.

3.1 RD Leadership Protocol

It is often useful to choose a subset of Bidethodes to serve as leaders in local neighborhoods. This can be
much more efficient in terms of communications, and they d¢sm serve other roles; e.g., local coordinate
frame origins (see [11] for more on this topicRD_LA (Reaction-Diffusion Leadership Algorithm) is an
RD-based algorithm to achieve leadership selection.



Figure 9: Ermentrout Strip Pattern Result for Wrap-aroundr@ativity.

Figure 10: Ermentrout Stripe Pattern Result without Wramiad Connec tivity.
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Figure 11: Leader Nodes produced by Algorithm RB.
Algorithm RD_LA:

1. Form RD spots.
2. For each spofS;

(a) L; + choose central node if};
(b) end

Figure 11 shows a set of leader nodes produceRDyA.

3.2 Roadway Formation

One further example of the application of the spot formatieerction-diffusion process is to create straight
lines in S-Nets This can be done without knowing the distance between mates without a coordinate
frame. Suppose the goal is to create stripes as shown ind=yukt each mote, determine its neighbors with
lowest and highest sensor measurements. These are assuliedd the gradient direction. If the diffusion
is restricted to take place only through these neighbogs) the spots blend in this direction and become
straight lines. Figure 12 shows this result on a simulatédfsmotes.
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Figure 12: Lines produced by 2D Reaction-Diffusion Process

4 Model Accuracy Assessment

Model Accuracy Assessment (MAA) is an important part of thedern verification and validation process
[12]. This involves not only evaluation of a validation mettomparing experimental versus simulation sys-
tem response quantities, but also the determination of dequacy of the model for its intended use (see
[28] for a detailed description). The incorporation of gffit and scalable probabilistic methods into model-
based simultaneous state estimation and parameter idatitifi may have a large impact on the exploitation
of spatially distributed sensing and computation systdmighout a wide range of scientific domains. Spa-
tially distributed physical phenomena such as temperawege propagation, etc., require observation with
dynamically located sensors in order to achieve betteidtenenputational models and simulations. Methods
developed here allow for online validation of models thiodgect sensor observation. Significant problems
which must be overcome include the interpolation betweeasmement data, as well as the estimation of
guantities which cannot be directly measured (e.g., hodatilens). Our major goal is to provide rigorous
Bayesian Computational Sensor Networks to quantify uag#st in (1) model-based state estimates incor-
porating sensor data, (2) model parameters (e.g., diffygeefficients), (3) sensor node model parameter
values (e.g., location, bias), and input source propefgigs, locations and extent of cracks). This is achieved
in terms of extensions to our recently developed techni@ees[9, 33, 32]). We call this approaBlayesian
Computational Sensor NetworkBCSN). These decentralized methods have low computatamraplex-

ity and perform Bayesian estimation in general distributeshsurement systems (i.e., sensor networks). A
model of the dynamic behavior and distribution of the unded physical phenomenon is used to obtain a
continuous form from the discrete time and space samplesde by a sensor network.

Figure 13 shows the validation, calibration and predicpoocess as described by Oberkampf [28]. Experi-
ments are used to establish parameters in the computatrad®l, and these in turn affect the result of the
validation metric. Both simulation experiments and phgk&xperiments are used to help with experiment
design as well as to inform the computational modeling psece

Here we use probabilistic models of macro feature propettidelp select an appropriate noise model for the
node placement error. Lét, denote a node placement model which deviates from a regudbbyglocation
error inz andy sampled from a uniform distributidd(—a, a). A Bayesian formulation of the probability of
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Figure 13: Model Accuracy Assessment (based on Fig. 12m [28]).

a given modelM,, is:
P(D|M,)P(M,)
P(D)
where P(M,|D) is the probability ofM,, given the dataD; P(D|M,) is the probability ofD given M,;
P(M,) is the probability of modeM,, andP(D) is the probability of the given data.

P(Ma‘D) =

5 Simulation Experiments

We have run a set of simulation experiments to ascef®{iP|1,). We assume thaP(M,) is normally
distributed with mean 5 degrees, and variance 1. The nunflusile is sixty, error in placement, is from

the set{0,1,2,...,9,10} , and broadcast range (2. Figure 14 shows the expected number of stripes for
sixty cells for the various values of error in placement anshtdcast range. We ran 1100 simulations (11
angle error settings by 100 trials each) to estinfat®| M, ). Then, on a set of 1000 random values (sampled
from P(M,), we calculated the error as the magnitude of the differemtied indexes of the estimated angle
error and the sample error values. The number of indexesOngtinor was 73%, with one difference in index
was 22.2%, with 2 difference was 4.4% and with 3 difference Qi@ %. Figure 15 shows the differences in
the indexes found by the method (i.e., it picks an error medeire the error is in the s¢0, 1,...,9,10}
degrees) and the indexes of the 1,000 test samples (sortaddpyitude so it's easier to see). If t¢),,) is

a sampled from a normal distribution with 7 degree mean, 888% of the trial values are within one index
of the actual; for mean 6, 99.9% are with 2 indexes.

12
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Figure 16: Layout of a set of 35 X-Bow T-Mote Sky.

6 Physical Experiments

Figure 16 shows the layout of a set of 35 X-Bow T-Mote Sky; vifte small number of motes, the reaction-
diffusion process leads to the formation of spots (i.e. nleephogen concentration> 5). In one instance,

a spot appeared after 1,250 iterations (see Figure 17);Jsmwhe spot pattern is not stable, and eventually
disappears if allowed to continue. We believe that sevasslds are at play: the number of nodes, the
asynchronous nature of the mote transmissions, as wekasdality and bi-directionality of the connectivity.

7 Conclusions and Future Work

We have described techniques for forming patterns in semswvorks based on coordinate-free reaction-
diffusion systems. Such methods may be used to processalttaugh that is not discussed here, and
to carry sensed signal information. The formation of paten irregular meshes has been studied here,
with practical algorithms given for the computation of uge$-Netstructures. A Bayesian model accuracy
assessment method has been proposed to characterizeitlity edthe grid model. Finally, both simuation
and physical experiments have been run to validate the model

The next focus of our work is on the production of patternsebasn sense data analysis (e.g., camouflage
synthesis). Such methods may also find application in seretorork security; in this scenario, a deformed
pattern will emerge from a distributed computation if thaere any nodes which have fallen victim to attack, or
if external nodes have managed to get themselves incoggbiratb theS-Net Of course, resource allocation
and exploitation may also be based on patterns, and givenatidom nature of the patterns, may help
conserve resources (e.g., energy) overall.

We are also exploring mesh generationSsNets As was pointed out by Adamatzky et al. [1], physical
14
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reaction-diffusion computers can calculate Voronoi geapfihus, a basis exists in the reaction-diffusion
computation to produce good triangulations for mote cotivigc Triangles are also important for computa-
tions on irregular meshes; e.g., for finite element meth@disare exploring this in the context of a larger set
of motes.

Another area of research is the calculation of level set}ifBdhe S-Net These can be used for shortest

path computation where an arbitrary speed function may beate We have shown how mobile robots can

use this approach to find the lowest time path to traversaarispeed terrain [5]. However, the Eikonal

equation used there may be set up as a reaction-diffusie@nsyand piggy-backed on the approach defined
here.

Finally, stripes and spots may be of use for various purpbgesiobile agents or th&-Net but a more
direct combination of th&-Netas both a sensing and display device is to be found in theicreaf active
camouflage. Consider the truck shown in Figure 18. Althotiglas a standard camouflage tarpaulin, it does
not blend well with the forest behind it. Several problemisiexith coloration and blobs versus stripes (e.g.,
tree trunks and branches), leaf texture, etc.

One approach to overcome this mismatch is to pair a modetiogegs of the natural scene behind the truck
with a display synthesis component in front of the truck. Tdwhnical basis for such a mechanism can be
found in the work of Zhu and Mumford [36]. They propose (1) edty for discovering the statistics of a set
of natural images, and (2) a framework which allows the diédimiof reaction-diffusion equations to produce
similar natural images, and in particular, they show howetaove conspicuously dissimilar segments from a
scene. Specifically, they show that given a learned set of prodels that reproduce the observed statistics,
the potentials of the resulting Gibbs distributions haveeptials of the form:

K

U(LA,S) =D ) A ((F™ x I)(x,y))

a=1 z,y

whereS = {F( F®?) . FU)Y s a set of filters andh = {A() A®) . A} s the set of potential
15



Figure 19: Zhu and Mumford [36] Clutter Removal Example.

functions.

Reaction-diffusion equations are found as the gradiemtetgartial differential equations di(7; A, S);
diffusion arises from the energy terms while pattern foiorateactions are related to the inverted energy
terms. These are then used to remove clutter in a scene amtddisd images. One example of this process
given by Zhu and Mumford is shown in Figure 19. We propose thatesulting images can be displayed
by LEDs distributed throughout the material of the camowlegnvas, and based upon our previous work in
e-textiles [18, 19, 24], we believe that technical solutierist for the realization of this goal.
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