
Model Accuracy Assessment in
Reaction-Diffusion Pattern

Formation in Wireless Sensor
Networks

Thomas C. Henderson, Anshul Joshi, Kirril
Rashkeev, and Narong Boonsirisumpun

University of Utah

Kyle Luthy and Edward Grant
North Carolina State University

UUCS-13-003

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

30 May 2013

Abstract

We propose to exploit reaction-diffusion (RD) patterns as part of the wireless sensor net-
work (S-Net) high-level structure building toolkit; e.g., to support leader selection or to
provide pathways through the network. In particular, we study the formation of RD spot
and stripe patterns inS-Netsfor which no cöordinate frame exists; i.e., the nets have only
topological connectivity determined by the inter-node broadcast range. We further demon-
strate how macro-features of the RD patterns can be used for Bayesian model accuracy
assessment of the difference between a uniform grid layout of the nodes versus an irregular
grid due to error in node placement.
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1 Introduction

Alan Turing introduced a revolutionary reaction-diffusion model as the chemical basis of
morphogenesis [35], and this method lends itself particularly well to pattern synthesis in
distributed systems. For more detailed explanations, see his original paper (which provides
an exemplar of the scientific paper – theory, analysis and numerical solution on the Manch-
ester machine which Turing helped design and build!), as well as the works of Murray [25],
Meinhardt [23], and more recently, Maini and Othmer [22]. Turing’s key insight was that
diffusion of an inhibitory morphogen could lead to the formation of stable and variegated
patterns. This is related to nonlinear far from equilibriumthermodynamics, and dissipative
structures (e.g., see Prigogine [27, 30, 31] who received the Nobel prize in chemistry for
work in this area). One goal of our work is to understand how these principles may be
exploited inS-Nets.

We have previously proposed to use Turing’s reaction-diffusion mechanism to generate
patterns inS-Nets. [10, 15]. The basis of this mechanism is a set of equations that capture
the reaction and diffusion aspects of certain chemical kinetics:

∂c

∂t
= f(c) +D∇2

c (1)

wheref(c) describes the reaction andD∇2c expresses the diffusion component. The sim-
plest such systems have twomorphogensor variables; one of these acts as the activator and
the other acts as the inhibitor. The two variable system can be modeled by:

∂u

∂t
= γf(u, v) +∇2u,

∂v

∂t
= γg(u, v) + d∇2v (2)

whereu andv are the concentrations of the morphogens,d is the diffusion coefficient and
γ is a constant measure of scale. The functionsf(u, v) andg(u, v) represent the reaction
kinetics. As an example, we have explored the generation of spatial patterns using the
Turing system of equations:

f(u, v) = β − uv, g(u, v) = uv − v − α

whereu andv are the morphogen concentrations,α andβ are the decay and growth rates,
respectively, andγ sets the speed of the reaction. They define a domain in which Equation
(2) becomes linearly unstable to certain spatial disturbances. This domain is referred to as
Turing spacewhere the concentrations of the two morphogens will become unstable and
result in the patterns shown in Figure 1. The pattern is the result of each cell running the
equations locally whilediffusingto its neighbors; a stable solution may be thresholded to
produce a binary value at each sensor, and the total of these gives the pattern. Note that the
distribution of these spots is close to hexagonal.
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Figure 1: Turing Spot Pattern.

We introduced the use of Turing’s reaction-diffusion pattern formation to support high-level
tasks inS-Nets. This has led us to explore various biologically motivated mechanisms. We
address below some issues that arise in trying to get reliable, efficient patterns in irregular
grids. Others have explored the use of both reaction-diffusion and more general diffusion
methods in computer vision and robotics. For example, Fukuda et al. describe the use
of reaction-diffusion techniques in robot motion[7]. Moreover, as described by Peronna et
al.[29], multi-scale descriptions of images (i.e., scale-space) can be produced by embedding
the original image in a family of images obtained by convolving the original image with a
filter; Koenderink[20] showed that this is equivalent to finding the solution of the diffusion
equation:

It = ▽
2I = Ixx + Iyy

We believe that it will be quite useful forS-Netsto use similar methods to analyze sensed
data of various sorts. Other proposed diffusion models include, for example, [16] who
proposes directed diffusion - a datacentric communicationcoordination technique that “en-
ables energy savings by selecting empirically good paths and by caching and processing
data in- network.” The focus of such work is more on the networking and operating systems
aspects of the sensor network, whereas our work is more concerned with the sensor net-
work as a computation engine itself. More closely related toour work is that of Justh and
Krishnaprasad [17] who propose the active coordination of alarge array of microactuators
by means of diffusive coupling implemented as interconnection templates, and Nagpal [26]
who describes methods to create patterns of diverse geometry. We believe that this style of
research will reap great benefits in three aspects: (1) network morphogenesis, (2) sensed
data analysis, and (3) display pattern synthesis.
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Figure 2: Robot Path in Reaction-Diffusion Pattern (◦ is the fire control point;⋄ is the robot
load point)

For example, consider a forest fire scenario: sensor devicesare dropped into a wide geo-
graphic area, establish a network, and produce a stripe pattern of off-on signals that can be
used by fire fighting agents to go to a fire control point by following on devices (pattern
== 1) and return by followingoff devices (pattern == 0) (see Figure 2). Such patterns can
be computed by very robust reaction-diffusion systems derived from models of biological
pattern formation.

Our general research program is to explore a small set of biological sensing and signaling
mechanisms, and we hope to make significant contributions byproviding (1) biologically
realistic models and efficient computational counterparts, (2) fault tolerant frameworks in
which to run them, and (3) demonstrations of their application in human interface and
large-scale sensor networks. In addition, we are buildingS-Netsimulation, emulation, and
experimentation testbeds [14]. Here we describe some initial results in the first of these
areas.

Patterns in theS-Netcan be used to support many high-level algorithms or activities:

• stripe, spot or ring patterns can be used as encoders for physical or logical purposes;
for example, a robot can keep track of how far it has traveled (physical), or commu-
nication packets can travel along certain stripes to minimize power, cost or to avoid
congestion (logical).
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• certain sets of patterns form a basis set for 2D images (e.g.,Haar or Hadamard basis
sets); any map (topo, etc.) or image can then be encoded in terms of the coefficients
associated with the respective basis images.

• the patterns can be used as a reference wave so that sensed data (or features derived
from it) can be encoded as an interference pattern (i.e., a hologram)

• moving waves can also be computed, and thus theS-Netcan serve as a signal carrier
or modulator.

Understanding the precision and reliability of pattern formation is then of high importance.

Given a set of sensor elements,SELs, in the plane, it may be useful to store and exploit a
pattern in theS-Net. For example, stripes may be useful as described above (e.g., see [4, 13]
for calculating shortest paths for robots to follow throughterrain with varying traversability
properties).

2 Reaction-Diffusion Patterns

Some work has already been done to determine the range and type of patterns possible with
the Turing pattern formation approach. Theoretical aspects have been studied and regions
of the parameter space characterized as they relate to pattern formation (i.e., the parameters
are the coefficients in the PDEs) [2, 8, 21]. Others have investigated how pattern formation
is influenced by number of cells, time scale, and initial condition variation. In particular,
Bard and Lauder [3] showed that “stable repeating peaks of chemical concentration of
periodicity 2-20 cells can be obtained in embryos in periodsof time less than an hour. We
do find however that these patterns are not reliable. Small variations in initial conditions
give small but significant changes in the number and positions of observed peaks.” They
showed that this method has difficulty producing exact patterns reliably. We have found
other difficulties in producing the patterns necessary to support higher-level tasks. We
describe these here and propose some solutions.

A more significant issue for us is that the reaction-diffusion pattern formation equations as-
sume that the inter-cell distance is uniform (and usually equal to 1). OurS-Nets, however,
do not form a uniformly spaced grid in 1D or 2D nor do they have wrap-around connec-
tivity; in fact, we generally assume that the sensor devicesare randomly dropped in the
environment. In addition, the diffusion part of the equations uses the inter-node distances
in the computation of the second derivative. Two concerns are: (1) these distances are not
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Figure 3: Typical 1-D Turing Pattern.

uniform, and (2) in an actual implementation, there will be some amount of error in the
inter-node distance determination. This has led us to investigate the impact of non-uniform
spacing on the pattern computation.

The basic 1D Turing reaction-diffusion mechanism on a ring of cells produces a pattern as
shown in Figure 3 (the left side shows the ring layout of the cells and their connectivity; the
right side shows the morphogen concentration in each cell after convergence), and takes
about 1,040 iterations to converge for a set of 60 cells. The mean number of stripes (given
random initial levels of morphogenb) is around 10.

Next consider what happens when error is introduced into thenode locations, resulting in
non-uniform distances between them. The point locations are determined as follows: (1)
start withn points equi-spaced on the unit circle,2∗π

n−1
units apart, and (2) add uniform noise

to the location with maxa angular (radians) distance from the uniform positions. Figure 4
shows the results of a uniformly sampled error fromU(−5, 5) degrees, while Figure 5
shows what happens with a 10 degree uniformly sampled error.The graph shows the
neighborhood relations formed by the radio broadcast range, and in the RD process, the
neighborhood Laplacianis formed as:

∆ai = (
∑

n∈N ei(i)

an)− |N ei(i)|ai

As can be seen, the change in the node neighborhood relationsalters the macro feature
6
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Figure 4: Turing Pattern Result for 5 Degree Error in Node Positions.
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Figure 5: Turing Pattern Result for 10 Degree Error in Node Positions.
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Figure 6: Turing Spot Pattern Result for 0 Error in Node Positions.

results; there are only eight stripes in the 5 degree error case, and four in the 10 degree
error case, and the magnitudes of the peak concentrations vary significantly from the regular
graph (cycle).

This result carries over into 2-D as well; Figures 6 through 8show part of a displaced
50x50 grid (uniformly sampled error onU(0, 0), U(−0.2, 0.2), andU(−0.5, 0.5) in x and
y, respectively), and the resulting spots formed. As can be seen, the spots appear well-
distributed and regular. Moreover, the neighborhood Laplacian works well. This is advan-
tageous inS-Netsbecause inter-node distances are often hard to ascertain. Finally, note that
the radio broadcast range of a node can vary between some min and max range (as a func-
tion of power), and this can change the network topology significantly; if neighborhoods
extend over a larger area, then the spots will be larger in size (and fewer in number).

In order to form stripes in 2-D, Ermentrout [6] provides a coördinate-free RD mechanism
for the creation of a stripe pattern. The equations are:

∂u

∂t
= (a11 + λ)u− a21v + Cu3 +Qu2 + d1∆u

∂v

∂t
= a12u− a22v + d2∆v

where∂t is approximated withδt = 0.01, (a11 + λ) = 0.6, a21 = 1, a12 = 2, a22 + 4,
d1 = 0.08, d2 = 1, C = 1, and forQ = 0 stripes form (whenQ = 0.08, spots form).
The grid is intended to lie on a domain of2πx2π, and thusδx is a function of the grid
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Figure 7: Turing Spot Pattern Result for 0.2 Error in Node Positions.
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Figure 8: Turing Spot Pattern Result for 0.5 Error in Node Positions.

9



0
5

10
15

20
25

0

5

10

15

20

25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

XY

M
or

ph
og

en
 C

on
ce

nt
ra

tio
n

Figure 9: Ermentrout Strip Pattern Result for Wrap-around Connectivity.

size. For our work here, we assume that the diameter of theS-Netcan be found, and from
this a good estimate of theNxN size of the (displaced) grid. Figure 9 shows the result of
this process; note, however, that this grid has wrap-aroundconnectivity. Of course, wrap-
around connectivity is difficult to achieve in anS-Net, but as shown in Figure 10, a useful
result can still be obtained, although the orientation of the stripe is not aligned with either
of the cöordinate axes.

3 RD-Based S-NetAlgorithms

Given the ability to form 2-D RD patterns in anS-Net, we now give examples of useful
algorithms which exploit these patterns.

3.1 RD Leadership Protocol

It is often useful to choose a subset of theS-Netnodes to serve as leaders in local neigh-
borhoods. This can be much more efficient in terms of communications, and they can also
serve other roles; e.g., local coördinate frame origins (see [11] for more on this topic).
RD LA (Reaction-Diffusion Leadership Algorithm) is an RD-based algorithm to achieve
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Figure 10: Ermentrout Stripe Pattern Result without Wrap-around Connectivity.

leadership selection.

Algorithm RD LA:

1. Form RD spots.

2. For each spot,Si

(a) Li ← choose central node inSi

(b) end

Figure 11 shows a set of leader nodes produced byRD LA.

3.2 Roadway Formation

One further example of the application of the spot formationreaction-diffusion process is
to create straight lines inS-Nets. This can be done without knowing the distance between
motes, and without a coördinate frame. Suppose the goal is to create stripes as shown in
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Figure 11: Leader Nodes produced by Algorithm RDLA.

Figure 2. At each mote, determine its neighbors with lowest and highest sensor measure-
ments. These are assumed to lie in the gradient direction. Ifthe diffusion is restricted to
take place only through these neighbors, then the spots blend in this direction and become
straight lines. Figure 12 shows this result on a simulated set of motes.

4 Model Accuracy Assessment

Model Accuracy Assessment (MAA) is an important part of the modern verification and
validation process [12]. This involves not only evaluationof a validation metric comparing
experimental versus simulation system response quantities, but also the determination of
the adequacy of the model for its intended use (see [28] for a detailed description). The in-
corporation of efficient and scalable probabilistic methods into model-based simultaneous
state estimation and parameter identification may have a large impact on the exploitation of
spatially distributed sensing and computation systems throughout a wide range of scientific
domains. Spatially distributed physical phenomena such astemperature, wave propaga-
tion, etc., require observation with dynamically located sensors in order to achieve better
tuned computational models and simulations. Methods developed here allow for online
validation of models through direct sensor observation. Significant problems which must
be overcome include the interpolation between measurementdata, as well as the estimation

12



Iteration5950

Figure 12: Lines produced by 2D Reaction-Diffusion Process.

of quantities which cannot be directly measured (e.g., nodelocations). Our major goal is to
provide rigorous Bayesian Computational Sensor Networks to quantify uncertainty in (1)
model-based state estimates incorporating sensor data, (2) model parameters (e.g., diffu-
sivity coefficients), (3) sensor node model parameter values (e.g., location, bias), and input
source properties (e.g., locations and extent of cracks). This is achieved in terms of exten-
sions to our recently developed techniques (see [9, 33, 32]). We call this approachBayesian
Computational Sensor Networks(BCSN). These decentralized methods have low compu-
tational complexity and perform Bayesian estimation in general distributed measurement
systems (i.e., sensor networks). A model of the dynamic behavior and distribution of the
underlying physical phenomenon is used to obtain a continuous form from the discrete time
and space samples provided by a sensor network.

Figure 13 shows the validation, calibration and predictionprocess as described by Oberkampf
[28]. Experiments are used to establish parameters in the computational model, and these
in turn affect the result of the validation metric. Both simulation experiments and physical
experiments are used to help with experiment design as well as to inform the computational
modeling process.

Here we use probabilistic models of macro feature properties to help select an appropriate
noise model for the node placement error. LetMa denote a node placement model which
deviates from a regular grid by location error inx andy sampled from a uniform distribution
U(−a, a). A Bayesian formulation of the probability of a given model,Ma, is:

P (Ma|D) =
P (D|Ma)P (Ma)

P (D)
13



Figure 13: Model Accuracy Assessment (based on Fig. 12.4 from [28]).

whereP (Ma|D) is the probability ofMa given the data,D; P (D|Ma) is the probability
of D givenMa; P (Ma) is the probability of modelMa, andP (D) is the probability of the
given data.

5 Simulation Experiments

We have run a set of simulation experiments to ascertainP (D|Ma). We assume thatP (Ma)
is normally distributed with mean 5 degrees, and variance 1.The number of cells is sixty,
error in placement,a, is from the set{0, 1, 2, . . . , 9, 10} , and broadcast range is0.2. Fig-
ure 14 shows the expected number of stripes for sixty cells for the various values of error
in placement and broadcast range. We ran 1100 simulations (11 angle error settings by
100 trials each) to estimateP (D|Ma). Then, on a set of 1000 random values (sampled
from P (Ma), we calculated the error as the magnitude of the difference in the indexes of
the estimated angle error and the sample error values. The number of indexes with 0 error
was 73%, with one difference in index was 22.2%, with 2 difference was 4.4% and with 3
difference was 0.4 %. Figure 15 shows the differences in the indexes found by the method
(i.e., it picks an error model where the error is in the set{0, 1, . . . , 9, 10} degrees) and the
indexes of the 1,000 test samples (sorted by magnitude so it’s easier to see). If theP (Ma)
is a sampled from a normal distribution with 7 degree mean, then 99.8% of the trial values
are within one index of the actual; for mean 6, 99.9% are with 2indexes.
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Figure 16: Layout of a set of 35 X-Bow T-Mote Sky.

6 Physical Experiments

Figure 16 shows the layout of a set of 35 X-Bow T-Mote Sky; with the small number of
motes, the reaction-diffusion process leads to the formation of spots (i.e., the morphogen
concentrationa > 5). In one instance, a spot appeared after 1,250 iterations (see Figure 17);
however, the spot pattern is not stable, and eventually disappears if allowed to continue. We
believe that several issues are at play: the number of nodes,the asynchronous nature of the
mote transmissions, as well as the locality and bi-directionality of the connectivity.

7 Conclusions and Future Work

We have described techniques for forming patterns in sensornetworks based on coördinate-
free reaction-diffusion systems. Such methods may be used to process data, although that
is not discussed here, and to carry sensed signal information. The formation of patterns in
irregular meshes has been studied here, with practical algorithms given for the computation
of usefulS-Netstructures. A Bayesian model accuracy assessment method hasbeen pro-
posed to characterize the validity of the grid model. Finally, both simuation and physical
experiments have been run to validate the models.

The next focus of our work is on the production of patterns based on sense data analysis
(e.g., camouflage synthesis). Such methods may also find application in sensor network
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Figure 17: RD Spot Formation on a set of 42 X-Bow T-Mote Sky Devices.

security; in this scenario, a deformed pattern will emerge from a distributed computation if
there are any nodes which have fallen victim to attack, or if external nodes have managed to
get themselves incorporated into theS-Net. Of course, resource allocation and exploitation
may also be based on patterns, and given the random nature of the patterns, may help
conserve resources (e.g., energy) overall.

We are also exploring mesh generation inS-Nets. As was pointed out by Adamatzky et
al. [1], physical reaction-diffusion computers can calculate Voronoi graphs. Thus, a basis
exists in the reaction-diffusion computation to produce good triangulations for mote con-
nectivity. Triangles are also important for computations on irregular meshes; e.g., for finite
element methods. We are exploring this in the context of a larger set of motes.

Another area of research is the calculation of level sets [34] in theS-Net. These can be used
for shortest path computation where an arbitrary speed function may be defined. We have
shown how mobile robots can use this approach to find the lowest time path to traverse
variable speed terrain [5]. However, the Eikonal equation used there may be set up as a
reaction-diffusion system, and piggy-backed on the approach defined here.

Finally, stripes and spots may be of use for various purposesby mobile agents or theS-
Net, but a more direct combination of theS-Netas both a sensing and display device is
to be found in the creation of active camouflage. Consider the truck shown in Figure 18.
Although it has a standard camouflage tarpaulin, it does not blend well with the forest
behind it. Several problems exist with coloration and blobsversus stripes (e.g., tree trunks
and branches), leaf texture, etc.
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Figure 18: A Camouflaged Truck in the Forest.

One approach to overcome this mismatch is to pair a modeling process of the natural scene
behind the truck with a display synthesis component in frontof the truck. The technical ba-
sis for such a mechanism can be found in the work of Zhu and Mumford [36]. They propose
(1) a theory for discovering the statistics of a set of natural images, and (2) a framework
which allows the definition of reaction-diffusion equations to produce similar natural im-
ages, and in particular, they show how to remove conspicuously dissimilar segments from
a scene. Specifically, they show that given a learned set of prior models that reproduce the
observed statistics, the potentials of the resulting Gibbsdistributions have potentials of the
form:

U(I; Λ, S) =
K∑

α=1

∑

x,y

λα((F (α) × I)(x, y))

whereS = {F (1), F (2), . . . , F (K)} is a set of filters andΛ = {λ(1), λ(2), . . . , λ(K)} is the
set of potential functions.

Reaction-diffusion equations are found as the gradient descent partial differential equations
onU(I; Λ, S); diffusion arises from the energy terms while pattern formation reactions are
related to the inverted energy terms. These are then used to remove clutter in a scene and
to denoise images. One example of this process given by Zhu and Mumford is shown in
Figure 19. We propose that the resulting images can be displayed by LEDs distributed
throughout the material of the camouflage canvas, and based upon our previous work in
e-textiles [18, 19, 24], we believe that technical solutions exist for the realization of this
goal.

18



Figure 19: Zhu and Mumford [36] Clutter Removal Example.
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