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Abstract

We propose to exploit reaction-diffusion (RD) patterns as phthe wireless sensor net-
work (S-Nej high-level structure building toolkit; e.g., to suppogaber selection or to
provide pathways through the network. In particular, walgtthe formation of RD spot
and stripe patterns i8-Netdor which no c@rdinate frame exists; i.e., the nets have only
topological connectivity determined by the inter-nodedalwast range. We further demon-
strate how macro-features of the RD patterns can be used farsiaymodel accuracy
assessment of the difference between a uniform grid layldbeanodes versus an irregular
grid due to error in node placement.



1 Introduction

Alan Turing introduced a revolutionary reaction-diffusiomodel as the chemical basis of
morphogenesis [35], and this method lends itself partibulaell to pattern synthesis in
distributed systems. For more detailed explanations, ise&iginal paper (which provides
an exemplar of the scientific paper — theory, analysis andenigal solution on the Manch-
ester machine which Turing helped design and build!), atagghe works of Murray [25],
Meinhardt [23], and more recently, Maini and Othmer [22]rifig’s key insight was that
diffusion of an inhibitory morphogen could lead to the fotioa of stable and variegated
patterns. This is related to nonlinear far from equilibritmrmodynamics, and dissipative
structures (e.g., see Prigogine [27, 30, 31] who received\tbbel prize in chemistry for
work in this area). One goal of our work is to understand hogséhprinciples may be
exploited inS-Nets

We have previously proposed to use Turing’s reaction-giéfla mechanism to generate
patterns inS-Nets [10, 15]. The basis of this mechanism is a set of equaticaiscidpture
the reaction and diffusion aspects of certain chemicaltidae

— = f(c) + DV?c (1)

wheref(c) describes the reaction aelV?c expresses the diffusion component. The sim-
plest such systems have twwrphogen®r variables; one of these acts as the activator and
the other acts as the inhibitor. The two variable system eamtdeled by:

0 0

5 = 1 (0) + V2u, o = g(u,0) + V% 2)
whereu andv are the concentrations of the morphogehis the diffusion coefficient and
~ is a constant measure of scale. The functigfs v) andg(u, v) represent the reaction
kinetics. As an example, we have explored the generatiompatiad patterns using the
Turing system of equations:

flu,v) =06 —uv,g(u,v) =uv —v —«

whereu andv are the morphogen concentrationsand are the decay and growth rates,
respectively, and sets the speed of the reaction. They define a domain in whiahtkn
(2) becomes linearly unstable to certain spatial disturtbanThis domain is referred to as
Turing spacewhere the concentrations of the two morphogens will beconstable and
result in the patterns shown in Figure 1. The pattern is tealtef each cell running the
equations locally whilaiffusingto its neighbors; a stable solution may be thresholded to
produce a binary value at each sensor, and the total of thesethe pattern. Note that the
distribution of these spots is close to hexagonal.
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Figure 1: Turing Spot Pattern.

We introduced the use of Turing’s reaction-diffusion pattermation to support high-level
tasks inS-Nets This has led us to explore various biologically motivategchmnisms. We
address below some issues that arise in trying to get reliafficient patterns in irregular
grids. Others have explored the use of both reaction-diffuand more general diffusion
methods in computer vision and robotics. For example, Faketdal. describe the use
of reaction-diffusion techniques in robot motion[7]. Moxer, as described by Peronna et
al.[29], multi-scale descriptions of images (i.e., scgpace) can be produced by embedding
the original image in a family of images obtained by convodyvthe original image with a
filter; Koenderink[20] showed that this is equivalent to fimgithe solution of the diffusion
equation:

L =1 = Ly + 1,

We believe that it will be quite useful f@-Netgo use similar methods to analyze sensed
data of various sorts. Other proposed diffusion modelsuge| for example, [16] who
proposes directed diffusion - a datacentric communicatamrdination technique that “en-
ables energy savings by selecting empirically good pathkisbgncaching and processing
data in- network.” The focus of such work is more on the nekivay and operating systems
aspects of the sensor network, whereas our work is more nogatevith the sensor net-
work as a computation engine itself. More closely relateduowork is that of Justh and
Krishnaprasad [17] who propose the active coordinationlafge array of microactuators
by means of diffusive coupling implemented as interconpademplates, and Nagpal [26]
who describes methods to create patterns of diverse gepridédrbelieve that this style of
research will reap great benefits in three aspects: (1) mketmorphogenesjg2) sensed
data analysis, and (3) display pattern synthesis.
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Figure 2: Robot Path in Reaction-Diffusion Pattesmg(the fire control pointy is the robot
load point)

For example, consider a forest fire scenario: sensor desigedropped into a wide geo-
graphic area, establish a network, and produce a striperpatt off-on signals that can be
used by fire fighting agents to go to a fire control point by fellay on devices (pattern

== 1) and return by followingff devices (pattern == 0) (see Figure 2). Such patterns can
be computed by very robust reaction-diffusion systemsvddrirom models of biological
pattern formation.

Our general research program is to explore a small set abdpitdl sensing and signaling
mechanisms, and we hope to make significant contributiormdwiding (1) biologically
realistic models and efficient computational counterpd®sfault tolerant frameworks in
which to run them, and (3) demonstrations of their applasain human interface and
large-scale sensor networks. In addition, we are buil@fgetsimulation, emulation, and
experimentation testbeds [14]. Here we describe somalimésults in the first of these
areas.

Patterns in th&-Netcan be used to support many high-level algorithms or aesuit

e stripe, spot or ring patterns can be used as encoders foicphgs logical purposes;
for example, a robot can keep track of how far it has travehdygical), or commu-
nication packets can travel along certain stripes to mirénpiower, cost or to avoid
congestion (logical).
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e certain sets of patterns form a basis set for 2D images (¢agw, or Hadamard basis
sets); any map (topo, etc.) or image can then be encodedms t&rthe coefficients
associated with the respective basis images.

¢ the patterns can be used as a reference wave so that sers¢drdaatures derived
from it) can be encoded as an interference pattern (i.e.lagtem)

e Mmoving waves can also be computed, and thusStiNetcan serve as a signal carrier
or modulator.

Understanding the precision and reliability of pattermation is then of high importance.

Given a set of sensor elemen8E.Ls, in the plane, it may be useful to store and exploit a
pattern in theS-Net For example, stripes may be useful as described abovegeaj4, 13]

for calculating shortest paths for robots to follow throdgirain with varying traversability
properties).

2 Reaction-Diffusion Patterns

Some work has already been done to determine the range andftgptterns possible with
the Turing pattern formation approach. Theoretical asgpeate been studied and regions
of the parameter space characterized as they relate torptttmation (i.e., the parameters
are the coefficients in the PDES) [2, 8, 21]. Others have tigated how pattern formation
is influenced by number of cells, time scale, and initial gbod variation. In particular,
Bard and Lauder [3] showed that “stable repeating peaks ahida concentration of
periodicity 2-20 cells can be obtained in embryos in perioidsme less than an hour. We
do find however that these patterns are not reliable. Sma#dti@ns in initial conditions
give small but significant changes in the number and positafrobserved peaks.” They
showed that this method has difficulty producing exact pasteeliably. We have found
other difficulties in producing the patterns necessary fgpsu higher-level tasks. We
describe these here and propose some solutions.

A more significant issue for us is that the reaction-diffagoattern formation equations as
sume that the inter-cell distance is uniform (and usuallyaétp 1). OurS-Netshowever,

do not form a uniformly spaced grid in 1D or 2D nor do they havewaround connec-
tivity; in fact, we generally assume that the sensor devaresrandomly dropped in the
environment. In addition, the diffusion part of the equasiaises the inter-node distances
in the computation of the second derivative. Two conceras @) these distances are not
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Figure 3: Typical 1-D Turing Pattern.

uniform, and (2) in an actual implementation, there will loene& amount of error in the
inter-node distance determination. This has led us to tyae the impact of non-uniform
spacing on the pattern computation.

The basic 1D Turing reaction-diffusion mechanism on a rihgetls produces a pattern as
shown in Figure 3 (the left side shows the ring layout of tHis@nd their connectivity; the
right side shows the morphogen concentration in each delt abnvergence), and takes
about 1,040 iterations to converge for a set of 60 cells. Teammumber of stripes (given
random initial levels of morphogeh) is around 10.

Next consider what happens when error is introduced intontite locations, resulting in
non-uniform distances between them. The point locatioasdatermined as follows: (1)
start withn points equi-spaced on the unit circ]gé_fi1 units apart, and (2) add uniform noise
to the location with max. angular (radians) distance from the uniform positionsuFegt
shows the results of a uniformly sampled error froft—5,5) degrees, while Figure 5
shows what happens with a 10 degree uniformly sampled errdhe graph shows the
neighborhood relations formed by the radio broadcast raauge in the RD process, the
neighborhood Laplaciars formed as:

Aa;=( > a,)— |Nei(i)|a;
neNei(i)

As can be seen, the change in the node neighborhood relattans the macro feature
6
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Figure 6: Turing Spot Pattern Result for O Error in Node Pos&i

results; there are only eight stripes in the 5 degree erree,cand four in the 10 degree
error case, and the magnitudes of the peak concentrationsigaificantly from the regular

graph (cycle).

This result carries over into 2-D as well; Figures 6 througtsh8w part of a displaced
50x50 grid (uniformly sampled error d(0,0), 4 (—0.2,0.2), andi/(—0.5,0.5) in x and
y, respectively), and the resulting spots formed. As can ke,sihe spots appear well-
distributed and regular. Moreover, the neighborhood Laplaworks well. This is advan-
tageous irB-Netdecause inter-node distances are often hard to asceriasailyFnote that
the radio broadcast range of a node can vary between somenchimax range (as a func-
tion of power), and this can change the network topologyiBagmtly; if neighborhoods
extend over a larger area, then the spots will be larger en(sizd fewer in number).

In order to form stripes in 2-D, Ermentrout [6] provides @uadinate-free RD mechanism
for the creation of a stripe pattern. The equations are:

g:;b = (CLH + )\)'Ll, — a1V + CU3 + QU2 + dlAU
?;tj = Q12U — Q22U + dgAU

wheredt is approximated withhit = 0.01, (a1; + A\) = 0.6, ag; = 1, a12 = 2, as + 4,

dy, = 0.08,dy =1, C =1, and for@ = 0 stripes form (wher) = 0.08, spots form).

The grid is intended to lie on a domain 2fx27, and thusix is a function of the grid
8
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Figure 8: Turing Spot Pattern Result for 0.5 Error in Node fmss.
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size. For our work here, we assume that the diameter dbtNetcan be found, and from
this a good estimate of th¥x/V size of the (displaced) grid. Figure 9 shows the result of
this process; note, however, that this grid has wrap-ar@oendectivity. Of course, wrap-
around connectivity is difficult to achieve in &Nef but as shown in Figure 10, a useful
result can still be obtained, although the orientation efgtripe is not aligned with either
of the cdardinate axes.

3 RD-Based S-NetAlgorithms

Given the ability to form 2-D RD patterns in é&+Net we now give examples of useful
algorithms which exploit these patterns.

3.1 RD Leadership Protocol

It is often useful to choose a subset of hd\etnodes to serve as leaders in local neigh-
borhoods. This can be much more efficient in terms of comnatimics, and they can also
serve other roles; e.g., local @alinate frame origins (see [11] for more on this topic).
RD_LA (Reaction-Diffusion Leadership Algorithm) is an RD-basegloaithm to achieve
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leadership selection.

Algorithm RD_LA:

1. Form RD spots.
2. For each spof§;

() L; < choose central node i}
(b) end

Figure 11 shows a set of leader nodes producedby A.

3.2 Roadway Formation

One further example of the application of the spot formatiection-diffusion process is
to create straight lines i8-Nets This can be done without knowing the distance between
motes, and without a @wdinate frame. Suppose the goal is to create stripes asnsimow
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Figure 11: Leader Nodes produced by Algorithm RB.

Figure 2. At each mote, determine its neighbors with lowest lsighest sensor measure-
ments. These are assumed to lie in the gradient directiotie lfliffusion is restricted to
take place only through these neighbors, then the spotd odethis direction and become
straight lines. Figure 12 shows this result on a simulatédfsmotes.

4 Model Accuracy Assessment

Model Accuracy Assessment (MAA) is an important part of thedern verification and
validation process [12]. This involves not only evaluatajra validation metric comparing
experimental versus simulation system response quantiiig also the determination of
the adequacy of the model for its intended use (see [28] fetaildd description). The in-
corporation of efficient and scalable probabilistic methodo model-based simultaneous
state estimation and parameter identification may haveya laxpact on the exploitation of
spatially distributed sensing and computation systenmitfirout a wide range of scientific
domains. Spatially distributed physical phenomena sudemperature, wave propaga-
tion, etc., require observation with dynamically locatedsors in order to achieve better
tuned computational models and simulations. Methods dpeel here allow for online
validation of models through direct sensor observatiogniicant problems which must
be overcome include the interpolation between measuretiatatas well as the estimation
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of quantities which cannot be directly measured (e.g., hackgions). Our major goal is to
provide rigorous Bayesian Computational Sensor Networksigmtify uncertainty in (1)
model-based state estimates incorporating sensor datmo@el parameters (e.g., diffu-
sivity coefficients), (3) sensor node model parameter waey., location, bias), and input
source properties (e.g., locations and extent of crackss i$ achieved in terms of exten-
sions to our recently developed techniques (see [9, 33, B&)call this approacBayesian
Computational Sensor NetworkBCSN). These decentralized methods have low compu-
tational complexity and perform Bayesian estimation in geheistributed measurement
systems (i.e., sensor networks). A model of the dynamic\ehand distribution of the
underlying physical phenomenon is used to obtain a contisémrm from the discrete time
and space samples provided by a sensor network.

Figure 13 shows the validation, calibration and predicgiotess as described by Oberkampf
[28]. Experiments are used to establish parameters in timpetational model, and these

in turn affect the result of the validation metric. Both sietibn experiments and physical
experiments are used to help with experiment design as w#dliaform the computational
modeling process.

Here we use probabilistic models of macro feature propettidnelp select an appropriate
noise model for the node placement error. L&t denote a node placement model which
deviates from a regular grid by location erroriandy sampled from a uniform distribution
U(—a,a). A Bayesian formulation of the probability of a given mod,, is:

P(D|M,)P(M,)

P(D)
13

P(M,|D) =
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Figure 13: Model Accuracy Assessment (based on Fig. 12 [28]).

where P(M,|D) is the probability ofM, given the datapD; P(D|M,) is the probability
of D givenM,; P(M,) is the probability of model/,, and P(D) is the probability of the
given data.

5 Simulation Experiments

We have run a set of simulation experiments to asceftain| M/, ). We assume that(M,,)

is normally distributed with mean 5 degrees, and varianceEhk. number of cells is sixty,
error in placementy, is from the se{0,1,2,...,9,10} , and broadcast range (2. Fig-
ure 14 shows the expected number of stripes for sixty ceflthi® various values of error
in placement and broadcast range. We ran 1100 simulatidnar{@le error settings by
100 trials each) to estimate(D|M,). Then, on a set of 1000 random values (sampled
from P(M,), we calculated the error as the magnitude of the differendhe indexes of
the estimated angle error and the sample error values. Treearuof indexes with O error
was 73%, with one difference in index was 22.2%, with 2 ddfere was 4.4% and with 3
difference was 0.4 %. Figure 15 shows the differences inrttiexes found by the method
(i.e., it picks an error model where the error is in the{getl, ..., 9,10} degrees) and the
indexes of the 1,000 test samples (sorted by magnitudesseasier to see). If thB(M,)

is a sampled from a normal distribution with 7 degree measm 80.8% of the trial values
are within one index of the actual; for mean 6, 99.9% are withd2xes.

14
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Figure 16: Layout of a set of 35 X-Bow T-Mote Sky.

6 Physical Experiments

Figure 16 shows the layout of a set of 35 X-Bow T-Mote Sky; with small number of
motes, the reaction-diffusion process leads to the foonati spots (i.e., the morphogen
concentratio > 5). In one instance, a spot appeared after 1,250 iteratieeHigure 17);
however, the spot pattern is not stable, and eventuallypdesars if allowed to continue. We
believe that several issues are at play: the number of ntteeasynchronous nature of the
mote transmissions, as well as the locality and bi-direiity of the connectivity.

7 Conclusionsand Future Work

We have described techniques for forming patterns in seretaorks based on éodinate-
free reaction-diffusion systems. Such methods may be wsprbtess data, although that
is not discussed here, and to carry sensed signal informalioe formation of patterns in
irregular meshes has been studied here, with practicalitdges given for the computation
of useful S-Netstructures. A Bayesian model accuracy assessment methdxtéagro-
posed to characterize the validity of the grid model. Findibth simuation and physical
experiments have been run to validate the models.

The next focus of our work is on the production of patternsedasn sense data analysis
(e.g., camouflage synthesis). Such methods may also finccapmh in sensor network
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security; in this scenario, a deformed pattern will emergenfa distributed computation if
there are any nodes which have fallen victim to attack, ottéenal nodes have managed to
get themselves incorporated into theNet Of course, resource allocation and exploitation
may also be based on patterns, and given the random natuhe q@iatterns, may help
conserve resources (e.g., energy) overall.

We are also exploring mesh generationSiNets As was pointed out by Adamatzky et
al. [1], physical reaction-diffusion computers can cadtelVoronoi graphs. Thus, a basis
exists in the reaction-diffusion computation to producedytriangulations for mote con-

nectivity. Triangles are also important for computationsroegular meshes; e.g., for finite
element methods. We are exploring this in the context ofgelaset of motes.

Another area of research is the calculation of level setsiféhe S-Net These can be used
for shortest path computation where an arbitrary speediummay be defined. We have
shown how mobile robots can use this approach to find the loives path to traverse
variable speed terrain [5]. However, the Eikonal equatiseduthere may be set up as a
reaction-diffusion system, and piggy-backed on the apgraizfined here.

Finally, stripes and spots may be of use for various purpbgasobile agents or th8-
Net but a more direct combination of ti#&Netas both a sensing and display device is
to be found in the creation of active camouflage. Considerrtiektshown in Figure 18.
Although it has a standard camouflage tarpaulin, it does lestdbwell with the forest
behind it. Several problems exist with coloration and ble&sus stripes (e.g., tree trunks
and branches), leaf texture, etc.
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Figure 18: A Camouflaged Truck in the Forest.

One approach to overcome this mismatch is to pair a modetimgegs of the natural scene
behind the truck with a display synthesis component in fadihe truck. The technical ba-
sis for such a mechanism can be found in the work of Zhu and Mtad86]. They propose
(1) a theory for discovering the statistics of a set of ndtumages, and (2) a framework
which allows the definition of reaction-diffusion equatsoto produce similar natural im-
ages, and in particular, they show how to remove conspidyaiissimilar segments from
a scene. Specifically, they show that given a learned seiafmodels that reproduce the
observed statistics, the potentials of the resulting Gihssibutions have potentials of the
form: .

U7, 8) =3 Y A ((F x I)(w,y))

a=1 z,y

whereS = {F @ U1 s a set of filters andh = {\, \?) . AU} is the
set of potential functions.

Reaction-diffusion equations are found as the gradientiegartial differential equations
onU(I; A, S); diffusion arises from the energy terms while pattern faiorareactions are
related to the inverted energy terms. These are then usednive clutter in a scene and
to denoise images. One example of this process given by ZthiMaimford is shown in
Figure 19. We propose that the resulting images can be gisglby LEDs distributed
throughout the material of the camouflage canvas, and bgsmu aur previous work in
e-textiles [18, 19, 24], we believe that technical solui@xist for the realization of this
goal.

18



Figure 19: Zhu and Mumford [36] Clutter Removal Example.
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