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Abstract

Model Accuracy Assessment (MAA) is an important part of the modern verification and validation process. This involves
not only evaluation of a validation metric comparing experimental versus simulation system response quantities, but also the
determination of the adequacy of the model for its intended use (see [1] for a detailed description). We describe here some
issues related to the use of parameter estimation on MAA in the study of heat flow in a 2D metal plate. We consider seven
parameter estimation techniques, and show that various factors such aslength of sampling time, parameter estimation method,
etc. impact the MAA. The ultimate goal is to improve MAA techniques in aircraft structural health care monitoring using
Bayesian Computational Sensor Networks.

c© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of the Scientific Program Committee ofthe International conference on
Computational Science (ICCE 2013).

Keywords: Model Accuracy Assessment, Validation, Parameter Estimation, Prediction

1. Introduction

The major specific objectives of our work are to:
1. Develop Bayesian Computational Sensor Networks (BCSN) which detect and identify structural damage.

We aim to quantify physical phenomena and sensor models; e.g., develop piezoelectric and other com-
putational models to reconstruct physical phenomena and characterize uncertainties due to environmental
factors.

2. Develop an active feedback methodology using model-based sampling regimes (rates, locations and types
of data) realized with embedded sensors and active sensor placement. This will allow on-line sensor model
validation, and the use of on-demand complimentary sensors.

3. Develop a rigorous model-based systematic treatment of the following uncertainty models: (1) stochastic
uncertainties of system states, (2) unknown model parameters, (3) dynamic parameters of sensor nodes, and
(4) material damage assessments (viewed as source input parameters).
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Fig. 1. Model Accuracy Assessment (based on Fig. 12.4 from [1]).

This work addresses 3 of the 4 DDDAS (Dynamic Data-Driven Analysis Systems) interdisciplinary research com-
ponents: applications modeling, advances in mathematics and statistical algorithms, and application measurement
systems and methods, and more specifically addresses several questions raised in the DDDAS-InfoSymbiotics
2010 Report [2] by Working Group 3 (WG3) Large and Heterogeneous Data from Distributed Measurement &
Control Systems (Alok Chaturvedi, Adrian Sandhu): ”DDDAS inherently involves large amounts of data that can
result from heterogeneous and distributed sources which require analysis before automatically integrating them to
the executing applications that need to use the data.”

The incorporation of efficient and scalable probabilistic methods into model-basedsimultaneous state esti-
mation and parameter identification may have a large impact on the exploitation of spatially distributed sensing
and computation systems throughout a wide range of scientific domains. Spatially distributed physical phenom-
ena such as temperature, wave propagation, etc., require observation with dynamically located sensors in order to
achieve better tuned computational models and simulations. Methods developed here allow for online validation of
models through direct sensor observation. Significant problems which must be overcome include the interpolation
between measurement data, as well as the estimation of quantities which cannot be directly measured (e.g., ther-
mal diffusivity coefficients). The demonstration of how stochastic partial differential equations can be used to this
end should have strong impact on practice in many applications, including the aircraft Structural Health Monitor-
ing (SHM) problem. Our major goal is to provide rigorous Bayesian Computational Sensor Networks to quantify
uncertainty in (1) model-based state estimates incorporating sensor data, (2) model parameters (e.g., diffusivity
coefficients), (3) sensor node model parameter values (e.g., location, bias), and input source properties (e.g., lo-
cations and extent of cracks). This is achieved in terms of extensions to our recently developed techniques (see
[3, 4, 5]). We call this approachBayesian Computational Sensor Networks(BCSN). These decentralized methods
have low computational complexity and perform Bayesian estimation in general distributed measurement systems
(i.e., sensor networks). A model of the dynamic behavior anddistribution of the underlying physical phenomenon
is used to obtain a continuous form from the discrete time andspace samples provided by a sensor network. Oth-
ers have recently begun to explore the Bayesian approach forcomputational simulation [6, 7, 8]. For example,
Tinsley [9, 10] proposes ”the systematic treatment of modeland data uncertainties and their propagation through a
computational model to produce predictions of quantities of interest with quantified uncertainty.” The approach is
applied to tumor modeling and analysis. Another related work is that of Furukawa [11] who takes location uncer-
tainty into account when localizing defects and ”formulates the uncertainties of sensor states stemming from both
motion and measurement and allows stochastic identification of defects using recursive Bayesian estimation.”

The first step in our project is to extend to 2D the existing 1DBayesian Computational Sensor Networks
approach to heat flow and establish the adequacy of the approach on a simpler problem than ultrasound. Here we
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describe the impact of parameter estimation on MAA in this context. Figure 1 shows the validation, calibration
and prediction process as described by Oberkampf [1]. Experiments are used to establish parameters in the
computational model, and these in turn affect the result of the validation metric. Both simulation experiments and
physical experiments are used to help with experiment design as well as to inform the computational modeling
process. When studying parameter estimation methods in simulation experiments, implicit methods are used to
represent the phenomenon, whereas an explicit method is used in the method (e.g., EKF update formulas are
based on the explicit time step function at each location). These simulation experiments provide information
as to the feasibility and truncation error affects of the explicit method based computational model. Herewe
perform a comparison of seven parameter estimation approaches (Inverse method, LLS, MLE, EKF, Particle Filter,
Levenberg-Marquardt, Minimum RMS error) to estimate the value of thermal diffusivity (k) in heat flow in a 2D
plate. The comparison is made in terms of the adequacy requirements. The major question raised is whether the
statistics produced by the parameter estimation techniques can be used to characterize the adequacy of the model.
Secondary questions include: (1) Which method gives the bestk estimate? (2) Which is least sensitive to noise?
and (3) Which method has lowest time complexity?

2. Method

The 2D heat conduction equation is given as:

δT
δt
= k(
δ2T
δx2
+
δ2T
δy2

) (1)

whereT is temperature,t is time, δx, δy are space in x,y respectively andk is thermal diffusivity. We use the
explicit method that has a forward finite difference to approximate the time derivative

δT
δt
=

T t+1
x,y − T t

x,y

∆t
(2)

The second derivative in space is represented by the 2D Laplacian:

δ2T
δx2
+
δ2T
δy2
=

T t
x−1,y − 2T t

x,y + T t
x+1,y

∆x2
+

T t
x,y−1 − 2T t

x,y + T t
x,y+1

∆y2
(3)

Substituting equations (2) and (3) into (1), we have,

T t+1
x,y − T t

x,y

∆t
= k(

T t
x−1,y − 2T t

x,y + T t
x+1,y

∆x2
+

T t
x,y−1 − 2T t

x,y + T t
x,y+1

∆y2
) (4)

The truncation error for this is [1]:

T Eh(T) = [
1
2
∂2T
∂t2

]∆t + [
−k
12
∂4T
∂x4

](∆x)2 + O(∆t2,∆x4)

or T E = O(∆t,∆x2) whereh characterizes convergence (i.e.,h = ∆x
∆xre f
= ∆t
∆tre f

so that whenh→ 0, then∆x,∆t → 0
at the same rate). From Equation (4) the value of k at each location (x, y) is

k =
T t+1

x,y − T t
x,y

∆t(
T t

x−1,y−2T t
x,y+T t

x+1,y

∆x2 +
T t

x,y−1−2T t
x,y+T t

x,y+1

∆y2 )
(5)

When∆x2 = ∆y2, this is rewritten as:

k =
∆x2(T t+1

x,y − T t
x,y)

∆t(T t
x−1,y + T t

x+1,y + T t
x,y−1 + T t

x,y+1 − 4T t
x,y)

(6)

From Equation (6), we can calculate the value ofk at every spatial location (x, y) and every time step (t) but it
gives a wide range ofk values with high variance. Thus, we use the average value ofk over the entire set of inverse
calculations. We also compare the accuracy, noise sensitivity and time efficiency of the methods.
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2.1. Inverse method

The first estimation method we study is what we call the Inverse method which solves for the value ofk at
each (x, y) from (6) and then finds the average of allk values. This method estimates a globalk value as the mean
of the localk values.

kest=

∑

kx,y,t

N
wherex, y is the location,t is time step (t = 2...maxt) andN is number ofk values.

2.2. LLS (Linear Least Squares)

The second estimation method we used is LLS (linear least squares). This approach finds the line that best fits
the data (with minimum sum of the squares of the residual). Wecan rewrite Equation (4) as:

C · k = d

whereC is the Laplacian term andd is the time derivative term, and the LLS method gives the estimate ofk as:

kest= min
k
‖C · k− d‖2

2.3. MLE (Maximum Likelihood Estimation)

The third method is MLE (maximum likelihood estimation). Bytaking the derivative of the log likelihood
function ofT, the MLE will give the estimate ofk as (again assuming∆x2 = ∆y2):

kest=
∆x2∑((T t+1

x,y − T t
x,y)(T

t
x−1,y + T t

x+1,y + T t
x,y−1 + T t

x,y+1 − 4T t
x,y))

∆t
∑

(T t
x−1,y + T t

x+1,y + T t
x,y−1 + T t

x,y+1 − 4T t
x,y)2

2.4. EKF (Extended Kalman Filter)

The fourth method is to add thek parameter to the state estimate of an EKF (for more on the Kalman filter,
see Thrun et al. [12]). Given the equation for heat flow above,we have the equation for the temperature state
evolution as:

ẋi(t) = k
δ2T
δx2

wherei = 1...n; then add the equation for the thermal diffusivity parameter:

ẋlast = 0

which arises from the next state equation:
kt+1 = kt + ǫ

whereǫ is sampled from a normal distribution with varianceσ2
p. Finally, reformulating for one position between

the 4-neighbors, we have:
xt = g(xt−1) + ǫt

zt = h(xt) + δt

where

gi : xi,t = xi,t−1 +
δt(x(i1, t − 1)+ x(i2, t − 1)+ x(i3, t − 1)+ x(i4, t − 1)− 4xi,t−1)

δx2
xlast,t−1 + ǫi,t

glast : xlast,t = xlast,t−1 + ǫlast,t

2.5. Particle Filter (Sequential Monte Carlo)

The fifth method is the Particle Filter. By sampling thep particles set from the range of the probability
distribution, a weight function is used to recalculate the probability of each particle, and then re-sampling occurs
to obtain a set of particles from the new probability distribution. This is repeated until the change in the range of
the particle value is small enough.
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Fig. 2. Experimental Apparatus Layout.

2.6. Levenberg-Marquardt

The sixth method is Levenberg-Marquardt (see Ozisik [13]).The Levenberg-Marquardt allows estimation of
the thermal diffusivity at each location by using the iterative estimation method of the Jacobian:
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wherek̂ is set of unknown thermal diffusivity values in each location [k1, k2, ...kn]; the Levenberg-Marquardt solves
for k̂ as:

k̂i+1 = k̂i + (JT J + µi I )
−1JT(Y− T)

whereµi is the positive damping parameter andi = 1,2,3, .... Levenberg-Marquardt converges when|k̂i+1− k̂i | < ǫ.

2.7. Minimum RMS Error

Another way to estimate the thermal diffusivity is to use the RMS error by simply searching the value of k that
gives the minimum RMS error (over some range of possiblek values).

kest= min
k
‖RMSerror‖

This method should guarantee that we find thek value that has the minimum RMS error.

2.8. Comparison of Methods

In order to compare the methods, we use both simulated and experimental heat flow data through a 2D plate.
The layout of the experimental apparatus is shown in Figure 2. A FLIR T420 high performance IR camera takes
a 320x240 pixel array, of which a 170x170 subset samples the aluminum plate. Figure 3 shows an example
image with heat sources on the left and upper parts of the plate. In order to get smoother results in the parameter
estimation methods, the image is averaged down to a 17x17 grid. ∆t is set to 30secwith max t = 59x30 = 1770,
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Fig. 3. Example IR Image of the Aluminum Plate.
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Fig. 4. k Estimate Results with Noise in the Data.

and∆x = ∆y = 15.24/17 cm (in simulation experiments,k is set to 0.85. The sample set is thenTnwith time step
t = 1,2,3, ...58:

Tn= T(x, y,1 : t + 1)

In simulation experiments, we use the testing dataTn to run experiments for the seven estimation methods to
get the value ofk over 30 trials for each method. The error of thek estimation is compared between the 7 methods
according to the equation:

kerror =
‖k− kest‖

k

Note that this corresponds to finding the computational model parameter. We then use thek estimate to run a
new temperature simulationS(x, y, t) with the simulated temperature at location (x, y) and timet, and compute the
RMS (Root Mean Square) error:

RMSerror =

√

∑

(Tx,y,t − Sx,y,t)2

N

whereN is the number of locations time the numbers of time step - 1. This is how adequacy of the model is
determined.

3. Verification

Chapra [14] gives an example of heat flow simulation, and our 2D implicit forward simulation gives a solution
which matches that given in the book. To verify the parameterestimation methods, heat flow is simulated under
these conditions (with no added noise), and all methods produce the value ofk used in the simulation. The affect
of noise on the parameter estimation methods was also investigated, and the results are shown in Figure 4.
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Fig. 5. k Estimate Results.

4. Data

Figure 5 shows the results of the physical experiments for thermal diffusivity estimation using the seven
methods. The x-axis corresponds to the time step, and thek estimate at each time step is that found with all
the data up to that time. The error in thek estimates of the seven methods is shown in Figure 6.

Using the means and variances found for each of the seven methods, their Gaussian distributions are shown in
Figure 7. Figure 8 shows the RMS error for the temperature sequences produced with the respectivek values of
the seven methods. The time cost for the seven methods is shown in Figure 9.

Finally, Figure 10 shows the temperature predictions for the various parameter estimation methods. It is clear
that estimates all result a sequence which diverges from theactual data.

5. Analysis

The error ofk estimation across the seven methods can be seen in Figures 5 and 6. Here we have assumed
that the actual value ofk is 0.85. All of these methods produce a mean and a variance forthe k estimate, and
this allows some amount of confidence in each result (note, however, that an estimation technique that returns a
constant would have zero variance!). We also see that it may be better to combine the estimates in order to better
estimate the computational parameter (in this case thermaldiffusivity). The methods produce similar results, but
the spread ink estimate is about 0.2. The plots in Figure 7 for thek a posteriori distributions give a qualitative
view of the results.

Assume that the accuracy requirements are imposed as a specified level of RMS error between the model
prediction and experimental data. Then an interesting aspect of the RMS error shown in Figure 8 is that meeting
the accuracy requirements depends on the length of the time sequence used (shorter ones will succeed but longer
will fail). Note that the RMS error does not settle down to a fixed level; this may occur due to the overall misfit of
the model (the physical world is more complicated than the model), or may happen as the temperature converges
to a steady state (in which case the time derivative is zero).All these surrounding conditions play a role in the
exploitation of this model and need to be considered in any application as well.

Figure 9 shows the time cost of the methods. The results show that on this dataset PF is the most costly,
followed by EKF, LLS, Levenberg-Marquardt, the Minimum RMS, Inverse method and MLE is the least costly
method.

6. Conclusions and Future Work

The results here show that a variety of factors impact the useof experimental data in determining computational
model parameters as far as assessing model adequacy. Thus, abroader set of considerations must be addressed
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Fig. 6. k Estimate Error.
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Fig. 8. RMS Error of Temperature Sequences for the Parameter Estimation Methods.
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Fig. 10. Temperature Predictions vs. Experimental Data.
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for every specific application. For temporal data, this includes the number of time steps considered as well as
the parameters of the simulation. For example, even though the experimental data is sampled at time steps of 30
seconds, the simulation must be run with a much smaller time step (say∆t = 0.1 second). These results will be
used to establish the appropriate framework for model validation in the structural health problem; that is, how to
structure built-in model validation methods for use in a dynamical data-driven analysis system.

We have also compared seven thermal diffusivity estimation methods: Inverse Method, LLS, MLE, Minimum
RMS, EKF, PF, and Levenberg-Marquardt. The results show that the methods produce fairly consistent results,
and in fact, a combination may provide a better estimate.

We are currently working on a more comprehensive set of experiments, and will be able to comment on the
predictive aspect of the computational model in future work. In addition, the uncertainty in other input parameters
to the computational model need to be studied, including∆x (the locations of the pixels on the actual metal plate
are uncertain),∆t (the sample times also have some amount of uncertainty), boundary conditions, etc.

Of course, this work constitutes the first-round study to establish a framework for an in-depth analysis of the
useBayesian Computational Sensor Networksfor aircraft structural health determination using ultrasound. We
are currently developing computational models for this, aswell as setting up an experimental framework. We look
forward to reporting on these in future meetings.
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