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Abstract

Model Accuracy Assessment (MAA) is an important part of the moderification and validation process. This involves
not only evaluation of a validation metric comparing experimental verisaglation system response quantities, but also the
determination of the adequacy of the model for its intended use (seer[&]detailed description). We describe here some
issues related to the use of parameter estimation on MAA in the study of beainfla 2D metal plate. We consider seven
parameter estimation techniques, and show that various factors slectytisof sampling time, parameter estimation method,
etc. impact the MAA. The ultimate goal is to improve MAA techniques in aitcs&ructural health care monitoring using
Bayesian Computational Sensor Networks.
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1. Introduction

The major specific objectives of our work are to:

1. Develop Bayesian Computational Sensor Networks (BCSiNglwdetect and identify structural damage.
We aim to quantify physical phenomena and sensor models; degelop piezoelectric and other com-
putational models to reconstruct physical phenomena aacdhcterize uncertainties due to environmental
factors.

2. Develop an active feedback methodology using modelebaampling regimes (rates, locations and types
of data) realized with embedded sensors and active seremment. This will allow on-line sensor model
validation, and the use of on-demand complimentary sensors

3. Develop a rigorous model-based systematic treatmeitteofallowing uncertainty models: (1) stochastic
uncertainties of system states, (2) unknown model paramé€8 dynamic parameters of sensor nodes, and
(4) material damage assessments (viewed as source inpueirs).

*T.C. Henderson. Tel+1-801-581-3601 ; fax+1-801-581-5843 .
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Fig. 1. Model Accuracy Assessment (based on Fig. 12.4 froin [1]

This work addresses 3 of the 4 DDDAS (Dynamic Data-Drivenlggia Systems) interdisciplinary research com-
ponents: applications modeling, advances in mathemaiitstatistical algorithms, and application measurement
systems and methods, and more specifically addresses Isgywestions raised in the DDDAS-InfoSymbiotics
2010 Report [2] by Working Group 3 (WG3) Large and Heterogesdoata from Distributed Measurement &
Control Systems (Alok Chaturvedi, Adrian Sandhu): "DDDA®B&rently involves large amounts of data that can
result from heterogeneous and distributed sources whaghineeanalysis before automatically integrating them to
the executing applications that need to use the data.”

The incorporation of ficient and scalable probabilistic methods into model-baseniltaneous state esti-
mation and parameter identification may have a large impa¢he exploitation of spatially distributed sensing
and computation systems throughout a wide range of sciedtifinains. Spatially distributed physical phenom-
ena such as temperature, wave propagation, etc., requeswvattion with dynamically located sensors in order to
achieve better tuned computational models and simulatiethods developed here allow for online validation of
models through direct sensor observation. Significantlprodwhich must be overcome include the interpolation
between measurement data, as well as the estimation ofitigsmthich cannot be directly measured (e.qg., ther-
mal diffusivity codficients). The demonstration of how stochastic partifiedéntial equations can be used to this
end should have strong impact on practice in many appliegtiocluding the aircraft Structural Health Monitor-
ing (SHM) problem. Our major goal is to provide rigorous Bsigg Computational Sensor Networks to quantify
uncertainty in (1) model-based state estimates incoripgraensor data, (2) model parameters (e.dtusivity
codficients), (3) sensor node model parameter values (e.gtidachias), and input source properties (e.g., lo-
cations and extent of cracks). This is achieved in terms td@restons to our recently developed techniques (see
[3, 4, 5]). We call this approadBayesian Computational Sensor NetwoflBESN). These decentralized methods
have low computational complexity and perform Bayesiamegton in general distributed measurement systems
(i.e., sensor networks). A model of the dynamic behaviordiatiibution of the underlying physical phenomenon
is used to obtain a continuous form from the discrete timespatte samples provided by a sensor network. Oth-
ers have recently begun to explore the Bayesian approadaofoputational simulation [6, 7, 8]. For example,
Tinsley [9, 10] proposes "the systematic treatment of madeldata uncertainties and their propagation through a
computational model to produce predictions of quantitigaterest with quantified uncertainty.” The approach is
applied to tumor modeling and analysis. Another relatedkisthat of Furukawa [11] who takes location uncer-
tainty into account when localizing defects and "formutattee uncertainties of sensor states stemming from both
motion and measurement and allows stochastic identifitratiaefects using recursive Bayesian estimation.”

The first step in our project is to extend to 2D the existing B&yesian Computational Sensor Networks
approach to heat flow and establish the adequacy of the agipowea simpler problem than ultrasound. Here we
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describe the impact of parameter estimation on MAA in thistert. Figure 1 shows the validation, calibration
and prediction process as described by Oberkampf [1]. Hxeets are used to establish parameters in the
computational model, and these in tufffeat the result of the validation metric. Both simulation esiments and
physical experiments are used to help with experiment dessgwell as to inform the computational modeling
process. When studying parameter estimation methods inaiomw experiments, implicit methods are used to
represent the phenomenon, whereas an explicit method dsingbe method (e.g., EKF update formulas are
based on the explicit time step function at each locatiorest simulation experiments provide information
as to the feasibility and truncation erroffects of the explicit method based computational model. Here
perform a comparison of seven parameter estimation appesdinverse method, LLS, MLE, EKF, Particle Filter,
Levenberg-Marquardt, Minimum RMS error) to estimate thiei@af thermal difusivity (k) in heat flow in a 2D
plate. The comparison is made in terms of the adequacy exgaits. The major question raised is whether the
statistics produced by the parameter estimation techaigae be used to characterize the adequacy of the model.
Secondary questions include: (1) Which method gives thelbestimate? (2) Which is least sensitive to noise?
and (3) Which method has lowest time complexity?

2. Method
The 2D heat conduction equation is given as:

6T 82T 62T
— =k(— + — 1
ot (5x2 i 6y2) @

whereT is temperaturet is time, §x, dy are space in x,y respectively akds thermal dffusivity. We use the
explicit method that has a forward finitefidirence to approximate the time derivative

oT Tgyl - Ty

st At @
The second derivative in space is represented by the 2D d:japta
52T (52T T;[(—l,y - 2Tt + T}(+1y xy 1 2Tt + T:(y+1
ox2 Y2 Ax2 Ay2
Substituting equations (2) and (3) into (1) we have,
T>t<jryl - T}(,y K x Ly 2Tt + T:H—ly xy 1 ZTt + T;y+1 4
At ( Ax2 Ay2 @)
The truncation error for this is [1]:
16°T -k o*T
TEN(T) = — —1(AX)? + O(At?, AX!
B(T) = [5 73 1A+ [g3 5 1A + O(a2, ax)

or TE = O(At, AX*) whereh characterizes convergence (iles 3~ = 5 so thatwhem — 0, thenAx, At — 0
at the same rate). From Equation (4) the value of k at eachidocg, y) is

‘ Tt+l _ Tt ( )
= 5

At( x 1y_2Txy+Tx+ly + xy 1 2T><y+Txy+l)
Ax? Ay?

WhenAx? = Ay?, this is rewritten as:
AXZ(THl t y)

(6)
At(TX 1yt Tf(+1y + T;y L+ T}(er1 4TL,)

From Equation (6), we can calculate the valuekdatt every spatial locationx(y) and every time stept)(but it
gives a wide range dfvalues with high variance. Thus, we use the average valkewdr the entire set of inverse
calculations. We also compare the accuracy, noise seatysdivd time éficiency of the methods.
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2.1. Inverse method

The first estimation method we study is what we call the Irvenethod which solves for the value lofat
each &, y) from (6) and then finds the average oflalfalues. This method estimates a globahlue as the mean
of the localk values.

2 Kyt

kest = N

wherex, y is the locationt is time step = 2...maxt) andN is number ok values.

2.2. LLS (Linear Least Squares)

The second estimation method we used is LLS (linear leastrequ This approach finds the line that best fits
the data (with minimum sum of the squares of the residual)célferewrite Equation (4) as:

C-k=d
whereC is the Laplacian term andlis the time derivative term, and the LLS method gives therest ofk as:
st=min|C - k - d?

2.3. MLE (Maximum Likelihood Estimation)

The third method is MLE (maximum likelihood estimation). Baking the derivative of the log likelihood
function of T, the MLE will give the estimate df as (again assumingx® = Ay?):

A T((T - T (Mecny + Ty + Tayer + Teyer — 4Txy)

st=
At Z(T)t(_l,y + T; iy T T;’y_l + T)t(’y i 4T)t<,y)2

2.4. EKF (Extended Kalman Filter)

The fourth method is to add tHeparameter to the state estimate of an EKF (for more on the &alfiiter,
see Thrun et al. [12]). Given the equation for heat flow abewe have the equation for the temperature state
evolution as:

6T
X (t) = k—
X1 = ks
wherei = 1...n; then add the equation for the thermaftdsivity parameter:
XIast =0
which arises from the next state equation:
Kipp = ki + €

wheree is sampled from a normal distribution with variarnt%. Finally, reformulating for one position between
the 4-neighbors, we have:
% = 0(%-1) + &
z = h(x) + 64
where
St(X(in, t = 1) + X(iz, t — 1) + X(iz, t — 1) + X(ig, t — 1) — 4% 1-1)
ox2

Oiast - Xastt = Xastt-1 T €lastt

gt Xit=Xt1+ Xastt-1 + €t

2.5. Particle Filter (Sequential Monte Carlo)

The fifth method is the Particle Filter. By sampling theparticles set from the range of the probability
distribution, a weight function is used to recalculate thabability of each particle, and then re-sampling occurs
to obtain a set of particles from the new probability disitibn. This is repeated until the change in the range of
the particle value is small enough.
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Fig. 2. Experimental Apparatus Layout.

2.6. Levenberg-Marquardt

The sixth method is Levenberg-Marquardt (see Ozisik [1Blje Levenberg-Marquardt allows estimation of
the thermal dtusivity at each location by using the iterative estimaticgtmod of the Jacobian:

1O Ot

ok ok ok
A1l

3= 0T o ok oo
ok L S

tw o . o

ok ko

wht—;reR is set of unknown thermal fiusivity values in each locatiolk{, k, ...k,]; the Levenberg-Marquardt solves
for k as:
K=K+ @QTa+ )™ (Y =T)

wherey; is the positive damping parameter d@ne 1, 2, 3, .... Levenberg-Marquardt converges whidh! —K| < .

2.7. Minimum RMS Error

Another way to estimate the thermatidisivity is to use the RMS error by simply searching the valuletbat
gives the minimum RMS error (over some range of posdibalues).

kest: mkin“RMSerror”
This method should guarantee that we findkhalue that has the minimum RMS error.

2.8. Comparison of Methods

In order to compare the methods, we use both simulated aretimental heat flow data through a 2D plate.
The layout of the experimental apparatus is shown in Figur PLIR T420 high performance IR camera takes
a 320x240 pixel array, of which a 170x170 subset samples Itihmimum plate. Figure 3 shows an example
image with heat sources on the left and upper parts of the.platorder to get smoother results in the parameter
estimation methods, the image is averaged down to a 17xd7 Afris set to 3@ecwith maxt = 59x30 = 1770,
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Fig. 3. Example IR Image of the Aluminum Plate.
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Fig. 4.k Estimate Results with Noise in the Data.

andAx = Ay = 1524/17 cm (in simulation experiments,s set to 0.85. The sample set is thenwith time step
t=123,..58:
Tn=T(Xy,1:t+1)

In simulation experiments, we use the testing datdo run experiments for the seven estimation methods to
get the value ok over 30 trials for each method. The error of thestimation is compared between the 7 methods
according to the equation:

_ Ik = Kesdl

kerror - k

Note that this corresponds to finding the computational mpdeameter. We then use tlkeestimate to run a
new temperature simulatid®(x, y, t) with the simulated temperature at locationy) and timet, and compute the

RMS (Root Mean Square) error:
Z(Tx,y,t - S)gy,t)2
N

whereN is the number of locations time the numbers of time step - lis Ehhow adequacy of the model is
determined.

RM Serror =

3. Verification

Chapra [14] gives an example of heat flow simulation, and @uinZplicit forward simulation gives a solution
which matches that given in the book. To verify the paramestimation methods, heat flow is simulated under
these conditions (with no added noise), and all methodsyaethe value ok used in the simulation. Thedtact
of noise on the parameter estimation methods was also igatst, and the results are shown in Figure 4.
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Fig. 5.k Estimate Results.

4. Data

Figure 5 shows the results of the physical experiments ferntlal difusivity estimation using the seven
methods. The x-axis corresponds to the time step, andt #stimate at each time step is that found with all
the data up to that time. The error in tkestimates of the seven methods is shown in Figure 6.

Using the means and variances found for each of the severmdsettineir Gaussian distributions are shown in
Figure 7. Figure 8 shows the RMS error for the temperaturaesazps produced with the respectivealues of
the seven methods. The time cost for the seven methods isi\shdvigure 9.

Finally, Figure 10 shows the temperature predictions fertérious parameter estimation methods. It is clear
that estimates all result a sequence which diverges frorachel data.

5. Analysis

The error ofk estimation across the seven methods can be seen in Figures& &lere we have assumed
that the actual value d€is 0.85. All of these methods produce a mean and a varianciéde estimate, and
this allows some amount of confidence in each result (noteeher, that an estimation technique that returns a
constant would have zero variance!). We also see that it redyetter to combine the estimates in order to better
estimate the computational parameter (in this case thatifiabivity). The methods produce similar results, but
the spread irk estimate is about 0.2. The plots in Figure 7 for kha posteriori distributions give a qualitative
view of the results.

Assume that the accuracy requirements are imposed as diepédevel of RMS error between the model
prediction and experimental data. Then an interestingcsgehe RMS error shown in Figure 8 is that meeting
the accuracy requirements depends on the length of the émeesce used (shorter ones will succeed but longer
will fail). Note that the RMS error does not settle down to @&fixevel; this may occur due to the overall misfit of
the model (the physical world is more complicated than theeljpor may happen as the temperature converges
to a steady state (in which case the time derivative is zekti)these surrounding conditions play a role in the
exploitation of this model and need to be considered in apjicgtion as well.

Figure 9 shows the time cost of the methods. The results shatvon this dataset PF is the most costly,
followed by EKF, LLS, Levenberg-Marquardt, the Minimum RM8verse method and MLE is the least costly
method.

6. Conclusions and Future Work

The results here show that a variety of factors impact thefiseperimental data in determining computational
model parameters as far as assessing model adequacy. Timosder set of considerations must be addressed
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for every specific application. For temporal data, thisudels the number of time steps considered as well as
the parameters of the simulation. For example, even thduglexperimental data is sampled at time steps of 30
seconds, the simulation must be run with a much smaller tiee (sayAt = 0.1 second). These results will be
used to establish the appropriate framework for model atithd in the structural health problem; that is, how to
structure built-in model validation methods for use in aalyical data-driven analysis system.

We have also compared seven therméLdivity estimation methods: Inverse Method, LLS, MLE, Minim
RMS, EKF, PF, and Levenberg-Marquardt. The results showtlieamethods produce fairly consistent results,
and in fact, a combination may provide a better estimate.

We are currently working on a more comprehensive set of éxgats, and will be able to comment on the
predictive aspect of the computational model in future wémlkaddition, the uncertainty in other input parameters
to the computational model need to be studied, includirdthe locations of the pixels on the actual metal plate
are uncertain)At (the sample times also have some amount of uncertaintyhdzoy conditions, etc.

Of course, this work constitutes the first-round study talegth a framework for an in-depth analysis of the
useBayesian Computational Sensor Netwoftwsaircraft structural health determination using ultnaisd. We
are currently developing computational models for thisyalt as setting up an experimental framework. We look
forward to reporting on these in future meetings.
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