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Abstract— Biological systems exhibit an amazing array of
distributed sensor/actuator systems, and the exploitation of
principles and practices found in nature will lead to more
effective artificial systems. The retina is an example of a highly
tuned sensing organ, and the human skin is comprised of a
set of heterogeneous sensor and actuator elements. Moreover,
the specific organization and architecture of these systems
depends on contextual influences during the developmental
stages of the organism. Comparable theoretical and techno-
logical methodologies need to be found for wireless sensor
networks. We propose the study of reaction-diffusion systems
from mathematical biology as a starting point for this endeavor.
The main result is the demonstration of the feasibility of
computing useful patterns using reaction-diffusion mechanisms
in wireless sensor networks; for example, providing clearly
delineated stripes which serve as lane markers for robots.

Section 1. Reaction-Diffusion Fundamentals

Alan Turing introduced a revolutionary reaction-diffusion
model as the chemical basis of morphogenesis [17], and
this method lends itself particularly well to pattern synthe-
sis in distributed systems. For more detailed explanations,
see his original paper (which provides an exemplar of the
scientific paper – theory, analysis and numerical solution on
the Manchester machine which Turing helped design and
build!), as well as the works of Murray [13], Meinhardt
[11], etc. Turing’s key insight was that diffusion of an
inhibitory morphogen could lead to the formation of stable
and variegated patterns. This is related to nonlinear far from
equilibrium thermodynamics, and dissipative structures (e.g.,
see Prigogine [16] who received the Nobel prize in chemistry
for work in this area). One of the goals of our work is
to understand how these principles behave practically in
biological sensor systems and how they may be exploited in
wireless sensor networks. More recently, reaction-diffusion
computers have been proposed. For an in-depth introduction
to R-D computers, see Adamatzky et al. [1]. A wide range
of issues are discussed there, including: (1) R-D processors,
(2) R-D geometrical computation (e.g., Voronoi diagrams and
skeletons), (3) R-D logic circuits, (4) R-D robot control, and
(5) programming R-D computers.

Due to its two chemical activator-inhibitor system which
produces appropriate waves for the patterns required, we use
Turing’s reaction-diffusion mechanism to generate patterns in
wireless sensor networks [6] (we use here some introductory
material from that paper); [4] provides an introduction to
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nonlinear parabolic systems theory and related techniquesas
they apply to R-D systems. A set of equations forms the basis
of this mechanism that mimics the reaction and diffusion
aspects of certain chemical kinetics:

∂c

∂t
= f(c) +D∇2

c (1)

where D∇2c expresses the diffusion component, and the
reaction is described byf(c). Two morphogensor variables
form the simplest such systems with of variable acting as the
activator and the other as the inhibitor. This can be modeled
by:

∂u

∂t
= γf(u, v) +∇2u,

∂v

∂t
= γg(u, v) + d∇2v (2)

whereu andv are the concentrations of the morphogens,d is
the diffusion coefficient andγ is a constant measure of scale.
The functionsf(u, v) and g(u, v) represent the reaction
kinetics. We generate spatial patterns using the Turing system
of equations:

f(u, v) = β − uv, g(u, v) = uv − v − α

whereu and v are the morphogen concentrations,α andβ

are the decay and growth rates, respectively. Equation (2)
becomes linearly unstable to certain spatial disturbancesin
the domain they define. This domain is called theTuring
spacewhere the concentrations of the two morphogens are
unstable and result in spot patterns.

Section 2. R-D Patterns in Sensor Nets, Computer Vision,
and Robotics

We have pointed out [6] several uses for patterns in the
sensor nets:

• encoders can be built from stripe, spot or ring patterns
to track (physical) distance traveled, or to control the
flow of communication packets in order to minimize
power cost or to avoid congestion.

• 2D image basis sets (e.g., Haar or Hadamard basis sets)
can be provided by sets of R-D patterns; any 2D array
(e.g., map, image, etc.) can then be encoded in terms
of the coefficients associated with the respective basis
images.

• interference patterns (holograms) can be formed from
an R-D reference wave.

• the S-Netcan serve as a signal carrier or modulator by
using moving waves produced from R-D mechanisms.

Understanding the precision and reliability of pattern forma-
tion is then of high importance.

We introduced the use of Turing’s reaction-diffusion pat-
tern formation to support high-level tasks in sensor networks



Fig. 1. 6 by 7 Experimental Layout of X-bow T-Sky Wireless Sensor
Motes.

(S-Nets); Figure 1 shows a 42-node sensor network layout
(each mote costs about $100) we have used in reaction-
diffusion computation experiments. This has led us to explore
various biologically motivated mechanisms. We address is-
sues that arise in trying to get reliable, efficient patternsin
irregular grids.

Others have explored the use of both reaction-diffusion
and more general diffusion methods in computer vision and
robotics. For example, Fukuda et al. describe the use of
reaction-diffusion techniques in robot motion[3]. Moreover,
as described by Peronna et al.[15], multi-scale descriptions of
images (i.e., scale-space) can be produced by embedding the
original image in a family of images obtained by convolving
the original image with a filter; Koenderink[10] showed that
this is equivalent to finding the solution of the diffusion
equation:

It = ▽2I = Ixx + Iyy

We believe that it will be quite useful forS-Netsto use
similar methods to analyze sensed data of various sorts. More
closely related to our work is that of Justh and Krishnaprasad
[7] who propose the active coordination of a large array of
microactuators by means of diffusive coupling implemented
as interconnection templates, and Nagpal [14] who describes
methods to create patterns of diverse geometry.

For example, consider a forest fire scenario: sensor devices
are dropped into a wide geographic area, establish a network,
compute coordinate frames, calculate gradients, and produce
a stripe pattern of off-on signals that can be used by fire
fighting agents to go to a fire control point by followingon
devices (pattern == 1) and return by followingoff devices
(pattern == 0) (see Figure 2 where◦ is the fire control point;
⋄ is the robot load point,. is a mote sending a zero value
and * is a mote sending a 1 value). Such patterns can be
computed by very robust reaction-diffusion systems derived
from models of biological pattern formation.

Section 3. Computationally Stable R-D Algorithms

There has been some investigation of how pattern for-
mation is influenced by number of cells, time scale, and
initial condition variation. In particular, Bard and Lauder [2]
showed that “stable repeating peaks of chemical concentra-
tion of periodicity 2-20 cells can be obtained in embryos
in periods of time less than an hour. We do find however

Fig. 2. Robot Path in Reaction Diffusion Pattern (.’s are motes broadcasting
value 0; *’s are motes sending value 1;◦ is the fire control point;⋄ is the
robot load point). Note that the path from⋄ to ◦ runs on *’s while the way
back is on .’s.

that these patterns are not reliable. Small variations in
initial conditions give small but significant changes in the
number and positions of observed peaks.” They showed that
this method has difficulty producing exact patterns reliably.
We have found other difficulties in producing the patterns
necessary to support higher-level tasks. We describe these
here and propose some solutions.

A more significant issue for us is that the reaction-
diffusion pattern formation equations assume that the inter-
cell distance is uniform (and usually equal to 1). OurS-
Nets, however, do not form a uniformly spaced grid in 1D
or 2D; in fact, we generally assume that the sensor devices
are randomly dropped in the environment. In addition, the
diffusion part of the equations uses the inter-node distances
in the computation of the second derivative. Two concerns
are: (1) these distances are not uniform, and (2) in an
actual implementation, there will be some amount of error
in the inter-node distance determination. This has led us to
investigate the impact of non-uniform spacing on the pattern
computation.

Consider the case of Sensor ElementsSELs randomly
distributed in the square area. It turns out that if all neighbors
within a certain distance (e.g., broadcast range) are used in
the reaction-diffusion calculation, and the distances areused
to compute the Laplacian, then the process generally fails
to converge. However, if eachSEL randomly selects four of
its neighbors (e.g., from the broadcast connectivity graph),
then the reaction-diffusion process converges; alternatively,
one can impose a virtual equi-spaced grid over the mote
locations, interpolate values at the grid locations, and run
the R-D process on the virtual grid. Figure 3 shows an
example of this on a5 × 5 square area using 2,000SELs
placed by sampling thex andy coordinates from the uniform
distribution.

For the physical mote system, the reaction-diffusion pro-
cess leads to the formation of spots (i.e., the morphogen
concentrationa > 5) even with the small number of motes.
However, spots make take many iterations (1,600) to appear,
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Fig. 3. S-Netof Randomly Placed Sensor ElementsSELs and the Resulting
2-D Turing Pattern using 4 Randomly Selected Neighbors.

Fig. 4. 2-D Turing Spot Pattern in 42-Node Mote Set.

and the spot pattern is not stable (see Figure 4).
We believe that several issues are at play: the number of

nodes, the asynchronous nature of the mote transmissions, as
well as the locality and bi-directionality of the connectivity.

Section 4. Future Extensions

We have described techniques for forming patterns in
sensor networks based on reaction diffusion equations. Such
methods may be used to process data, although that is not
discussed here, and to carry sensed signal information. The
next focus of our work is on the production of patterns based
on sense data analysis (e.g., camouflage synthesis). Such
methods may also find application in sensor network secu-
rity; in this scenario, a deformed pattern will emerge from
a distributed computation if there are any nodes which have
fallen victim to attack, or if external nodes have managed
to get themselves incorporated into theS-Net. Of course,
resource allocation and exploitation may also be based on
patterns, and given the random nature of the patterns, may
help conserve resources (e.g., energy) overall.

In addition, we are working on mesh generation in wireless
sensor networks, level set calculation, and the creation of
active camouflage based on the work Zhu and Mumford
[18]; this all fits with our view of Computational Sensor
Networks as self-validation systems [5]. They propose (1) a
theory for discovering the statistics of a set of natural images,
and (2) a framework which allows the definition of reaction-
diffusion equations to produce similar natural images, andin
particular, they show how to remove conspicuously dissimilar
segments from a scene. Specifically, they show that given
a learned set of prior models that reproduce the observed

statistics, the potentials of the resulting Gibbs distributions
have the form:

U(I; Λ, S) =

K∑

α=1

∑

x,y

λα((F (α) × I)(x, y))

where S = {F (1), F (2), . . . , F (K)} is a set of filters and
Λ = {λ(1), λ(2), . . . , λ(K)} is the set of potential functions.

Reaction-diffusion equations are found as the gradient
descent partial differential equations onU(I; Λ, S); diffusion
arises from the energy terms while pattern formation reac-
tions are related to the inverted energy terms. These are then
used to remove clutter in a scene and to denoise images. We
propose that the resulting images can be displayed by LEDs
distributed throughout the material of the camouflage canvas,
and based upon our previous work in e-textiles [8], [9], [12],
we believe that technical solutions exist for the realization
of this goal.
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