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Abstract— We propose that robot perception is enabled by
means of a common sensorimotor semantics arising from a
set of symmetry theories (expressed as symmetry detectors and
parsers) embedded a priori in each robot. These theories inform
the production of structural representations of sensorimotor
processes, and these representations, in turn, permit perceptual
fusion to broaden categories of activity. Although the specific
knowledge required by a robot will depend on the particular ap-
plication domain, there is a need for fundamental mechanisms
which allow each individual robot to obtain the requisite knowl-
edge. Current methods are too brittle and do not scale very well,
and a new approach to perceptual knowledge representation is
necessary. Our approach provides firm semantic grounding in
the real world, provides for robust dynamic performance in
real-time environments with a range of sensors and allows for
communication of acquired knowledge in a broad community of
other robots and agents, including humans. Our work focuses
on symmetry based multisensor knowledge structuring in terms
of: (1) symmetry detection in signals, and (2) symmetry parsing
for knowledge structure, including structural bootstrapping and
knowledge sharing. Operationally, the hypothesis is thatgroup
theoretic representations (G-Reps) inform cognitive activity. Our
contributions here are to demonstrate symmetry detection and
signal analysis and for 1D and 2D signals in a simple office
environment; symmetry parsing based on these tokens is left
for future work.

I. I NTRODUCTION AND BACKGROUND

Physical robot systems have been steadily improving for
many years now in terms of their capabilities, robustness,
compliance, etc., and there is a strong push to introduce these
systems into human environments as cooperative agents to
assist people in their daily activities. A major roadblock to
this goal is the lack of strong and robust cognitive abili-
ties in robots, and more specifically inadequate knowledge
acquisition, representation and manipulation. Robots need
various kinds of knowledge to perform effectively in real
applications, and the current approaches to providing that
knowledge are to (1) have the robot learn from scratch, (2)
spoon feed the knowledge by human programming, or (3)
have robots share knowledge.

Our goal is to explore the use of symmetry analysis as a
basis for the semantic grounding of multisensor sensorimotor
affordance knowledge; this includes symmetry detection in
signals, symmetry parsing in knowledge representation, and
symmetry exploitation in perceptual fusion. We hypothesize
that symmetry-based structuring of knowledge provides a
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more robust semantic basis than current methods, and in par-
ticular symmetry as applied to the acquisition of affordances
from signals, representation for modeling actions and their
effects, and exploitation in generative action discovery.

One form of knowledge of particular interest is self-
knowledge about the robot’s own structure and capabilities:
this includes sensors, actuators, kinematic and dynamic struc-
ture, energy consumption and replenishment, and computa-
tional capabilities (speed, space, parallel processing, signal
processing, internet connectivity, etc.). This provides abasis
for knowledge of affordances in the external world, i.e.,
the recognition of entities appropriate for the performance
of a task. Finally, working knowledge is needed for the
interactions between the robot and the environment for both
physical actions and social interactions. Of course, a robot
will also need to be able to understand and formulate goals
and the plans necessary to achieve those goals, but we do
not address this aspect of cognition here.

Hypothesis: We propose that robot affordance knowledge
acquisition and perceptual fusion can be enabled by means
of a common sensorimotor semantics which is provided by
a set of symmetry theories embedded a priori in each robot.
These theories inform perception, and thus the production
of structural representations of sensorimotor processes,and
these representations, in turn, permit perceptual fusion to
broaden categories of activity.

Symmetry [28] plays a deep role in our understanding
of the world in that it addresses key issues of invariance,
and as noted by Viana [27]: “Symmetry provides a set of
rules with which we may describe certain regularities among
experimental objects.” Symmetry to us means an invariant,
and by determining operators which leave certain aspects of
state invariant, it is possible to either identify similar objects
or to maintain specific constraints while performing other
operations (e.g., move forward while maintaining a constant
distance from a wall). Michael Leyton has described the
exploitation of symmetry [11] and the use of group theory
as a basis for cognition [12]. Our approach is motivated by
Leyton’s work, but does not exploit the technical aspects of
the wreath products used by Leyton.

Operationally, the hypothesis is thatgroup theoretic rep-
resentations (G-Reps)inform cognitive activity. We exploit
symmetry-based signal analysis and concept formation in
sensorimotor reconstruction and scene analysis. A schematic
view of our symmetry-based affordance architecture (the
Symmetry Engine) is given in Figure 1.

The two major research thrusts (see Figure 2) are:
1) Symmetry Detection: this involves the detection of



Fig. 1. The Symmetry Engine.Perceptionrequires an appropriate set of
operators to constructG-reps; this includes vector constructors, symme-
try detectors, and symmetry-based data indexing and varianceoperators.
Control actionrequires the ability to mapG-repsonto action sequences to
achieve desired results in the world.Concept Formationoperators allow the
exchange ofG-repswith other agents. Finally, theHuman Machine Interface
(HMI) will exploit human symmetry perception, as well asG-repproperties
to achieve context-aware integrative display of information.

symmetry in signals, and this means the extraction
of symmetry features (lines, color, surfaces, etc.), and
symmetry axes. We are developing a wide range of
methods, including signal processing and spline-based
symmetry axis determination.

2) Symmetry Parsing: the individual symmetry elements
must be composed into hierarchically structured rep-
resentations. The production of hierarchicalG-rep de-
scriptions requires new analysis methods of the avail-
able symmetries. It would be useful if some form of
prime factorization were possible in order to make
comparisons and manipulation more efficient. Specific
sensorimotor data for behaviors must be included in
these descriptions. Methods to allow robust commu-
nication and sharing of the symmetry representation
must be developed. This means finding a way to share
the sensorimotor grounding of the concepts produced
by theG-reps.

II. SENSORIMOTORRECONSTRUCTION IN1D

Given a set of unknown sensors and actuators, senso-
rimotor reconstruction is achieved by exploiting relations
between the sensor data and the actuator control data to
determine sets of similar sensors, sets of similar actuators,
necessary relations between them, as well as sensorimotor
relations to the environment. Several authors have addressed
this problem, and we propose here a principled approach
that exploits various symmetries and that achieves more
efficient and robust results. A theoretical position is defined,
the approach shown more efficient than previous work, and
experimental results given.

Early on, Pierce [23] described an approach to learning

Fig. 2. Symmetry Analysis Sequence.

a model of the sensor set of an autonomous agent. Features
are defined in terms of raw sensor data, and feature operators
are defined which map features to features. The goal is
to construct a perceptual system for this structure. One of
the fundamental feature operators is thegrouping operator
which assigns features to a group if they are similar. This
work was extended to spatio-visual exploration in a series
of papers [14], [15], [23]. For a detailed critique of Pierce’s
work, see [3]. Olsson extended this work in a number of
papers [5], [6], [7], [8], [9], [20], [21]. He used information
theoretic measures for sensorimotor reconstruction, and no
innate knowledge of physical phenomena nor the sensors is
assumed. Like Pierce, Olsson uses random movements to
build the representation and learns the effect of actions on
sensors to perform visually guided movements. The major
contributions are the analysis of information theoretic mea-
sures and motion flow. O’Regan and Noë [22] use the term
sensorimotor contingenciesand give an algorithm which can
determine the dimension of the space of the environment by
”analyzing the laws that link motor outputs to sensor inputs”;
their mathematical formulation is elegant.

A symmetry defines an invariant. The simplest invariant
is identity. This can apply to an individual item, i.e., a
thing is itself, or to a set of similar objects. In general, an
invariant is defined by a transformation under which one
object is mapped to another. Sensoriomotor reconstruction
can be more effectively achieved by finding such symmetry
operators on the sensor and actuator data (see also [1], [4]).

Invariants are very useful things to recognize, and we
propose that various types of invariant operators provide a
basis for cognitive functions, and that it is also useful to have
processes that attempt to discover invariance relations among
sensorimotor data and subsequently processed versions of
that data.

A. Symmetry Detection in Signals

Assume a set of sensors,S = {Si, i = 1 . . . nS} each
of which produces a finite sequence of indexed sense data



values,Sij where i gives the sensor index andj gives an
ordinal temporal index, and a set of actuators,A = {Ai, i =
1 . . . nA} each of which has a finite length associated control
signal,Aij , wherei is the actuator index andj is an ordinal
temporal index of the control values.

We are interested in determining the similarity of senso-
rimotor signals. Thus, the type of each sensor as well as
the relation to motor control actions play a role. It is quite
possible that knowledge of the physical phenomenon that
stimulates a sensor may also be exploited to help determine
the structure of the sensor system and its relation to motor
action and the environment.

We suppose that certain 1D signal classes are important
and are known a priori to the agent (i.e., that there are
processes for identifying signals of these types). The basic
signals are:

• zero: y = 0 (at all samples)
• constant: y = a (for some fixed constanta)
• binary: y takes on either the value 1 or 0
• linear: y = at+ b (function of time index)
• periodic: has periodP and the most significant Fourier

coefficientsC
• Gaussian: sample from Gaussian distribution with mean

µ and varianceσ2

Thus, a first level symmetry is one that characterizes a single
signal as belonging to one of these categories. Of course,
composite signals can be constructed from these as well,
e.g., the impulse signal is a non-zero constant for one step,
followed by the zero signal.

Next, pairwise signal symmetries can exist between signals
in the same class:

• linear

– same line:a1 = a2, b1 = b2
– parallel:a1 = a2, b1 6= b2
– intersect in point: rotation symmetry about inter-

section point
• periodic

– same period
– same Fourier coefficients

• Gaussian

– same mean
– same variance

B. Sensorimotor Reconstruction

The sensorimotor reconstruction process consists of the
following steps: (1) perform actuation command sequences,
(2) record sensor data, (3) determine sensor equivalence
classes, and (4) determine sensor-actuator relations. An addi-
tional criterion is to make this process as efficient as possible.

Olsson, Pierce and others produce sensor data by applying
random values to the actuators for some preset amount of
time, and record the sensor sequences, and then look for
similarities in those sequences. This has several problems: (1)
there is no guarantee that random movements will result in
sensor data that characterizes similar sensors, (2) there is no
known (predictable) relation between the actuation sequence

and the sensor values, and (3) the simultaneous actuation of
multiple actuators confuses the relationship between them
and the sensors.

To better understand sensorimotor effects, a systems ap-
proach is helpful. That is, rather than giving random control
sequences and trying to decipher what happens, it is more
effective to hypothesize what the actuator is (given limited
choices) and then provide control inputs for which the effects
are known. Such hypotheses can be tested as part of the
developmental process. The basic types of control that can
be applied include: none, impulse, constant, step, linear,
periodic, or other (e.g., random).

Next, consider sensors. Some may be time-dependent (e.g.,
energy level), while others may depend on the environ-
ment (e.g., range sensors). Thus, it may be possible to
classify ideal (noiseless) sensors into time-dependent and
time-independent by applying no actuation and looking to
see which sensor signals are not constant (this assumes the
spatial environment does not change). Therefore, it may be
more useful to not actuate the system, and then classify
sensors based on their variance properties. That is, in realistic
(with noise) scenarios, it may be possible to group sensors
without applying actuation at all.

Consider Pierce’s sensorimotor reconstruction process. If
realistic noise models are included, the four types of sensors
in his experiments (range, broken range, bearing and energy)
can all be correctly grouped with no motion at all. (This
assumes some energy loss occurs to run the sensors.) All this
can be determined just using the equals symmetry operator
(identity) and the means and variances of the sensor data
sequences.

C. Exploiting Actuation

Of course, actuation can help understand the structure of
the sensorimotor system. For example, consider what can be
determined by simply rotating a two-wheeled robot that has
a set of 22 range sensors arranged equi-spaced on a circle.
Assume that the control signal results in a slow rotation
parallel to the plane of robot motion (i.e., each range sensor
moves through a small angle to produce its next sample)
and rotates more than2π radians. Then each range sensor
produces a data sequence that is a shifted version of each of
the others – i.e., there is a translation symmetry (of periodic
signals) between each pair. The general problem is then:

General Symmetry Transform Discovery
Problem: Given two sensors,S1 andS2, with data
sequencesT1 andT2, find a symmetry operatorσ
such thatT2 = σ(T1).

Full details of the algorithms and methodology are given
in [3]. Here we simply give the results for sensor grouping
based on symmetries in the sensorimotor data (see Figure 3
for performance results in simulation). Sensor data sampling
time was varied from 1 to 20 seconds for binary noise of
5%, 10% and 25%, and Gaussian variance values of 0.1, 1,
and 10. Ten trials were run for each case and the means
are shown in the figure. As can be seen, perfect sensor
grouping is achieved after 20 seconds without any actuation



cost. Previous methods required driving both wheels for a
longer time and they cost about30ka/s more in energy than
our method (ka/s is the actuation to sensing cost ratio).
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Fig. 3. Grouping Correctness vs. Number of Samples; left to right are for
binary salt and pepper noise of 5%, 10%, and 25%; curves for 0.1 (leftmost
of 3), 1.0 (middle of 3), and 10.0 (rightmost of 3) variance are given in
each plot and time in 0.1 second units.

1) Sensor Grouping (Actuated):Given a set of sensors
that characterize the group operation nature of an actuator
(in this case rotation), the sensors can be grouped based
on the fact that similar sensors produce data that has a
translation symmetry along the temporal axis. Figure 4 shows
representative data for the range and compass sensors. The
simple determination of a translation symmetry between
signals allows both grouping (i.e., the signals match well
at some time offset), and the angular difference between the
sensors (given by thetoffset at which the symmetry occurs);
toffset is proportional to the angle between the the sensors in
terms of actuation units. Figure 5 shows the perfect grouping
result with noise of 1% in the compass sensor data and 0.1
variance in the range sensor data (the figure shows a 29x29
similarity matrix where white indicates sensors are in same
group, and black indicates that are not).
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Fig. 4. Sensor data showing translation symmetry: Row 1 shows sensors
1, 2, and 13; Row 2 shows compass sensors 27,28, and 29.

We have performed physical experiments with physical
sensors to validate the proposed approach. Data was taken

Fig. 5. Grouping Matrix:29 × 29 binary matrix; sensors 1-24 are range
sensors (sensor 21 returns constant value); 25 is energy; 26-29 are compass
sensors.

for both the static case (no actuation) and the actuated case
(camera rotation).

Two sensors were used in this unactuated experiment: a
camera and a microphone. The camera was set up in an office
and a sequence of 200 images was taken at a 10Hz rate.
Figure 6 shows one of these images. The 25x25 center set
of pixels from the image comprise a set of 625 pixel signals
each of length 200. An example trace and its histogram are
given in Figure 7. As can be seen, this is qualitatively a
Gaussian sample. Figure 8 shows a 200 sequence signal
of microphone data, and its histogram which also looks
Gaussian.

Fig. 6. One of the 200 Static Images.

The application of our symmetry detectors classified all
pixel and microphone signals as Gaussian signals, and
grouped the pixel signals separately from the microphone
due to the difference in their variance properties.

We also took a set of images in an actuated experiment by
rotating the camera by one degree for 360 degrees. Domain
translation symmetry allows the identification of all the pixel
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Fig. 7. Trace and Histogram of the 200 Pixel Values of the Center Pixel
of the Images.
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Fig. 8. Trace and Histogram of the 200 Amplitude Values of the
Microphone Data.

signals along a row as similar to each other (i.e., they are all
in the plane of the rotation). Due to the translation amount,
the offset between the signals is also discovered.

III. SYMMETRY DETECTION IN 2D

Next we turn to the detection of symmetries in 2D images;
much work has been done in this area (e.g., see [13] for
a survey, and [2], [24] for more related work). We give a
method here to detect the following symmetries on pixel sets:

• C1: only the identity map is invariant.
• Cn: rotation symmetry about a fixed point with rotations

of 360

n .
• D1: single axis of bilateral symmetry.
• Dn: rotation and reflective symmetries (rotational of360

n
andn axis of reflective symmetry).

• O(2): orthogonal group of continuous rotations about a
fixed point and any line through that point is a reflective
axis of symmetry.

The Planar Reflective Symmetry Transform is defined by
Podolak et al. [24], and we use that to measure the reflective
symmetry about a line at a specific point (see Figure 9 for the
PRST values for a vertical standing ellipse). Generally, this
is an expensive operation, so we have developed a way to
limit the amount of computation. In order to more efficiently

Fig. 9. PRST Measure of Reflective Symmetry in a Vertical Ellipse.

locate axes of reflective symmetry, we exploit the properties
of the frieze expansion pattern (FEP); for more on this, see
[10]. For example, Figure 10 shows the ellipse image (a)
and its FEP (b). We extract the upper curve of the FEP
(c) and locate maxima and minima (an axis of symmetry
must pass through a min or max on this curve). This restricts
the number of reflective lines for which the PRST must be
computed. Figure 10(d) shows the set of reflective axes found
for the ellipse. We also use the same PRST measure for
rotational symmetry, where instead of flipping the image as
required for reflective symmetry, we rotate the image based
on aligning peaks and valleys in the FEP curve (e). All these
symmetry axes are combined (f) to determine that this shape
hasC2 symmetry. Figure 11 shows the same analysis for a
leaf image. The resulting group classification isD1 as there is
one reflective axis of symmetry and no rotational symmetry.

IV. CONCLUSIONS ANDFUTURE WORK

We demonstrate symmetry theory as a basis for senso-
rimotor reconstruction in embodied cognitive agents and
have shown that this allows the identification of structure
with simple and elegant algorithms which are very efficient.
The exploitation of noise structure in the sensors allows
unactuated grouping of the sensors, and a simple one actuator
rotation permits the recovery of the spatial arrangement of
the sensors. This method was shown to hold for physical
sensors as well. In addition, we describe a more efficient



(a) Ellipse Image (b) Frieze Expansion Pattern
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Fig. 10. Symmetry Analysis for an Ellipse. (a) Original image. (b) FEP
for Ellipse. (c) FEP curve with Max/Min Marked. (d) Reflective Axes.
(e) Rotation Symmetry Directions. (f) All Symmetry Axes and Rotation
Directions.

(a) Leaf Image (b) Frieze Expansion Pattern

0 100 200 300 400
0

50

100

150

(c) FEP Curve with Min/Max Indicated (d) Reflective Axis.

(e) Rotation Directions (None). (f) Reflective Axes and Rotation Directions (None).

Fig. 11. Symmetry Analysis for a Leaf. (a) Original image. (b) FEP
for Leaf. (c) FEP curve with Max/Min Marked. (d) Reflective Axes. (e)
Rotation Symmetry Directions (None). (f) One Symmetry Axis and Rotation
Directions (None).

approach to using the PRST for symmetry group detection
in image shapes based on using properties of the Frieze
Expansion Pattern. In future work, we intend to show how
such tokens (i.e., groups) can be parsed into higher level
descriptions of sensorimotor streams. This includes 3-D
surface points, homogeneous 2-D surfaces (e.g., planes), and
3-D surface normals may all serve as a basic symmetry
element forG-rep structuring. Data from Kinect or other
range sensors along with an oct-tree organization can form
the basis of this. For example, the Create robot shown in the
left side (a) of Figure 12 has a Kinect sensor mounted on it.
A sample image of an office scene is taken and range data

taken with the Kinect is used to discover group symmetries
for the scene; Figure 12 (b) shows a patch of a cone-shaped
region (part of a waste basket), and the group expression for
that patch.

a. Kinect on Create Robot
b. Wreath Product for Cone

Fig. 12. a. Create robot roaming and taking Kinect data; b. Data taken
from wastebasket and represented as wreath product.

Although generally not explicit in sensor data, symmetry
axes are also important cognitive features. The medial axis
gives the morphology of a 3D object and can be used to
determine the intrinsic geometry (thickness) of both 2D and
3D shapes. Since it is lower dimensional than the object,
it can be used to determine both symmetry and asymmetry
of objects. In previous work we have obtained results on
tracking the distance between a moving point and a planar
spline shape and computed planar Voronoi diagrams between
and within planar NURBS curves[26], [25] (see Figure 13),
and found methods that allow us to characterize the correct
topology as well as shape of the planar and 3D medial
axis. We developed an approach that used mathematical
singularity theory to compute all ridges on B-spline bounded
surfaces of sufficient smoothness[17], and then extended the
results to spline surfaces of deficient smoothness[16] and to
compute ridges of isosurfaces of volume data[19].

Most recently we have extended that approach to com-
pute the interior medial axis of regions inR3 bounded by
tensor product parametric B-spline surfaces[18]. The generic
structure of the 3D medial axis is a set of smooth surfaces
along with a singular set consisting of edge curves, branch
curves, fin points and six junction points. In this work, the
medial axis singular set (the set of transition points) is first
computed directly from the B-spline representation using a
collection of robust higher order techniques. Medial axis
surfaces are computed as a time trace of the evolving self-
intersection set of the boundary under the eikonal (grassfire)
flow. The eikonal flow results in special transition points
that create, modify or annihilate evolving curve fronts of the
(self-) intersection set. The transition points are explicitly
identified using the B-spline representation without ever
actually computing the eikonal flow. Evolution of the self-
intersection sets (the sheets and junction curves) are com-
puted creating theoretically derived evolution vector fields
that support accurate tracing of these entities. The algorithm
is the first to accurately compute connected surfaces of
the medial axis as well its singular set and its topological
structure (see Figure 13). The algorithm can be simplified
to compute accurate medial axes of planar NURBS curves,
as well as the distance to boundary from each medial axis
point. Thus, the topological and metrical symmetries can be



Fig. 13. Our algorithm computes all critical points of the medial axis
structure and characterizes them. On the left the creation points are the
endpoints of the medial axis, while the junction points are where three
curves of the medial axis meet. On the right the visible key points are the
where the boundary of the medial axis is closest to the object boundaries,
fin points (the ends of the junction curves) and 6-junction points, where
junction curves meet.

determined, and we intend to study how this can be used to
segment objects of interest in a scene.
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