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Abstract— We propose that robot perception is enabled by
means of a common sensorimotor semantics arising from a
set of symmetry theories (expressed as symmetry detectorsdén
parsers) embedded a priori in each robot. These theories inform
the production of structural representations of sensorimotor
processes, and these representations, in turn, permit perceyul
fusion to broaden categories of activity. Although the specific
knowledge required by a robot will depend on the particular ap-
plication domain, there is a need for fundamental mechanisms
which allow each individual robot to obtain the requisite knowl-
edge. Current methods are too brittle and do not scale very well,
and a new approach to perceptual knowledge representation is
necessary. Our approach provides firm semantic grounding in
the real world, provides for robust dynamic performance in
real-time environments with a range of sensors and allows for
communication of acquired knowledge in a broad community of
other robots and agents, including humans. Our work focuses
on symmetry based multisensor knowledge structuring in terms
of: (1) symmetry detection in signals, and (2) symmetry parsing
for knowledge structure, including structural bootstrapping and
knowledge sharing. Operationally, the hypothesis is thagroup
theoretic representations (G-Reps) inform cognitive activity. Our
contributions here are to demonstrate symmetry detection and
signal analysis and for 1D and 2D signals in a simple office
environment; symmetry parsing based on these tokens is left
for future work.

I. INTRODUCTION AND BACKGROUND

Physical robot systems have been steadily improving fqfoqe representations

more robust semantic basis than current methods, and in par-
ticular symmetry as applied to the acquisition of affordesc
from signals, representation for modeling actions andrthei
effects, and exploitation in generative action discovery.

One form of knowledge of particular interest is self-
knowledge about the robot’s own structure and capabilities
this includes sensors, actuators, kinematic and dynamoic-st
ture, energy consumption and replenishment, and computa-
tional capabilities (speed, space, parallel processigmab
processing, internet connectivity, etc.). This providdsaais
for knowledge of affordances in the external world, i.e.,
the recognition of entities appropriate for the performeanc
of a task. Finally, working knowledge is needed for the
interactions between the robot and the environment for both
physical actions and social interactions. Of course, atrobo
will also need to be able to understand and formulate goals
and the plans necessary to achieve those goals, but we do
not address this aspect of cognition here.

Hypothesis We propose that robot affordance knowledge
acquisition and perceptual fusion can be enabled by means
of a common sensorimotor semantics which is provided by
a set of symmetry theories embedded a priori in each robot.
These theories inform perception, and thus the production
of structural representations of sensorimotor processes,
in turn, permit perceptual fuston t

many years now in terms of their capabilities, robustnesg,qaqen categories of activity.

compliance, etc., and there is a strong push to introdusethe Symmetry [28] plays a deep role in our understanding
systems into human environments as cooperative agentsgoihe world in that it addresses key issues of invariance,
agsist peqple in their daily activities. A major roquIook .t. and as noted by Viana [27]: “Symmetry provides a set of
this goal is the lack of strong and robust cognitive abiliyjes with which we may describe certain regularities among
ties in robots, and more specifically inadequate knowledgg ,erimental objects” Symmetry to us means an invariant,
acquisition, representation and manipulation. Robotsinegy py determining operators which leave certain aspects of
various kinds of knowledge to perform effectively in realgiate invariant, it is possible to either identify simildsjects
applications, and the current approaches to providing thg} {3 maintain specific constraints while performing other
knowledge are to (1) have the robot learn from scratch, (Rperations (e.g., move forward while maintaining a cortstan
spoon feed the knowledge by human programming, or (Yistance from a wall). Michael Leyton has described the
have robots share knowledge. _ exploitation of symmetry [11] and the use of group theory
Our goal is to explore the use of symmetry analysis as & 5 pasis for cognition [12]. Our approach is motivated by
basis for the semantic grounding of multisensor sensoumotl_eyton,S work, but does not exploit the technical aspects of
affordance knowledge; this includes symmetry detection ifo \wreath products used by Leyton.
signals, symmetry parsing in knowledge representatiod, an Operationally, the hypothesis is thgtoup theoretic rep-
symmetry exploitation in perceptual fusion. We hypothesiz gsentations (G-Repshform cognitive activity. We exploit
that symmetry-based structuring of knowledge provides &mmetry-based signal analysis and concept formation in

sensorimotor reconstruction and scene analysis. A scliemat
view of our symmetry-based affordance architecture (the
Symmetry Engines given in Figure 1.

The two major research thrusts (see Figure 2) are:

1) Symmetry Detection this involves the detection of
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Fig. 1. The Symmetry Enginderceptionrequires an appropriate set of Fig. 2. Symmetry Analysis Sequence.
operators to construdB-reps this includes vector constructors, symme-
try detectors, and symmetry-based data indexing and variapeeators.

Control actionrequires the ability to mafs-repsonto action sequences to
achieve desired results in the worfdloncept Formatioroperators allow the & Model of the sensor set of an autonomous agent. Features

exchange oG-repswith other agents. Finally, thduman Machine Interface  are defined in terms of raw sensor data, and feature operators
(HM1) will exploit human symmetry perception, as well @srepproperties  gra defined which map features to features. The goal is
to achieve context-aware integrative display of informatio )
to construct a perceptual system for this structure. One of
the fundamental feature operators is tireuping operator

symmetry in signals, and this means the extractiolhich assigns features to a group if they are similar. This

of symmetry features (lines, color, surfaces, etc.) anfjork was extended to spatio-visual exploration in a series
symmetry axes. We are developing a wide range &f papers [14], [15], [23]. For a detailed critique of Piesce

methods, including signal processing and spline-basé¥Tk: see [3]. Olsson extended this work in a number of
symmetry axis determination. papers [5], [6], [7], [8], [9], [20], [21]. He used informai
2) Symmetry Parsing the individual symmetry elements theoretic measures for sensorimotor reconstruction, and n

must be composed into hierarchically structured rednnate knowledge of physical phenomena nor the sensors is
resentations. The production of hierarchiGrep de-

assumed. Like Pierce, Olsson uses random movements to
scriptions requires new analysis methods of the avaiPuild the representation and learns the effect of actions on

able symmetries. It would be useful if some form ofS€NSOrs to perform visually guided movements. The major
prime factorization were possible in order to makgsontributions are the analysis of information theoreticame

comparisons and manipulation more efficient. SpecifigUreés and motion flow. O’'Regan and &{22] use the term
gensorimotor contingenciesd give an algorithm which can

sensorimotor data for behaviors must be included i X . i v
these descriptions. Methods to allow robust commudetermine the dimension of the space of the environment by

nication and sharing of the symmetry representatio’r,‘iinfilyzmg the Igws that Iink_mot_or outputs to sensor infjuts
must be developed. This means finding a way to shaf8€ir mathematical formulation is elegant.

the sensorimotor grounding of the concepts produced A symmetry defines an invariant. The simplest invariant
by the G-reps is identity. This can apply to an individual item, i.e., a

thing is itself, or to a set of similar objects. In general, an
invariant is defined by a transformation under which one
object is mapped to another. Sensoriomotor reconstruction
Given a set of unknown sensors and actuators, sensgan be more effectively achieved by finding such symmetry
rimotor reconstruction is achieved by eXplOiting relaon Operators on the sensor and actuator data (See also [1], [4])
between the sensor data and the actuator control data IanariantS are very useful th|ngs to recognize, and we
determine sets of similar sensors, sets of similar actsatopropose that various types of invariant operators provide a
necessary relations between them, as well as sensorimofgyisis for cognitive functions, and that it is also useful awéh
relations to the environment. Several authors have adﬁl‘es%rocesses that attempt to discover invariance re|atiom]gm

this problem, and we propose here a principled approagensorimotor data and subsequently processed versions of
that exploits various symmetries and that achieves mofgat data.

efficient and robust results. A theoretical position is dedin

the approach shown more efficient than previous work, arfy Symmetry Detection in Signals

experimental results given. Assume a set of sensor§, = {S;,i = 1...ns} each
Early on, Pierce [23] described an approach to learningf which produces a finite sequence of indexed sense data

Il. SENSORIMOTORRECONSTRUCTION IN1D



values, S;; where: gives the sensor index andgives an and the sensor values, and (3) the simultaneous actuation of
ordinal temporal index, and a set of actuatofs= {4,,7 = multiple actuators confuses the relationship between them
1...n4} each of which has a finite length associated contrand the sensors.
signal, 4;;, wherei is the actuator index anglis an ordinal To better understand sensorimotor effects, a systems ap-
temporal index of the control values. proach is helpful. That is, rather than giving random cdntro

We are interested in determining the similarity of sensasequences and trying to decipher what happens, it is more
rimotor signals. Thus, the type of each sensor as well a&sfective to hypothesize what the actuator is (given lichite
the relation to motor control actions play a role. It is quitechoices) and then provide control inputs for which the e¢ffec
possible that knowledge of the physical phenomenon thate known. Such hypotheses can be tested as part of the
stimulates a sensor may also be exploited to help determidevelopmental process. The basic types of control that can
the structure of the sensor system and its relation to motbe applied include: none, impulse, constant, step, linear,
action and the environment. periodic, or other (e.g., random).

We suppose that certain 1D signal classes are importantNext, consider sensors. Some may be time-dependent (e.g.,
and are known a priori to the agent (i.e., that there arenergy level), while others may depend on the environ-
processes for identifying signals of these types). Thecbasinent (e.g., range sensors). Thus, it may be possible to

signals are: classify ideal (noiseless) sensors into time-dependedt an
« zera y = 0 (at all samples) time-independent by applying no actuation and looking to
« constanty = a (for some fixed constant) see which sensor signals are not constant (this assumes the
« binary: y takes on either the value 1 or 0 spatial environment does not change). Therefore, it may be
o linear: y = at + b (function of time index) more useful to not actuate the system, and then classify
. periodic has periodP and the most significant Fourier S€nsors based on their variance properties. That is, iistieal
coefficientsC (with noise) scenarios, it may be possible to group sensors
« Gaussiansample from Gaussian distribution with meanwithout applying actuation at all.
w and variancer? Consider Pierce’s sensorimotor reconstruction procdss. |

Thus, a first level symmetry is one that characterizes asingi€2/iStic noise models are included, the four types of senso
signal as belonging to one of these categories. Of courd8,Nis experiments (range, broken range, bearing and epergy
composite signals can be constructed from these as wefn all be correctly grouped with no motion at all. (This
e.g., the impulse signal is a non-zero constant for one stef>SUMeS some energy loss occurs to run the sensors.) All this
followed by the zero signal. can be determined just using the equals symmetry operator

Next, pairwise signal symmetries can exist between signaéléntity) and the means and variances of the sensor data

in the same class: sequences.
o linear C. Exploiting Actuation
— same linea; = az, by = by Of course, actuation can help understand the structure of
— parallel:a; = az, by # by the sensorimotor system. For example, consider what can be
— intersect in point: rotation symmetry about inter-determined by simply rotating a two-wheeled robot that has
section point a set of 22 range sensors arranged equi-spaced on a circle.
« periodic Assume that the control signal results in a slow rotation
— same period parallel to the plane of robot motion (i.e., each range senso
— same Fourier coefficients moves through a small angle to produce its next sample)
. Gaussian and rotates more tha?wr radians. Then each range sensor

produces a data sequence that is a shifted version of each of
the others —i.e., there is a translation symmetry (of pésiod
signals) between each pair. The general problem is then:
B. Sensorimotor Reconstruction General Symmetry Transform Discovery
The sensorimotor reconstruction process consists of the Problem: Given two sensors$; andSs, with data
following steps: (1) perform actuation command sequences, sequence§i andTs, find a symmetry operator
(2) record sensor data, (3) determine sensor equivalence such thatly = o(T1).
classes, and (4) determine sensor-actuator relationsddin a  Full details of the algorithms and methodology are given
tional criterion is to make this process as efficient as jpbssi in [3]. Here we simply give the results for sensor grouping
Olsson, Pierce and others produce sensor data by applyingsed on symmetries in the sensorimotor data (see Figure 3
random values to the actuators for some preset amount fof performance results in simulation). Sensor data sargpli
time, and record the sensor sequences, and then look fone was varied from 1 to 20 seconds for binary noise of
similarities in those sequences. This has several probl@ns 5%, 10% and 25%, and Gaussian variance values of 0.1, 1,
there is no guarantee that random movements will result Bnd 10. Ten trials were run for each case and the means
sensor data that characterizes similar sensors, (2) there i are shown in the figure. As can be seen, perfect sensor
known (predictable) relation between the actuation secgiengrouping is achieved after 20 seconds without any actuation

— same mean
— same variance



cost. Previous methods required driving both wheels for a
longer time and they cost aboBk,,, more in energy than
our method £,/ is the actuation to sensing cost ratio).
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of 3), 1.0 (middle of 3), and 10.0 (rightmost of 3) variance aneeg in

each plot and time in 0.1 second units. for both the static case (no actuation) and the actuated case

(camera rotation).
Two sensors were used in this unactuated experiment: a

that characterize the group operation nature of an actuafgiMera and a microphone. The camera was set up in an office
(in this case rotation), the sensors can be grouped bas¥y! @ sequence of 200 images was taken at a 10Hz rate.
on the fact that similar sensors produce data that has':%tgu_re 6 shows one of these Images. The 25X2_5 cepter set
translation symmetry along the temporal axis. Figure 4 show? pixels from the image comprise a set of 625 plxel signals

representative data for the range and compass sensors. ?ﬁgh of length 200. An example trace and its histogram are

simple determination of a translation symmetry betweefVeN in Figure 7. As can be seen, this is qualitatively a

signals allows both grouping (i.e., the signals match weff@ussian sample. Figure 8 shows a 200 sequence signal

at some time offset), and the angular difference between tﬁéalzrls';r;rf’hone data, and its histogram which also looks

sensors (given by thg ¢ ¢s: at which the symmetry occurs);
toffset IS proportional to the angle between the the sensors in
terms of actuation units. Figure 5 shows the perfect graupin
result with noise of 1% in the compass sensor data and 0.1
variance in the range sensor data (the figure shows a 29x29
similarity matrix where white indicates sensors are in same
group, and black indicates that are not).

1) Sensor Grouping (Actuated)Given a set of sensors
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%o o o % s o o % s 1o 50 The application of our symmetry detectors classified all
e e e pixel and microphone signals as Gaussian signals, and
Fig. 4. Sensor data showing translation symmetry: Row 1 shenscss grouped the pixel signals separately from the microphone
1,2, and 13; Row 2 shows compass sensors 27,28, and 29. due to the difference in their variance properties.

We also took a set of images in an actuated experiment by
We have performed physical experiments with physicalotating the camera by one degree for 360 degrees. Domain
sensors to validate the proposed approach. Data was takesmslation symmetry allows the identification of all thegdi
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« O(2): orthogonal group of continuous rotations about a
eol | fixed point and any line through that point is a reflective
axis of symmetry.

The Planar Reflective Symmetry Transform is defined by
Podolak et al. [24], and we use that to measure the reflective
symmetry about a line at a specific point (see Figure 9 for the
PRST values for a vertical standing ellipse). Generallig th
is an expensive operation, so we have developed a way to
limit the amount of computation. In order to more efficiently
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locate axes of reflective symmetry, we exploit the propsrtie
of the frieze expansion pattern (FEP); for more on this, see
[10]. For example, Figure 10 shows the ellipse image (a)
and its FEP (b). We extract the upper curve of the FEP
(c) and locate maxima and minima (an axis of symmetry
must pass through a min or max on this curve). This restricts
o 100 10 200 90 soo 5o a0 S the number of reflective lines for which the PRST must be
Time Index Amplituce | evel computed. Figure 10(d) shows the set of reflective axes found
Fig. 8. Trace and Histogram of the 200 Amplitude Values of thefor the ellipse. We also us_e the Same_ PRST me,asure for
Microphone Data. rotational symmetry, where instead of flipping the image as
required for reflective symmetry, we rotate the image based
on aligning peaks and valleys in the FEP curve (e). All these
signals along a row as similar to each other (i.e., they dre flymmetry axes are combined (f) to determine that this shape
in the plane of the rotation). Due to the translation amounhasC. symmetry. Figure 11 shows the same analysis for a
the offset between the signals is also discovered. leaf image. The resulting group classificatiorls as there is
one reflective axis of symmetry and no rotational symmetry.

5101

201

500 -

490+ 107

480
0

IIl. SYMMETRY DETECTION IN 2D

Next we turn to the detection of symmetries in 2D images; IV. CONCLUSIONS ANDFUTURE WORK

much work has been done in this area (e.g., see [13] for\ye demonstrate symmetry theory as a basis for senso-
a survey, and [2], [24] for more related work). We give &jmqtor reconstruction in embodied cognitive agents and
method here to detect the following symmetries on pixel:sethaye shown that this allows the identification of structure
« Ci: only the identity map is invariant. with simple and elegant algorithms which are very efficient.
« (), rotation symmetry about a fixed point with rotationsThe exploitation of noise structure in the sensors allows
of % unactuated grouping of the sensors, and a simple one actuato
o D;: single axis of bilateral symmetry. rotation permits the recovery of the spatial arrangement of
« D, rotation and reflective symmetries (rotationa@é? the sensors. This method was shown to hold for physical
andn axis of reflective symmetry). sensors as well. In addition, we describe a more efficient



taken with the Kinect is used to discover group symmetries

for the scene; Figure 12 (b) shows a patch of a cone-shaped
region (part of a waste basket), and the group expression for
that patch.
(a) Ellipse Image (b) Frieze Expansion Pattern
80
60
20
0 patch as R/Z
0 20 40 60 80 100
(c) FEP Curve with Min/Max Indicated (d) Reflective Axis.
a. Kinect on Create Robot b. Wreath Product for Cone
‘l ‘l Fig. 12. a. Create robot roaming and taking Kinect data; baDRaken
" " from wastebasket and represented as wreath product.

Although generally not explicit in sensor data, symmetry
(e) Rotation Directions. (f) Reflective Axes and Rotation Directions. axes are aISO important COgnitive features. The medial a.XiS
gives the morphology of a 3D object and can be used to
Fig. 10. Symmetry Analysis for an Ellipse. (a) Original image) EEP  determine the intrinsic geometry (thickness) of both 2D and
for Ellipse. (c) FEP curve with Max/Min Marked. (d) RefleaivAxes. . o . . .
(€) Rotation Symmetry Directions. (f) All Symmetry Axes and Rioa S0 Shapes. Since it is lower dimensional than the object,
Directions. it can be used to determine both symmetry and asymmetry
of objects. In previous work we have obtained results on
tracking the distance between a moving point and a planar
spline shape and computed planar Voronoi diagrams between
and within planar NURBS curves[26], [25] (see Figure 13),
and found methods that allow us to characterize the correct
topology as well as shape of the planar and 3D medial
(@ Leafimage (0) Frieze Expansion Pattern axis. We developed an approach that used mathematical
‘ singularity theory to compute all ridges on B-spline bouhde
100 ’k surfaces of sufficient smoothness[17], and then extendzd th
50 h L J \ results to spline surfaces of deficient smoothness[16] and t
G R L AL compute ridges of isosurfaces of volume data[19].
% &) FEP Curve win MinMax ndicated (@) Reflecive Axis. Most recently we have extended that approach to com-
pute the interior medial axis of regions iR® bounded by
*k tensor product parametric B-spline surfaces[18]. The gene
\

150

structure of the 3D medial axis is a set of smooth surfaces
along with a singular set consisting of edge curves, branch
curves, fin points and six junction points. In this work, the
() Rotation Directions (None). () Reflective Axes and Rotation Directions (None).  mMedial axis singular set (the set of transition points) ist fir
Fo 11 S v Analvsis f Leaf oridinal i o) FEE computed directly from the B-spline representation using a
for Lear © D e it Max/Min ﬁ,‘,"‘a'rk(f& (d")gggﬂég‘tﬁ‘,%eés(( )(e) collection of robust higher order techniques. Medial axis
Rotation Symmetry Directions (None). (f) One Symmetry Axis andaon ~ Surfaces are computed as a time trace of the evolving self-
Directions (None). intersection set of the boundary under the eikonal (gr&3sfir
flow. The eikonal flow results in special transition points
that create, modify or annihilate evolving curve fronts fod t
approach to using the PRST for symmetry group detectigself-) intersection set. The transition points are exihjic
in image shapes based on using properties of the Friekentified using the B-spline representation without ever
Expansion Pattern. In future work, we intend to show hovactually computing the eikonal flow. Evolution of the self-
such tokens (i.e., groups) can be parsed into higher levigtersection sets (the sheets and junction curves) are com-
descriptions of sensorimotor streams. This includes 3-puted creating theoretically derived evolution vectordiel
surface points, homogeneous 2-D surfaces (e.g., plamas), dhat support accurate tracing of these entities. The dhgari
3-D surface normals may all serve as a basic symmetiy the first to accurately compute connected surfaces of
element forG-rep structuring. Data from Kinect or other the medial axis as well its singular set and its topological
range sensors along with an oct-tree organization can forstructure (see Figure 13). The algorithm can be simplified
the basis of this. For example, the Create robot shown in tlie compute accurate medial axes of planar NURBS curves,
left side (a) of Figure 12 has a Kinect sensor mounted on ias well as the distance to boundary from each medial axis
A sample image of an office scene is taken and range dataint. Thus, the topological and metrical symmetries can be
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Fig. 13. Our algorithm computes all critical points of the nabdixis
structure and characterizes them. On the left the creatiantpare the
endpoints of the medial axis, while the junction points arestghthree [18]
curves of the medial axis meet. On the right the visible key tso@me the
where the boundary of the medial axis is closest to the objeahdbaries,

fin points (the ends of the junction curves) and 6-junctiom{z where [19]
junction curves meet.

determined, and we intend to study how this can be used %Y
segment objects of interest in a scene.
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