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Abstract Robots will play an increasing role in society as they are deployed as
co-workers, co-protectors and co-inhabitants among humans, and it is crucial that
their knowledge be acquired efficiently and be as correct andeffective as possible,
and permit planning and rational behavior selection. To achieve this, robot knowl-
edge needs to span several levels (from perception-action processes to concepts).
There are several major issues to be addressed in order to achieve this. First, the
fundamentally different paradigms for cognitive roboticsinclude Turing machines,
neural networks and dynamical systems. Each has starkly different views on what
constitutes a concept or perception-actuation mechanism.There may also be a de-
velopmental stage in which the robot agent discovers, through self-exploration, its
own sensorimotor structure; its representations are then intrinsic to its embodiment.
All these factors make well-founded conceptualization difficult. Given the scale of
this problem, human specification of cognitive content seems precluded, but general
learning structures and dynamical systems approaches may produce idiosyncratic
results. What is clear is that constraints from these issues must inform any knowl-
edge representation methodology. We describe a set of core symmetry-based repre-
sentations and processes for structural bootstrapping which will permit this deeper
kind of knowledge representation, and specifically addresshow low-level symmetry
detectors in 1-D, 2-D, and 3-D data can help solve the sensorimotor reconstruction
problem.
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1 Introduction

Physical robot systems have been steadily improving for many years now in terms
of their capabilities, robustness, compliance, etc., and there is a strong push to intro-
duce these systems into human environments as cooperative agents to assist people
in their daily activities. A major roadblock to this goal is the lack of strong and
robust cognitive abilities in robots, and more specificallyinadequate knowledge ac-
quisition, representation and manipulation. Robots need various kinds of knowledge
to perform effectively in real applications, and the current approaches to providing
that knowledge are to: (1) have the robot learn from scratch,(2) spoon feed the
knowledge by human programming, or (3) have the robot use theweb to find the
appropriate knowledge.

Our goal is to explore the use of symmetry analysis as a basis for the semantic
grounding of sensorimotor affordance knowledge; this includes symmetry detection
in signals, symmetry parsing in knowledge representation,and symmetry exploita-
tion in structural bootstrapping and knowledge sharing. Weare working in close
cooperation with our colleagues (Profs. R. Dillmann and T. Asfour at the Karl-
sruhe Institute of Technology) involved in the European Union Xperience project
(http://www.xperience.org/). The overview they give of the Xperience project is:

Current research in enactive, embodied cognition is built on two central ideas: 1) Physical
interaction with and exploration of the world allows an agent to acquire and extend intrin-
sically grounded, cognitive representations and, 2) representations built from such interac-
tions are much better adapted to guiding behavior than human crafted rules or control logic.
The Xperience project will address this problem bystructural bootstrapping, an idea taken
from child language acquisition research. Structural bootstrapping is a method of building
generative models, leveraging existing experience to predictunexplored action effects and
to focus the hypothesis space for learning novel concepts. Thisdevelopmental approach en-
ables rapid generalization and acquisition of new knowledgeand skills from little additional
training data.

This gives us a larger context within which to test our hypothesis that symmetry-
based structuring of knowledge provides a more robust semantic basis than current
methods, and in particular symmetry as applied to: the acquisition of affordances
from signals, representation as Object-Action Complexes (OACs provide a frame-
work for modeling actions and their effects), and exploitation in generative action
discovery (structural bootstrapping). We aim to directly compare our results with
those of the Xperience team in terms of specific cognitive benchmarks.

In order to achieve structural bootstrapping, it is necessary to have a structure
with identifiable elements and relations which can be exploited to attain greater
knowledge. This can occur by broadening the domain of application of knowledge
(e.g., from knowing how to open a specific bottle to knowing how to open any
bottle of that type), or by recognizing an instance of a more general structure (e.g.,
recognizing a rotary joint). We describe here how both can beachieved in the context
of the sensorimotor reconstruction problem.

In order to solve this problem, one form of knowledge of particular interest is
self-knowledge about the robot’s own structure and capabilities; this includes sen-
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sors, actuators, kinematic and dynamic structure, energy consumption and replen-
ishment, and computational capabilities (speed, space, parallel processing, signal
processing, internet connectivity, etc.). This provides abasis for knowledge of af-
fordances in the external world, i.e., the recognition of entities appropriate for the
performance of a task. Working knowledge is also needed for the interactions be-
tween the robot and the environment for both physical actions and social interactions
(communication, cooperation, empathy, etc.). Of course, arobot will also need to be
able to understand and formulate goals and the plans necessary to achieve those
goals, but we do not address this aspect of cognition here.

Although the specific knowledge required by a robot will depend on the particu-
lar application domain (e.g., security, surgery, manufacturing, home services, etc.),
there is a need for fundamental mechanisms which allow each individual robot to
obtain the requisite knowledge. Our view is that current methods are too brittle and
do not scale very well, and that a new approach to knowledge acquisition and shar-
ing is necessary. This new approach should provide firm semantic grounding in the
real world, provide for robust dynamic performance in real-time environments and
allow for communication of acquired knowledge in a broad community of other
robots and agents, including humans. We thus formulate the following hypothesis:

Robot affordance knowledge acquisition and sharing can be enabled by means of a common
sensorimotor semantics which is provided by a set of group symmetry theories embedded
a priori in each robot. These theories inform the production of structural representations of
sensorimotor processes which, in turn, permit structural bootstrapping.

2 Robot Knowledge Sharing

Much previous work on robot knowledge sharing has focused onthings like multi-
media databases ([9, 14, 15]), ontologies ([1, 2, 40, 42, 43,47]), etc. For example,
our work on RobotShare envisioned a kind of Google for robots. For humans, the
web allows a couple of major types of knowledge sharing: (1) aperson provides
some description of the topic of interest (generally textual), and the system provides
URLs related to the topic, and (2) a person can activate an external program which
is run on a local Java interpreter. For a robot this corresponds to: (1) providing some
key information based on text, images, or other sensed property of the entity, and this
results in some robot digestible form of related information, and (2) a robot should
be able to obtain physical behavior information (e.g., how to pick up a book), prob-
ably in the form of some standard reference language which will be interpreted on
the robot’s body. More recently, major efforts along these lines have been initiated,
the most notable being RoboEarth [46] which is described as follows:

At its core, RoboEarth is a World Wide Web for robots: a giant network and database repos-
itory where robots can share information and learn from each other about their behavior and
their environment. Bringing a new meaning to the phrase “experience is the best teacher,”
the goal of RoboEarth is to allow robotic systems to benefit from the experience of other
robots, paving the way for rapid advances in machine cognitionand behavior, and ulti-
mately, for more subtle and sophisticated human-machine interaction.
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While this is a grand enterprise that may indeed lead to sharing at the knowledge
level, and may well provide access to human knowledge, it is unclear that there is
an adequate semantic basis for robots to share such knowledge. There is evidence
that even sharing standard object representation models across robot platforms is
difficult [18]. Moreover, great reliance is placed on human programmers to provide
ontologies, as well as the frameworks for any form of sharing(e.g., sensor models,
maps, coordinate frames, etc.).

Another major issue for robot knowledge sharing is the cognitivist vs. dynam-
ical systems divide. (See Vernon et al. [44] for a survey of cognitive architectures
for robots.) Cognitivist robot architectures determine actions based on syntactic ma-
nipulation of symbol tokens derived from perception; adaptation is the acquisition
of knowledge; motivation is derived from some impasse to be resolved, and inter-
agent actions depend on the ontology. Dynamical systems architectures, on the other
hand, are some form of concurrent self-organizing network with global system states
which construct skills in response to (or to cause) perturbations; motivation consists
of expanding the interaction space, and inter-agent actions depend on the embodi-
ment of the robot. Each approach has its own pros and cons (seethe survey!), but
here the issue is that it is desirable that robots of all cognitive types be able to share
knowledge with each other and with humans. Moreover, most robots may eventu-
ally be some mix of these, with dynamical systems at the lowercontrol levels, and
symbolic representations at the higher planning levels – knowledge sharing in some
form is needed across these levels as well.

If robots are to share knowledge then, it is essential to understand how knowl-
edge is acquired and represented by robots. One approach is to simply provide some
general learning mechanisms and let the robot gather sensorimotor data to discover
the world. Alternatively, some innate knowledge may be embedded in the robot and
this provides a description of all the entities of interest to the robot as well as how
to interact with them (e.g., generate control actions) based on sensor input. Most
systems lie somewhere in between these two extremes. Another major decision is
whether or not to provide each robot with a description of itself or allow it to solve
the sensorimotor reconstruction problem to achieve this. Finally, if new knowledge
can be acquired by the robot, then the nature of this learningand its representa-
tion impacts the possibility of sharing. That is, physical symbol systems can share
automata, formulas, etc., while artificial neural networkscan share topology and
weights, and dynamical systems can share equations and other forms of information
(e.g., dominant frequencies, phase and gain values, etc. from which phase or state
space symmetries can be detected and exploited).

This then leads to some of the key questions in robot knowledge sharing: (1)
How much knowledge, including how to acquire knowledge, is innate (i.e., provided
when built), and (2) what should this innate knowledge be? Ofcourse, Plato held that
all knowledge was innate and based on transcendent forms (invariant and unitary ob-
jects which describe the invariant relations that constitute individual objects). More
recently, Chomsky [7], Pinker [36] and others have proposedthat various aspects of
human cognitive ability are innate (provided for genetically). Fortunately, we do not
need to solve the nativist vs. empiricist debate as it applies to humans. Moreover,
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almost all robot cognitive architectures include some innate knowledge: subsump-
tion architectures have innate knowledge in the form of their hardware: RoboEarth,
Armar III, Soar, etc. have innate knowledge about sensors, actuators, object models,
planning, language, etc. Our view is that it is too cumbersome for humans to provide
all the necessary knowledge for a robot to perform robustly in the world; however,
we do believe that the notion of invariance is key to providing a grounded seman-
tics for robot knowledge. Note that there have been some recent moves to include
low-level continuous representations in the more standardsymbolic cognitive archi-
tectures (see Laird [24, 50] who adds a continuous representation to Soar, and also
Choi [6] who propose ICARUS, a symbolic cognitive architecture for a humanoid
robot); however, the high-level concepts of these systems do not arise through the
sensorimotor process.

3 Symmetry in Cognition

Symmetry [49] plays a deep role in our understanding of the world in that it ad-
dresses key issues of invariance, and as noted by Viana [45]:“Symmetry provides
a set of rules with which we may describe certain regularities among experimental
objects.” Symmetry to us means an invariant, and by determining operators which

Fig. 1 Wreath Product Descriptions of an Office Scene (squares:ℜ ≀Z4, cone:ℜ\Z\⊕Z2, sphere:
O(3), cylinder:ℜ\⊕Z2⊕Z2, grid: ℜ ≀Z4 ≀Z

V ≀ZH ).

leave certain aspects of state invariant, it is possible to either identify similar objects
or to maintain specific constraints while performing other operations (e.g., move
forward while maintaining a constant distance from a wall).For an excellent in-
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troduction to symmetry in physics, see [8]. We have shown howto use symmetry
in range data analysis for grasping [10]. Popplestone and Liu showed the value of
this approach in assembly planning [27], while Selig has provided a geometric basis
for many aspects of advanced robotics using Lie algebras [38, 39]. Recently, Pop-
plestone and Grupen [37] gave a formal description of general transfer functions
(GTF’s) and their symmetries. In computer vision, Michael Leyton has described
the exploitation of symmetry [25] and the use of group theoryas a basis for cogni-
tion [26], and we expand on his approach here.

Leyton [26] argues that thewreath group productis a basic representation for
cognition as stated in theGrouping Principle: “Any perceptual organization is struc-
tured as an n-fold wreath productG1 ≀ . . . ≀Gn” and argues that “human perceptual
and motor systems are both structured as wreath products.” For a clear introduction
to wreath products see [5] or [29]; the latter defines the wreath product as:

Given a groupG and a permutation groupH ⊆ Sn (the symmetric group onn objects), the
wreath productG ≀H = {(g,h) | g ∈ G n,h ∈ H } is a group under the operation defined
by:

(g′,h′) = (a1, . . . ,an,k)(b1, . . . ,bn,m) := (a1b(m)−1(1), . . . ,anb(m)−1(n),km)

(Of course, the unrestricted wreath product may also be used.) The wreath product
essentially represents all possible group actions ofH on G . Figure 1 depicts our
goal of producing wreath product descriptions from a scene.In general, such struc-
tural descriptions can be recovered from 1-D, 2-D and 3-D data. (Note that in this
figure:ZV denotes a translation in the vertical axis,ZH denotes a translation in the
horizontal axis,Z4 is the cyclic group of 4 elements,PGL is the general linear group,
and theR/Z andZ2 products help describe how to produce truncated cylinders and
cones. The main point is that sensor signal data can be reduced to short expressions
as geometric symmetries.)

Operationally, our hypothesis is thatgroup theoretic representations (G-Reps)
inform cognitive activity;wreath productsas suggested by Leyton [25, 26] are a
key part ofG-reps. We describe here symmetry-based signal analysis and concept
formation in sensorimotor reconstruction based on 1-D signals. A schematic view
of our proposed symmetry-based affordance architecture (theSymmetry Engine) is
given in Figure 2. The successful demonstration of this approach will constitute a
major advance in the field of cognitive autonomous agents, and will also motivate
joint research programs into human cognition.

4 Sensorimotor Reconstruction

As pointed out by Weng [48], a major research question in autonomous mental de-
velopment is ”how a system develops mental capabilities through autonomous real-
time interactions with its environment by using its sensorsand effectors (controlled
by an intrinsic development program coded in the genes or designed in by hand).”
Thus, a representation is sought derived from sensorimotorsignals as well as the
grouping of such signals as processing takes place. Note that this assumes that no
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Fig. 2 The Symmetry Engine.Perceptionrequires an appropriate set of operators to constructG-
reps; this includes vector constructors, symmetry detectors, and symmetry-based data indexing
and variance operators.Control actionrequires the ability to mapG-repsonto action sequences
to achieve desired results in the world.Concept Formationoperators allow the exchange ofG-
repswith other agents. Finally, theHuman Machine Interface(HMI) will exploit human symmetry
perception, as well asG-repproperties to achieve context-aware integrative display ofinformation.

coordinate frames exist in this setting; see [41] for a discussion of coordinate frames
in biological systems. Asada et al. [3] give a good account ofthe development of
body representations in biological systems and maintain that ”motions deeply par-
ticipate in the developmental process of sensing and perception.” They review data
ranging from spinal reflexes with fixed motor patterns, to motion assembly, to mixed
motion combinations in the cerebrum. Lungarella [28] also has much to say on this
issue, and of great interest here, states that ”spontaneousactivity in newborns are not
mere random movements ... instead organized kicks, arm movements, short phase
lags between joints ... may induce correlations between sensing and motor neurons.”

Early on, Pierce [35] described an approach to learning a model of the sensor set
of an autonomous agent. Features are defined in terms of raw sensor data, and fea-
ture operators are defined which map features to features. The goal is to construct a
perceptual system for this structure. One of the fundamental feature operators is the
grouping operatorwhich assigns features to a group if they are similar. This work
was extended to spatio-visual exploration in a series of papers [30, 31, 35]. For a
detailed critique of Pierce’s work, see [11]. Olsson extended this work in a number
of papers [19, 20, 21, 22, 23, 32, 33]. He used information theoretic measures for
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sensorimotor reconstruction, and no innate knowledge of physical phenomena or
the sensors is assumed. Like Pierce, Olsson uses random movements to build the
representation and learn the effect of actions on sensors toperform visually guided
movements. The major contributions are the analysis of information theoretic mea-
sures and motion flow. O’Regan and Noë [34] use the termsensorimotor contingen-
ciesand give an algorithm which can determine the dimension of the space of the
environment by ”analyzing the laws that link motor outputs to sensor inputs”; their
mathematical formulation is elegant.

4.1 Symmetry Detection in 1-D Signals

A symmetry defines an invariant. The simplest invariant is identity. This can apply
to an individual item, i.e., a thing is itself, or to a set of similar objects. In general,
an invariant is defined by a transformation under which one object is mapped to
another. Sensorimotor reconstruction can be more effectively achieved by finding
such symmetry operators on the sensor and actuator data (seealso [4, 17]).

Invariants are very useful things to recognize, and we propose that various types
of invariant operators provide a basis for cognitive functions, and that it is also useful
to have processes that attempt to discover invariance relations among sensorimotor
data and subsequently processed versions of that data.

Assume a set of sensors,S = {Si , i = 1. . .nS } each of which produces a finite
sequence of indexed sense data values,si j wherei gives the sensor index andj gives
an ordinal temporal index, and a set of actuators,A = {Ai , i = 1. . .nA } each of
which has a finite length associated control signal,Ai j , wherei is the actuator index
and j is a temporal ordinal index of the control values.

Here we are interested in determining the similarity of sensorimotor signals.
Thus, the type of each sensor as well as the relation to motor control actions play a
role. It is quite possible that knowledge of the physical phenomenon that stimulates
a sensor may also be exploited to help determine the structure of the sensor system
and its relation to motor action and the environment [12].

We suppose that certain 1D signal class structures are important and are known
a priori to the agent (i.e., that there are processes for identifying signals of these
types). Given an isometry that maps a 1-D signal onto itself,there are 3 possibilities:

1. All points map to themselves (theidentitysymmetry).
2. Only one point maps to itself (thereflectionsymmetry). E.g., this is the case for

the histogram of a Gaussian sample.
3. No point maps to itself (atranslation symmetry). A translation can be either

continuous (a linear signal) or discrete (a periodic signal).

We have developed algorithms to detect these symmetries anduse them to classify
sensor and actuator types in the sensorimotor reconstruction problem (see [16]).
This allows sensor classification without any actuation (i.e., much lower energy ex-
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penditure), and achieves much greater classification correctness compared to previ-
ous methods.

The output of the 1-D symmetry analysis is one of:

• Z1: a non-symmetric base shapeb.
• Z2: a basic shapeb with reflexive symmetry.
• ℜ: a continuous translational signal; i.e., a line with slopem and interceptb.
• Z: a periodic signal with base shapeb and periodT.

Note that symmetry analysis may be applied to transformed signals (e.g., to the
histogram of a signal; a Gaussian sample should result in thestructural typeZ2).

Thus, a first level symmetry is one that characterizes a single signal as belonging
to one of these categories. Of course, composite signals canbe constructed from
these as well.

Next, pairwise signal symmetries can exist between signalsin the same class,
and if so, they will be grouped:

• linear (y = ax + b)

– same line:a1 = a2, b1 = b2

– parallel:a1 = a2, b1 6= b2

– intersect in point: rotation symmetry about intersectionpoint

• periodic (y(t+T) = y(t))

– same period
– same Fourier coefficients

• Gaussian (N(µ ,σ2))

– same mean
– same variance

4.2 The Sensorimotor Reconstruction Process

The sensorimotor reconstruction process consists of the following steps: (1) perform
actuation command sequences, (2) record sensor data, (3) determine sensor equiva-
lence classes, and (4) determine sensor-actuator relations. An additional criterion is
to make this process as efficient as possible.

Olsson, Pierce and others produce sensor data by applying random values to the
actuators for some preset amount of time, and record the sensor sequences, and
then look for similarities in those sequences. This has several problems: (1) there
is no guarantee that random movements will result in sensor data that characterizes
similar sensors, (2) there is no known (predictable) relation between the actuation
sequence and the sensor values, and (3) the simultaneous actuation of multiple ac-
tuators confuses the relationship between them and the sensors.
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To better understand sensorimotor affects, a systems approach is helpful. That is,
rather than giving random control sequences and trying to decipher what happens,
it is more effective to hypothesize what the actuator is (given limited choices) and
then provide control inputs for which the effects are known.Such hypotheses can
be tested as part of the developmental process. The basic types of control that can
be applied include: none, impulse, constant, step, linear,periodic, or other (e.g.,
random).

Next, consider sensors. Some may be time-dependent (e.g., energy level), while
others may depend on the environment (e.g., range sensors).Thus, it may be possible
to classify ideal (noiseless) sensors into time-dependentand time-independent by
applying no actuation and looking to see which sensor signals are not constant (this
assumes the spatial environment does not change). This alsoapplies to noisy sensors
in that it may be more useful to not actuate the system, and then classify sensors
based on their variance properties. That is, in realistic (with noise) scenarios, it may
be possible to group sensors without applying actuation at all.

Consider Pierce’s sensorimotor reconstruction process. If realistic noise models
are included, the four types of sensors in his experiments (range, broken range, bear-
ing and energy) can all be correctly grouped with no motion atall. (This assumes
some energy loss occurs to run the sensors.) All this can be determined just using
the 1-D symmetries described above and the means and variances of the sensor data
sequences. This leads to the following algorithms:

Algorithm SBSG: Symmetry-Based Sensor Grouping

1. Collect sensor data for given period
2. Classify Sensors as Basic Types
3. For all linear sensors

a. Group if similar regression error
4. For all periodic sensors

a. Group if similar Period
5. For all Gaussian sensors

a. Group if similar variance

This algorithm assumes that sensors have an associated noise. Note that this requires
no actuation and assumes the environment does not change. Finally, the similarity
test for the above algorithm depends on the agent embodiment. Note that in 4a and
5a above, a similarity measure must be established; this depends on the particular
application and needs.

Algorithm SBSR: Symmetry-Based Sensorimotor Reconstruction

1. Run single actuator and
collect sensor data for given period

2. For each set of sensors of same type
a. For each pair

i. If translation symmetry holds
Determine shift value
(in actuation units)
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This determines the relative distance (in actuation units)between sensors. E.g., for
a set of equi-spaced range sensors, this is the angular offset.

4.3 Comparison to Pierce’s Work

A set of simulation experiments are described in Chapter 4 ofPierce’s dissertation
[35]. The first involves a mobile agent with a set of range sensors, a power level sen-
sor, and four compass sensors. The sensors are grouped and then a structural layout
in 2D is determined. The second experiment concerns an arrayof photoreceptors.
Here we examine the first experiment, and in particular, the group generator.

The basic setup involves a 6×4 m2 rectangular environment with a mobile robot
defined as a point. The robot is equipped with 29 sensors all ofwhich take values in
the range from zero to one. Sensors 1 to 24 are range sensors which are arranged in
an equi-spaced circle aiming outward from the robot. Range sensor 21 is defective
and always returns the value 0.2. Sensor 25 gives the voltagelevel of the battery
while sensors 26 to 29 give current compass headings for East, North, West and
South, respectively. The value is 1 for the compass direction nearest the current
heading and zero for the other compass sensors. There are twomotors,a0 anda1,
to drive the robot, and these can produce a maximum forward speed of 0.25 m/sec,
and a maximum rotation speed of 100 degrees/sec. We assume that the values of the
motors range from−1 to 1, where−1 produces a backward motion and 1 produces a
forward motion (more specifically, assume the rotational axis of the tracks is aligned
with they-axis; then a positive rotation movesz into x and corresponds to a positive
rotation abouty in the coordinate frame).

Some details of the motion model are left unspecified; therefore we use the fol-
lowing model:

if a0>= 0 and a1>=0
then robot moves forward min(a0,a1)*0.25 m/sec

robot rotates ((a0-a1)/2)*100 degrees/sec

elseif a0<=0 and a1<=0
then robot moves backward abs(max(a0,a1))*0.25 m/sec

robot rotates ((a0-a1)/2)*100 degrees/sec

elseif a0>0 and a1<0
then robot rotates ((a0-a1)/2)*100 degrees/sec

end

Moreover, if the robot attempts to move out of the rectangular environment, no
translation occurs, but rotation does take place.

Two pairwise metrics are defined (vector and PDF distances),and based on these
the sensors are grouped pairwise. Then the transitive closure is taken on these. Pierce
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runs the simulation for 5 simulated minutes and reports results on the sample data
generated from that run. Based on the samples generated fromthis run, the group
generator produces seven groups:

Range: {1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,22,23,24}

Defective range: {21}
Battery Voltage: {25}
Compass (East): {26}
Compass (North): {27}
Compass (West): {28}
Compass (South): {29}

It is not clear why range sensors are grouped, but compass sensors are not, nor why
a run of five minutes was selected. In our attempt to replicatethis experiment, we
tried runs of various time lengths and found that the grouping correctness rose to a
maximum at about five minutes, but never got a perfect result.

4.4 Symmetry-based Grouping Operator

Any simulation experiment should carefully state the questions to be answered by
the experiment and attempt to set up a valid statistical framework. In addition, the
sensitivity of the answer to essential parameters needs to be examined. Pierce does
not explicitly formulate a question, nor name a value to be estimated, but it seems
clear that some measure of the correctness of the sensor grouping would be appro-
priate. From the description in the dissertation, Pierce ran the experiment once for 5
minutes of simulated time, and obtained a perfect grouping solution.

From this we infer that the question to be answered is:

Grouping Correctness: What is the correctness performance of the proposed grouping
generator?

This requires a definition of correctness for performance and we propose the fol-
lowing:

Correctness Measure: Given (1) a set of sensors,{Si , i = 1 : n} (2) a correct group-
ing matrix,G, whereG is ann by n binary valued matrix withG(i, j) = 1 if sensors
Si andSj are in the same group andG(i, j) = 0 otherwise, and (3)H ann by n binary
matrix which is the result of the grouping generator, then the grouping correctness
measure is:

µG(G,H) =
n

∑
i=1

n

∑
j=1

[(δi, j)/n2]

δi, j = 1if G(i,j)==H(i,j); 0 otherwise

Note that we defineG here for the purpose of evaluation of the method, but a
robot agent will need to validate any groupings that it discovers. This involves some
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form of learning process, and we do not deal with that here. However, we believe
that this can be based on how well affordances work which depend on the grouping.

4.4.1 Sensor Grouping with Noise (No actuation)

Assume that the sensors each have a statistical noise model.The real-valued range
sensors have Gaussian noise sampled from aN (0,1) distribution (i.e.,vsample=
vtrue+ω. The binary-valued bearing sensors have salt and pepper noise where the
correct value is flippedp% of the time. Finally, the energy sensor has Gaussian noise
also sampled fromN (0,1). (The broken range sensor returns a constant value.)

Based on this, the grouping correctness results using SBSG are given in Figure 3.
Sensor data sampling time was varied from 1 to 20 seconds for binary noise of 5%,
10% and 25%, and Gaussian variance values of 0.1, 1, and 10. Ten trials were run
for each case and the means are shown in the figure. As can be seen, perfect sensor
grouping is achieved after 20 seconds without any actuationcost. Previous methods
required driving both wheels for a longer time and they cost about 30ka/s more in
energy than our method (ka/s is the actuation to sensing cost ratio).

Fig. 3 Grouping Correctness vs. Number of Samples for SBSG; left to right are for binary salt and
pepper noise of 5%, 10%, and 25%; curves for 0.1, 1.0, and 10.0 variance are given in each plot.

4.4.2 Sensor Grouping (Actuated)

Given a set of sensors that characterize the group operationnature of an actuator (in
this case rotation), the sensors can be grouped based on the fact that similar sen-
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sors produce data that has a translation symmetry along the temporal axis. Figure 4
shows representative data for the simulated range and compass sensors. The simple
determination of a translation symmetry between signals allows both grouping (i.e.,
the signals match well at some time offset), and the angular difference between the
sensors (given by theto f f set at which the symmetry occurs);to f f set is proportional
to the angle between the the sensors in terms of actuation units. Figure 5 shows
the perfect grouping result with noise of 1% in the compass sensor data and 0.1
variance in the range sensor data (the figure shows a 29x29 similarity matrix where
white indicates sensors are in same group, and black indicates that are not).
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Fig. 4 Sensor data showing translation symmetry: Row 1 shows sensors 1, 2, and13; Row 2 shows
compass sensors 27,28, and 29.

4.4.3 Unactuated Physical Experiment

We have performed experiments with physical sensors to validate the proposed ap-
proach. Data was taken for both the static case (no actuation) and the actuated case
(camera rotation). Two sensors were used in this experiment: a camera and a micro-
phone. The camera was set up in an office and a sequence of 200 images was taken
at a 10Hz rate. Figure 6 shows one of these images. The 25x25 center set of pixels
from the image comprise a set of 625 pixel signals each of length 200. An example
trace and its histogram are given in Figure 7. As can be seen, this is qualitatively a
Gaussian sample. Figure 8 shows a 200 sequence signal of microphone data, and its
histogram which also looks Gaussian.
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S29

 .
 .
 .

S2

S1

S1 S2 ... S29

Fig. 5 Grouping Matrix: 29×29 binary matrix; sensors 1-24 are range sensors (sensor 21 returns
constant value); 25 is energy; 26-29 are compass sensors.

The application of our symmetry detectors classified all pixel and microphone
signals as Gaussian signals, and grouped the pixel signals separately from the mi-
crophone due to the difference in their variance properties.

4.4.4 Actuated Physical Experiment

Of course, actuation can help understand the structure of the sensorimotor system.
For example, consider what can be determined by simply rotating a two-wheeled
robot that has a set of 22 range sensors arranged equi-spacedon a circle. Assume
that the control signal results in a slow rotation parallel to the plane of robot motion
(i.e., each range sensor moves through a small angle to produce its next sample) and
rotates more than 2π radians. Then each range sensor produces a data sequence that
is a shifted version of each of the others – i.e., there is a translation symmetry (of
periodic signals) between each pair. The general problem isthen:

General Symmetry Transform Discovery Problem: Given two sensors,S1 andS2, with
data sequencesT1 andT2, find a symmetry operatorσ such thatT2 = σ(T1).

We also took a set of images by rotating the camera by five degree increments
for 720 degrees (see Figure 9 for the first eight of the 128 images in the rotated
sequence). Domain translation symmetry allows the identification of all the pixel
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Fig. 6 The 25x25 Center Pixels from One of the 200 Static Images.

signals along a row as similar to each other (i.e., they are all in the plane of the
rotation). Due to the translation amount, the offset between the signals is also dis-
covered. Moreover, due to the fact that individual signals are classified as periodic
(with period 64), it is determined that the actuator is performing a rotation about the
axis orthogonal to the camera’s optical axis (Figure 10 shows the overlay of the two
periodic 64-element pieces of the 1-D signal for the center pixel of the sequence of
128 images).

The groupings found here are mainly useful to allow the discovery of, e.g., the
pixels in a specific camera, or the rangels in a range finder, etc., and nothing guar-
antees that distinct range finders will be grouped. For example, if their noise char-
acteristics are dissimilar (based on the selected similarity measure), then they will
not be grouped. On the other hand, groupings should be prettyconsistent even with
changes in environmental conditions since the groupings are mainly based on struc-
ture and noise properties. Finally, we have not yet considered combined translation
and rotation, but run actuators independently. This is an interesting topic for future
research.
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Fig. 7 Trace and Histogram of the 200 Pixel Values of the Center Pixelof the Images.
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Fig. 8 Trace and Histogram of the 200 Amplitude Values of the Microphone Data.

5 Conclusions and Future Work

We propose symmetry theory as a basis for sensorimotor reconstruction in embodied
cognitive agents and have shown that this allows the identification of structure with
simple and elegant algorithms which are very efficient. The exploitation of noise
structure in the sensors allows unactuated grouping of the sensors, and a simple
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Fig. 9 The First Eight Images in the 128 Image Sequence over 720 Degree Rotation
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Fig. 10 Overlay of the Two Recovered Periodic Parts of the Two Revolutions of Image Data.

one actuator rotation permits the recovery of the spatial arrangement of the sensors.
This method was shown to hold for physical sensors as well. This form of structural
bootstrapping involves both the identification of instances of structural prototypes
(i.e., specific 1-D symmetries), as well as the subsequent classification of a broader
type of entity (e.g., range sensors).

Several directions remain to be explored:

1. Consider rotational actuators; these can be seen to definea group in the follow-
ing way: any specific rotation is an element of the group set, and application of
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rotation is the operator. Group properties can be seen to hold in that (i) the se-
quential application of two rotations is a rotation, (ii) the opposite rotation is the
inverse element, (iii) the application of no actuation is the identity element, and
(iv) associativity holds. [Note that rotation in just one sense forms a group, and
various combinations of actuators may form larger groups - e.g., two wheels.]
→ The analysis of actuators as specific group operators requires study.

2. Higher-dimensional symmetries offer many opportunities for research. For ex-
ample, the transformation from spatial image layout to log-polar form allows 1D
symmetries to be sought which characterize object scaling and rotation.
→ The analysis of higher-dimensional symmetries requires study.

3. Higher-level sensorimotor symmetries will allow the conceptualization of phys-
ical objects in terms of sensorimotor sequences characterized by some invariant
(e.g., stand-off distance in circumlocuting the object).
→ The analysis of symmetries in sensorimotor interactions with the environment
requires study.

4. Finally, we are instrumenting a set of mobile robots with range and other sensors
and a series of experiments will be conducted to study these broader issues.
→ Experimental studies in broader environmental interaction are required.
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34. J.K. O’Regan and A. Nöe. A Sensorimotor Account of Vision and Visual Consciousness.
Behavioral and Brain Sciences, 24:939–1031, 2001.

35. D.M. Pierce.Map Learning with Uninterpreted Sensors and Effectors. PhD thesis, The Uni-
versity of Texas at Austin, Austin, TX, May 1995.

36. S. Pinker.The Language Instinct. Harper Collins, NY, NY, 1994.
37. R. Popplestone and R. Grupen. Symmetries in World Geometry and Adaptive Behaviour.

In Proceedings of the Workshop on Algebraic Frames for the Perception Action Cycle, pages
269–283, Kiel, Germany, 2000.

38. J.M. Selig. Lie Groups and Lie Algebras in Robotics. In J. Byrnes, editor,Proceedings of
the NATO Advanced Study Institute on Computational Noncommutative Algebra and Applica-
tions, Il Ciocco, Italy, 2004. Kluwer.

39. J.M. Selig.Geometric Fundamentals of Robotics. Springer, Berlin, 2005.
40. Jivko Sinapov and Alexander Stoytchev. Toward AutonomousLearning of an Ontology of

Tool Affordances by a Robot. InProceedings of the 23rd National Conference on Artificial
intelligence - Volume 3, pages 1828–1829. AAAI Press, 2008.

41. J.F. Soechting and M. Flanders. Moving in Three-DimensionalSpace: Frames of Reference,
Vectors, and Coordinate Systems.Annual Reviews on Neuroscience, 15:167–191, 1992.

42. I.H. Suh, G.H. Lim, W. Hwang, H. Suh, J.-H. Choi, and Y.-T. Park. Ontology-based Multi-
layered Robot Knowledge Framework (OMRKF) for Robot Intelligence. InIEEE Interna-
tional Conference on Intelligent Robots and Systems, San Diego, CA, 2007. IEEE.

43. M. Tenorth and M. Beetz. KNOWROB – Knowledge Processing forAutonomous Personal
Robots. InIEEE International Conference on Intelligent Robots and Systems, St. Louis, MO,
2009. IEEE.

44. D. Vernon, G. Metta, and G. Sandini. A Survey of ArtificialCognitive Systems: Implications
for the Autonomous Development of Mental Capabilities in Computational Agents. IEEE
Transactions on Evolutionary Computing, Special Issue on Autonomous Mental Development,
11(2):151–180, 2008.

45. M.A.G. Viana.Symmetry Studies. Cambridge University Press, Cambridge, UK, 2008.
46. M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez, K. Haussermann,

R. Jannsen, J.M.M. Montiel, A. Perzylo, B. Schiessle, M. Tenorth,O. Zweigle, and R. Molen-
graft. RoboEarth – A World Wide Web for Robots.Robotics and Automation Magazine,
18(2):69–82, June 2011.

47. E. Wang, Y.S. Kim, H.S. Kim, J. H. Son, S. Lee, and I.H. Suh. Ontology Modeling and
Storage System for Robot Context Understanding. In R. Khosla, editor, Proceedings of the
3rd Conference on Knowledge-Based Intelligent Information and Engineering Systems, pages
922–929, Berlin, 2005. Springer.

48. J. Weng and I. Stockman. Autonomous Mental Development: Workshop on Development and
Learning.AI Magazine, 23(2), 2002.

49. H. Weyl.Symmetry. Princeton University Press, Princeton, NJ, 1952.
50. J. Xu. New SVS Implementation. InSoar Workshop, 2011.


