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Abstract—This paper extends the novel research for event
localization and target-directed navigation using a deployed
wireless sensor network (WSN) [4]. The goal is to have an
autonomous mobile robot (AMR) navigate to a target-location
by: (i) producing an artificial magnitude distribution within the
WSN-covered region, and (ii) having the AMR use the pseudo-
gradient from the interpolated distribution in its neighborhood,
as it moves towards the target location. Implicit surfaces are used
to interpolate the artificial distribution. This scheme only uses
the topology of the WSN and received signal strength (RSS) to
estimate an efficient navigation path for the AMR. Here, the
AMR does not require global coordinates for the region, as
it relies on local, neighborhood information alone to navigate.
The performance of the scheme is analyzed with hardware
experiments and in simulation, using a variety of node-densities
and with increasing levels of noise to ensure robustness.

Index Terms—Target-directed navigation, pseudo-gradient,
spline-interpolated distribution, received signal strength

I. INTRODUCTION

Autonomous mobile robots (AMRs) operating in unknown
and unstructured environments are confronted with fundamen-
tal challenges: (i) the localization of targets within a region;
and (ii) navigating towards identified target locations in an
efficient manner. The target locations can be emergent events,
such as fires, chemical leaks, accidents, natural disasters,
search-and-rescue, etc., or they can be pre-planned, such as
area exploration, agricultural operations, robotic area cleaning,
etc. In previous work [4], a novel scheme was presented for
target-directed navigation within a distributed WSN. In brief,
that research:

1) Considered that AMRs were placed into an apriori
unknown environment. The region is assumed to be
covered by a WSN to sense for a target. The node closest
to the target marks itself as a target-node and initiates
a packet exchange via a flooding mechanism.

2) Assigned a magnitude (termed pseu_g) to each sen-
sor node. That magnitude is a function of the node’s
communication distance from the target-node. So, the
target-node has the highest magnitude assigned to it.
Utilizing network topology and RSS at each sensor node,
the pseudo-gradient (P-G) algorithm [4] produces an
artificial magnitude distribution in the WSN.

3) Had the AMRs follow the direction of the increasing
magnitude to reach the target from any location within

this region. The P-G Navigation algorithm [4] deter-
mines the direction of AMR navigation.

The technique does not utilize global position information.
This allows the P-G algorithm to be used without sophisticated
hardware like global positioning systems (GPS). It also means
that the algorithm can be used inside buildings, forested areas
or inaccessible areas.

In [4], AMRs plan their motion to the target-node by
traveling node-to-node in straight line paths, using RSS only.
Since the motion space is discretized by how the WSN nodes
are distributed, the advantage of the method is that the AMR
only concerns itself with the node locations as way-points.
Having no knowledge of the global optimum path, it ignores
any area between these way-points. This also serves as a
disadvantage for the method, as this non-represented area
between neighboring sensor nodes may further optimize the
trajectory of the AMR.

This paper utilizes a radial basis function based implicit
surface interpolation scheme that improves on the AMR navi-
gation scheme described in [4]. Without the global knowledge
of the goal location, the AMR is constrained to move in its lo-
cal neighborhood. The interpolation scheme approximates the
artificial magnitude over this neighborhood, by constructing a
surface fit using the pseu_g values at neighboring nodes. This
allows the AMR to compute a local way-point that utilizes
the non-represented space, thereby minimizing the overall
trajectory. Figure (1) illustrates the concept showing compar-
ative paths for the both the interpolated and non-interpolated
schemes. As the AMR moves through the numbered locations
(instead of nodes) by interpolating the non-represented space,
it is able to follow a different trajectory to the target-node. The
mechanism to reduce the length of this trajectory is discussed
in this paper.

The remainder of the paper is organized as follows: Section
II discusses related work in this area. Section III discusses
the assumptions and system model for the proposed scheme.
Section IV introduces the pseudo-gradient interpolation mech-
anism and discusses the algorithm employed. Section V dis-
cusses the implementation of the scheme with experimental
results, along with a comparative analysis. Section VI con-
cludes the paper with a description of future work.



II. RELATED WORK

The research in this paper was inspired by the research
into WSN-assisted AMR navigation in [3], [4], [6], [8] and
[11]. It falls in the position-unaware category; the algorithms
are independent of node locations utilizing present network
topology, and basing their control strategies on the immediate
neighborhood of the nodes only.
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Figure 1. AMR Trajectory with and without neighborhood interpolation

Li et al. [8] show the ability of WSNs in acting as guides to
navigate AMRs using novel networking protocols and AMR
navigation algorithms. The authors developed an artificial
potential field based method to navigate AMRs to a goal
location by keeping as far away from “dangerous” (obstacle)
sites as possible. The scheme utilizes GPS coordinates for the
sensor node locations used to assign the artificial potentials.
The related research in [1], [6] and [11] utilizes some form
of node-to-node navigation, either based on RSS or simple
and probabilistic communication hop-count paths. Chen and
Henderson [3] can be seen as early proponents of the smart
sensor network philosophy using distributed computation and
WSN-AMR coordination. Global position awareness is not
required as the AMRs utilize the WSN “information field”
and the inherent gradient in the source-phenomenon to guide
themselves. Although Kotay et al. [7] utilized known global
position information, they present algorithms which aggregate

global maps of the navigation space, implying that the AMRs
do not need to travel node-to-node. Similarly, Severino and
Alves [13] demonstrate a centralized scheme where a con-
troller estimates the location of a target using the distance
information conveyed to it by the distributed sensor nodes.

Implicit surface reconstruction has been widely used in
the field of computer vision [15]. Chaimowicz et al. [2] use
implicit surfaces in the field of pattern formation and control
of AMR swarms. Implicit surface interpolation in sensor
networks for autonomous navigation is a novel approach
introduced in this research.

III. SYSTEM MODEL

Two critical requirements with respect to WSN-assisted
AMR navigation act as performance bounds for the system:

1) There needs to exist a geographic path from a particular
starting point for the AMR to traverse and reach the
target. The physical region, or without obstacles needs
to be such that the target is not completely occluded
from the AMR in terms of path traversal.

2) If a geographic path exists, then the WSN deployment
shall be such that there exist nodes physically located
on or close to that path. The proximity of the nodes to
this path, a necessary condition for the algorithm to be
useful, depends on how narrow or broad the allowable
trajectory for the AMR is.

For the experiments in this paper, the Log-normal shadowing
model [5] is used to model the relationship between Euclidean
distance and RSS accounting for factors such as obstacles, en-
vironmental conditions, signal interference, etc. Several studies
have extensively characterized the RSS-distance relationship
[9], [16]. This paper includes experiments with noise added
to the RSS estimates as well as a practical evaluation of the
RSS-distance relationship.

IV. IMPLICIT SURFACE BASED INTERPOLATION

MECHANISM

As stated in [15], implicit surfaces can basically be created
by summing a set of radial basis functions (RBFs). This
involves the solution of a linear system, which assigns weights
to the individual basis functions. In relation to this research,
the constraints which are interpolated by the surface are the
approximate locations of the sensor nodes in the neighborhood
of the AMR based on the RSS values.

The interpolation problem can be stated as:
Given a set of N different points {−→xi ∈ R

m | i =
1, 2, ..., N} and a corresponding set of N real numbers
{di ∈ R

1 | i = 1, 2, ..., N}, find a function F : Rm → R
1

that satisfies the interpolation condition:

F (−→xi ) = di, i = 1, 2, ..., N (1)

Equation (1) involves choosing a function F given by [15]:

F (−→x ) =

N∑
i=1

wi ϕ(‖−→x −−→xi ‖) (2)



where −→xi are known data points (i.e., estimated locations of
the neighboring sensor nodes), and w i ∈ R

1 are the weights
assigned to individual RBFs. Combining the equations gives
a linear system:

Φ−→w =
−→
d (3)

Φ is called the interpolation matrix, −→w is called the linear
weight vector and

−→
d is called the desired response vector.

With respect to this research,
−→
d is the vector of magnitudes

pseu_g, at each of the neighboring sensor nodes. Equation (3)
is a linear system of equations in the unknown −→w . In order
to determine −→w , the method of conjugate gradients (C-G) is
adopted. [14] presents a straightforward, iterative algorithm
for solving linear systems using the method of conjugate-
gradients.

A. Iterative Implicit Surface Interpolation

It is treated as a two-phase supervised learning problem:

• The training phase involves the solution of the linear
system to obtain −→w .

• The generalization phase interpolates between the known
data points, along the fitted surface using −→w .

The training phase consists of estimating the linear weight
vector −→w from: (i) a known

−→
d and (ii) an interpolation matrix

Φ, constructed using known data-points −→xi . This is described
in the next section.

1) At each location, using its directional antennas and the
RSS values, the AMR estimates the angle and distance
of the N nodes in its neighborhood1.

2) The AMR then assigns a local coordinate frame to its
neighborhood. The AMR’s location becomes the origin
(0,0), and based on the distance and angle information,
appropriate (x, y) coordinates are assigned to the neigh-
boring sensor nodes. Each value di in

−→
d , is the pseudo-

gradient magnitude pseu_g for each neighboring node i
of N.

3) Choice of RBF: Φ is constructed using ϕ(�) (Table (I)).
The symmetry of Φ results in only N(N−1)/2 entries to
be calculated, instead of N 2.

Table I
RADIAL BASIS FUNCTION EXAMPLES

Function Name ϕ(r)... r ∈ R

Gaussian exp(− r2

2σ2 ) ... σ > 0

Inverse Multiquadric 1

(r2+σ2)1/2
... σ > 0

Thin Plate Spline (TPS) r2 · log r

The generalization phase uses −→w from the training phase
to determine the desired response vector.

1The neighborhood is based on the wireless communication range of the
AMR.

1) The neighborhood of the AMR is represented as a√
n x

√
n grid of n points.

2) Using the weights wi, the dj values are
calculated for each −→xj using equation (3),
{∀ i neighbors; j = 1 → n}.

This newly formed
−→
d has a pseu_g-value assigned to each

of the n points in the AMR’s neighborhood. The AMR then
determines the point which has the highest pseu_g-value and
moves to it. Figure (1)(b) is an example of the interpolated
surface using Thin Plate Spline (TPS) RBF. At each of the
intermediate locations (numbered 1 through 5 in Figure (1)(a)),
the AMR executes the training and generalization phases in
order to determine the next way-point in the trajectory.

B. Analysis of Iterative Implicit Surface Interpolation

For analysis, the training phase was run on a set of data-
points generated uniform randomly over a region, one having
an area equal to that covered by the communication range of
an off-the-shelf available wireless sensor. Each data-point was
assigned a pseu_g-value, uniform randomly generated over the
interval [0, 1], forming

−→
d . From [14], the important settings

for the training are the values of:

1) Epsilon ε for the precision of the surface fit. ε = 1 ×
10−10.

2) Number of iterations imax, for how long the algorithm
runs before the training fails. imax = 5000.

The training was run for an increasing number of data-points
in the region, with 30 different random generations for each
training set. Figure (2) shows the variation in the performance
of the training phase. As the number of data-points in the
neighborhood increases, the number of iterations required for−→w to be trained to ε-precision, also increases.
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Figure 2. Performance of the Conjugate Gradients Algorithm Training

Figure (3)(a) shows the variation of the δ-value with in-
creasing number of data-points. The error follows an expected
trend. Although it increases rapidly initially, and then at a
slower rate, it also takes more iterations to train. Figure (3)(b)
shows that the number of training attempts that fail to achieve
the set precision within the imax iterations, also increases with
increasing number of data-points. It is observed from both
Figures (2) and (3) that, an increase in the number of training



points deteriorates the performance. This is attributed to the
fact that the generated implicit surface, being constrained
to pass through each of the training data points, becomes
suboptimal as it attempts to fit an increasing number of them,
thereby degrading the output of the training phase.
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Figure 3. Performance analysis of the training phase

V. EXPERIMENTS

To analyze the effectiveness of the algorithm, two key
parameters are: (i) travel-distance for the AMR to reach a
target, and (ii) the number of nodes required in the AMR
trajectory from the start location to the target. The travel-
distance parameter is measured as the ratio of the actual
distance traveled by the AMR to the Euclidean distance
between the start location and the target.

A. Navigation Effectiveness

Figure (4) shows the performance of the three different
RBFs with respect to the two parameters2. The simulations
were conducted with 30 different random generations of
node locations. As seen, the performance of the introduced
mechanism compares favorably with existing mechanisms in
[6] (FNF Scheme), [8] (LiRosaRus Scheme), and [11] (Reich
Scheme). Although, the Inverse Multiquadric RBF and the
Gaussian RBF perform worse than the original P-G algorithm,
subsequent testing showed their trajectories to be sensitive to
the ‘σ’ parameter (Table (I)) Higher values of ‘σ’ produces
trajectories similar to the ones without interpolation (Figure
(5)). The Thin Plate Spline RBF though, offers a significant
improvement over all the other techniques.

A few important points are noted from Figure (4). The den-
sity of the WSN impacts the performance of the interpolation
scheme. The data generally follows an inverted bell curve for
the RBFs.

1) With a low number of nodes in the region, there is a
very low number of neighborhood training points for
the training phase, which in turn generates a suboptimal
interpolated surface fit for the neighborhood.

2) As the number of nodes in the region increases, the
number of training points in the neighborhood also
increases, improving the interpolated gradient surface,
thereby reducing the navigation distance.

2For the interpolated navigation, the ‘Number of Nodes’ translates to
number of way-points in trajectory.

100 150 200 250 300 350 400 450 500
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of Nodes in Region

A
ve

ra
ge

 T
ra

ve
l−

D
is

ta
nc

e 
R

at
io

s

 

 
P−G Algorithm without Interpolation
Thin Plate Spline RBF
Gaussian RBF (σ = 100)

Inverse Multiquadric RBF (σ = 100)
FNF Scheme
Reich Scheme
LiRosaRus Scheme

(a) Travel-Distance Ratios

100 150 200 250 300 350 400 450 500

8

10

12

14

16

18

20

Number of Nodes in Region

A
ve

ra
ge

 N
um

be
r 

of
 L

oc
at

io
ns

 in
 T

ra
je

ct
or

y

 

 
P−G Algorithm without Interpolation
Thin Plate Spline RBF
Gaussian RBF (σ = 100)

Inverse Multiquadric RBF (σ = 100)
FNF Scheme
Reich Scheme
LiRosaRus Scheme

(b) Number of Nodes in Trajectory

Figure 4. Performance Analysis

3) Beyond 300 nodes, the improvement in performance
reduces dramatically. This result is consistent with that
observed in Figures (2) and (3). Here, with increasing
number of WSN nodes, the deployed region is also better
represented by the node locations. This reduces the
advantage offered by interpolation, generating similar
way-points as with no interpolation.
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Figure 5. Trajectory Analysis for Interpolation schemes with σ = 1000

B. Performance with Noise Added

Although ideal in simulation, the estimation of neighbor-
node angles and distance is prone to noise in the real world.
The performance of the TPS RBF is compared to the original
P-G Algorithm, in the presence of noise in RSS as well as an-
gle estimations. Noise is introduced as a normally distributed
function with standard deviation σ. The σ for angle is 0 o−10o

in steps of 2o. The σ for RSS is 0-10% in steps of 2%.
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Figure 6. Performance Analysis of TPS RBF with Noise added

Figure (6) shows the performance over 30 random genera-
tions for node locations. It is observed from the data that the
TPS RBF still performs better than the original P-G algorithm
without interpolation. It is expected that as the noise levels
increase, the performance gets worse. The angle noise does
not affect the P-G algorithm since it does not use bearing
information for navigation. This is evident from both the plots
in the figure. There is an inconsistency observed for the 10%
RSS Noise data in TPS RBF. This is attributed to the failed
training and navigation attempts which are not accounted for
in calculating the trajectory parameters. The data for the failed
attempts is not included in this paper.

C. Hardware Experiments

The particular directional antenna used for experimentation
in this research is shown in Figure (7)(a) [10]. Based on its
radiation pattern, a 120o offset positioning of three directional
antennas maximizes the coverage around the AMR, as shown
in Figure (7)(b).

(a) Directional Antenna (b) AMR with directional antennas

Figure 7. AMR Hardware

The variation in RSS at the directional antennas was tested
using a stationary wireless transmitter node at 3 distances -
5 feet, 10 feet, and 15 feet. For each distance, the AMR was

rotated counter-clockwise3, in place, in steps of 30o, for the
full 360o. Figure (8)(a) shows a sample of the tests - the
RSS values at the three antennas for a distance of 15 feet.
It was observed that the readings followed the expected trend
for counter-clockwise rotation. Additionally, as the distance
increased, the absolute RSS values reduced.

A weighted triangulation mechanism is used to estimate the
bearing of the incoming wireless signal. Based on the RSS val-
ues at each directional antenna, two antennas with the higher
values are chosen. Algorithm (1) shows the bearing estimation
example for the ‘Front’ and ‘Left’ antennas being the antennas
with the higher RSS values. The algorithm biases the bearing
towards one antenna more than the other, based on the actual
RSS values at the antennas. The turnThreshold parameter, used
to determine this biasing, is based on the maximum possible
difference in the RSS values at the directional antennas. It
is based on the antenna gains - a value of -12 dB is used
here. This value can also be determined through hardware
testing. Figure (8)(b) depicts the bearing estimation using the
algorithm averaged over 3 experiments.

Algorithm 1 RSS Angle Estimation (in degrees)

1: biasR = 0.5 +
(
0.5 ·

[
RSSLeft−RSSFront

turnThreshold

])

2: biasL = 1 - biasR
3: biasFactor =

[
(biasR·RSSLeft−biasL·RSSFront)
(biasR·RSSLeft+biasL·RSSFront)

]

4: Bearing = biasFactor·60 + 60

To investigate the performance of the scheme in hardware,
preliminary experiments consisted of three tests - one indoors
and two outdoors. Eight wireless nodes were placed equidis-
tant from the AMR in a circle - separated by 45o. These nodes
act as neighbors for the AMR in its current location. Each
sensor node was assigned a pseu_g-value, uniform randomly
generated over the interval [0, 1], forming

−→
d . This

−→
d was

kept common across the three experiments. The AMR was
then commanded to estimate the range and bearing to each
of the nodes and use the interpolation scheme to calculate
the next way-point for this neighborhood. In each test, RSS
values from all the neighbors, averaged over 3 seconds, were
noted at the AMR, for one omnidirectional antenna and the
three directional antennas. To evaluate the performance of
the interpolation scheme, TPS RBF was used. The AMR-to-
node physical distance was: 6 ft. (Indoor); 7.5 ft. (Outdoor-1);
and 15 ft. (Outdoor-2). Table (II) shows a comparison of the
way-point (range and bearing from the current AMR position)
generated. For each test, the way-point was generated using
three possible methods: M1 - simulation, using ideal physical
distances and angles; M2 - using RSS-distance conversion with
Log-normal shadowing, but using ideal angle information;
and M3 - using RSS-distance conversion with Log-normal
shadowing, and using the angle information from Algorithm
(1).

30o is with the AMR’s front antenna pointing in the direction of the
stationary transmitter.
The TMote Sky nodes were used in the experiments [12].
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Figure 8. Directional Antenna Experiments

Table II
DATA FROM HARDWARE EXPERIMENTS

Way-point (range [ft.], bearing [degrees])

Method Indoor Outdoor-1 Outdoor-2

M1 8.44, 108.44 7.50, 90.00 15.03, 93.81

M2 9.71, 101.56 10.05, 98.12 15.89, 90.44

M3 11.71, 115.99 11.91, 79.27 16.55, 74.03

Considering the way-point from (M1) as the basis for
comparison, as expected, method (M3) shows the worst perfor-
mance. The RSS-based distance estimates combined with the
angle estimation using the directional antennas, suffer from
environmental variations impacting the accuracy. A particle
filter based approach is proposed in the future extension of
this research, similar to [9]. In this, the AMR probabilistically
estimates a way-point from multiple possible way-points, and
improves the estimate by updating the range and bearing
information in real-time as it moves in its neighborhood.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an improvement over the scheme presented
in [4] is demonstrated, using interpolated implicit surfaces in
the AMR neighborhood. Simulation experiments show that
the scheme significantly reduces the navigation distance to
the target. The performance of the scheme is analyzed in
terms of the computational requirements as well as under

noisy conditions. Preliminary hardware experiments bear out
the result.

The advantage of the interpolation scheme is more signif-
icant in the obstacle avoidance scenario. Attenuation of the
RSS is a strong indication of the presence of an obstacle
in the communication path, which alters the pseu_g-values.
The AMR can navigate around the obstacle by generating
intermediate way-points in the neighborhood using an altered
implicit surface. This phenomenon shall be examined further.
Some of the other key aspects of the algorithm that will be
analyzed in future research are: (i) further tests with WSN
and AMR, and (i) robustness to link and node failures. The
research shall include analysis for multiple target presence and
coordinated AMR navigation as well.
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