Symmetry: A Basis for
Sensorimotor Reconstruction

Thomas C. Henderson Hongchang Peng,
Christopher Sikorski
University of Utah
Nikhil Deshpande, Eddie Grant
North Carolina State University

UUCS-11-001

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

15 May 2011

Abstract

Given a set of unknown sensors and actuators, sensorimetonstruction is achieved

by exploiting relations between the sensor data and thatmrtaontrol data to determine

sets of similar sensors, sets of similar actuators, negessations between them, as well
as sensorimotor relations to the environment. Severabasithave addressed this prob-
lem, and we propose here a principled approach that explaitsus symmetries and that
achieves more efficient and robust results. A theoreticsition is defined, the approach
shown more efficient than previous work, and experimengallts given.

1 Introduction

We propose to explore the thesis that symmetry theory pesvikgy organizing principles
for cognitive architectures. As described by Vernon et28][cognition "can be viewed as
a process by which the system achieves robust, adaptiveipatbry, autonomous behav-
ior, entailing embodied perception and action.” Their syreonsiders two basic alternative
approaches to cognitiorcognitivist(physical symbol systems) amsinergen{dynamical
systems), where the cognitivist paradigm is more closegnatl with disembodied sym-
bol manipulation and knowledge representation based oioa prodels, and the emergent
paradigm purports dynamic skill construction in respomspdrturbations to the embod-
iment. An important aspect of this discussion which consars here is that raised by
Krichmar and Edelman [8]: "the system should be able to éfferceptual categoriza-
tion: i.e. to organize unlabeled sensory signals of all rhtds into categories without a
priori knowledge or external instruction.” We address issue and propose that certain
fundamental a priori knowledge about symmetries is vitdhts function.

Vernon later took up Maturana and Varelaisactionconceptual framework for cognitive
systems [28]. The goal there is to understand how to destirbeole of development in
making an agent act effectively and gain new skills. The fiasi® elements of enaction
are: (1) autonomy, (2) embodiment, (3) emergence, (4) expeg and (5) sense making.
The last one is considered the most important: "emergenvlauge is generated by the
system itself and it captures some regularity or lawfulmesise interactions of the system,
i.e. its experience. However, the sense it makes is dependethe way in which it can
interact: its own actions and its perceptions of the envirents actions on it.”

This is the key issue addressed in this paper: it seems sam@wehtradictory to say that
"regularity or lawfulness” are captured "without a priomdéwledge.” How can a law or
regularity be recognized without knowing the law or rule?r ©laim is that symmetries
help characterize these regularities.

Our goal is to advance the state of the art in embodied cegrstistems. The requirement
for cognitive ability is ubiquitous, and its achievemenarsessential step for autonomous
mental development. At its root, a cognitive architectwe istructural commitment to
processes and representations that permit adaptive tonénooperating environment that
cannot be modeled completely a priori. A cognitive ageninoiges its behavior to achieve
an objective efficiently by finding models that resolve hiddgate information and that
help it to predict the future under a variety of real-worltlations. These processes in-
volve monitoring, exploration, logic, and communicatiorthwother agents. It is necessary
to create new theories and realizations for cognitive degdion in complex, real-time

2

systems that consist of interacting domain specific ageatd) with rich internal state and
complex actions in order to facilitate the construction fié&ively organized cognitive
infrastructure. The proposed technical basis for this isragtry operators used in percep-
tion, representation and actuation.

Cognitive systems perceive, deliberate and act in unstredenvironments, and the devel-
opment of effective mental abilities is a longstanding gdahe Al and intelligent systems
communities. The major approaches are tbgnitivist (physical symbol systems) and
emergen{dynamical systems) paradigms. For a detailed review ofdlevant character-
istics of cognitive systems and how these two approachés,dgte [29]. Basically, cogni-
tivists maintain that patterns of symbol tokens are maaited syntactically, and through
percept-symbol associations perception is achieved asaabsymbol representations and
actions are causal consequences of symbol manipulationortrast, emergent systems
are concurrent, self-organizing networks with a globatesysstate representation which is
semantically grounded through skill construction wheneeption is a response to system
perturbation and action is a perturbation of the environninthe system. The emer-
gent approach searches the space of closed-loop corgrtléuild higher-level behavior
sequences out of lower ones so as to allow a broader set aflaffces in terms of the
sensorimotor data stream. We propose to combine theseaab@®in order to exploit ab-
straction and specific signal processing domain theoriesd¢ocome that complexity. Our
specific hypothesis is:

The Domain Theory Hypothesis Semantic cognitive content may be effectively discov-
ered by restricting controller solutions to be models ofcdpesymmetry theories intrinsic
to the cognitive architecture.

TheDomain Theoryredicates: (1) a representation of an innate theory aedante rules
for the theory, (2) a perceptual mechanism to determinee&isiof a set and operators on
the set, (3) a mechanism to determine that the set and itatopgare a model of the innate
theory, and (4) mechanisms to allow the exploitation of thelet in learning and model
construction.

As pointed out by Weng [31], a major research question inreutious mental development
is "how a system develops mental capabilities through artmus real-time interactions
with its environment by using its sensors and effectorstfotied by an intrinsic develop-
ment program coded in the genes or designed in by hand).”, Bimepresentation is sought
derived from sensorimotor signals as well as the groupinguch signals as processing
takes place. Note that this assumes that no coordinate $rarigt in this setting; see [27]
for a discussion of coordinate frames in biological systesada et al. [1] give a good
account of the development of body representations in gicé systems and maintain that

3

"motions deeply participate in the developmental procésensing and perception.” They
review data ranging from spinal reflexes with fixed motor grais, to motion assembly, to
mixed motion combinations in the cerebrum. Lungarella @#p has much to say on this
issue, and of great interest here, states that "spontam@tivgy in newborns are not mere
random movements ... instead organized kicks, arm movesngmbrt phase lags between
joints ... may induce correlations between sensing and mmetorons.”

Early on, Pierce [23] described an approach to learning aeinaidthe sensor set of an
autonomous agent. Features are defined in terms of raw s#gisgrand feature operators
are defined which map features to features. The goal is tarcmhs perceptual system
for this structure. One of the fundamental feature opesasothegrouping operatomhich
assigns features to a group if they are similar. This work @dended to spatio-visual
exploration in a series of papers [18, 19, 23]. For a detail@tjue of Pierce’s work,
see [5]. Olsson extended this work in a number of papers [911012, 13, 20, 21]. He
used information theoretic measures for sensorimotomsaaction, and no innate knowl-
edge of physical phenomena nor the sensors is assumed. ietke FOIsson uses random
movements to build the representation and learns the edfemttions on sensors to per-
form visually guided movements. The major contributiores fwe analysis of information
theoretic measures and motion flow. O’'Regan an@ [?2] use the ternsensorimotor
contingenciesand give an algorithm which can determine the dimension efsipace of
the environment by "analyzing the laws that link motor ougpto sensor inputs”; their
mathematical formulation is elegant.

2 Symmetry in Sensorimotor Reconstruction

Symmetry [32] plays a deep role in our understanding of theddno that it addresses key
issues of invariance, and as noted by Viana [30]: “Symmetoyigdes a set of rules with
which we may describe certain regularities among experiai@jects.” By determining
operators which leave certain aspects of state invartanetpossible to either identify simi-
lar objects or to maintain specific constraints while parfimg other operations (e.g., move
forward while maintaining a constant distance from a wdtr an excellent introduction
to symmetry in physics, see [3]. In computer vision, Michbeyton has described the
exploitation of symmetry [14] and the use of group theory basis for cognition [15]; we
have shown how to use symmetry in range data analysis fopiggapt]. Popplestone and
Liu showed the value of this approach in assembly plannigg j&hile Selig has provided
a geometric basis for many aspects of advanced roboticg ug@malgebras [25, 26]. Re-
cently, Popplestone and Grupen [24] gave a formal desonti general transfer functions
(GTF’s) and their symmetries.

A symmetry defines an invariant. The simplest invariant entdy. This can apply to an
individual item, i.e., a thing is itself, or to a set of simil@bjects. In general, an invariant is
defined by a transformation under which one object is mappeshother. Sensoriomotor
reconstruction can be more effectively achieved by findinghssymmetry operators on the
sensor and actuator data (see also [2, 7]).

Invariants are very useful things to recognize, and we @eloat various types of invariant
operators provide a basis for cognitive functions, andithsialso useful to have processes
that attempt to discover invariance relations among senstor data and subsequently
processed versions of that data.

2.1 Symmetry Detection in Signals

Assume a set of sensoi$,= {5;,i = 1...ng} each of which produces a finite sequence
of indexed sense data values; where: gives the sensor index andgives an ordinal
temporal index, and a set of actuatars= {A4;,i = 1...n4} each of which has a finite
length associated control signal,;, wherei is the actuator index ang is a temporal
ordinal index of the control values.

We are interested in determining the similarity of sensotonsignals. Thus, the type of
each sensor as well as the relation to motor control actitaysgrole. It is quite possible

that knowledge of the physical phenomenon that stimulagesiaor may also be exploited
to help determine the structure of the sensor system anelasan to motor action and the
environment [6].

We suppose that certain 1D signal classes are importantrarkthawn a priori to the agent
(i.e., that there are processes for identifying signalbie$¢ types). The basic signals are:

zera y = 0 (at all samples)

constant y = a (for some fixed constarai)

binary: y takes on either the value 1 or O

linear: y = at + b (function of time index)

periodic has period” and the most significant Fourier coefficienits

Gaussian sample from Gaussian disctribution with mgaand variancer>

5

Thus, afirst level symmetry is one that characterizes aeisighal as belonging to one of
these categories. Of course, composite signals can bergciest from these as well, e.g.,
the impulse signal is a non-zero constant for one step welibby the zero signal.

Next, pairwise signal symmetries can exist between signdle same class:

e linear

— same linea; = a9, by = by
- paral|e|2a1 = a9, 0y # b
— intersect in point: rotation symmetry about intersectiomp

e periodic

— same period
— same Fourier coefficients

e Gaussian

— Same mean

— same variance

2.2 Sensorimotor Reconstruction

The sensorimotor reconstruction process consists of tleeviag steps: (1) perform actua-
tion command sequences, (2) record sensor data, (3) detes@ansor equivalence classes,
and (4) determine sensor-actuator relations. An additicnitarion is to make this process
as efficient as possible.

Olsson, Pierce and others produce sensor data by applymtigpmavalues to the actua-

tors for some preset amount of time, and record the sensaesegs, and then look for

similarities in those sequences. This has several probl€mghere is no guarantee that
random movements will result in sensor data that charaetesimilar sensors, (2) there
is no known (predictable) relation between the actuatiajusace and the sensor values,
and (3) the simultaneous actuation of multiple actuatorguses the relationship between
them and the sensors.

To better understand sensorimotor effects, a systems aqpie helpful. That is, rather
than giving random control sequences and trying to decipimat happens, it is more ef-
fective to hypothesize what the actuator is (given limitedices) and then provide control
inputs for which the effects are known. Such hypotheses edadied as part of the devel-
opmental process. The basic types of control that can beegjpiplclude: none, impulse,
constant, step, linear, periodic, or other (e.g., random).

Next, consider sensors. Some may be time-dependent (geggydevel), while others may
depend on the environment (e.g., range sensors). Thusyibenpossible to classify ideal
(noiseless) sensors into time-dependent and time-indigme by applying no actuation and
looking to see which sensor signals are not constant (tsisnass the spatial environment
does not change). Therefore, it may be more useful to noatecthe system, and then clas-
sify sensors based on their variance properties. That rgalistic (with noise) scenarios,
it may be possible to group sensors without applying actoat all.

Consider Pierce’s sensorimotor reconstruction processealfstic noise models are in-
cluded, the four types of sensors in his experiments (rabgeken range, bearing and
energy) can all be correctly grouped with no motion at allhifTassumes some energy
loss occurs to run the sensors.) All this can be determirgtcduging the equals symmetry
operator (identity) and the means and variances of the sdatm sequences.

2.3 Exploiting Actuation

Of course, actuation can help understand the structureeo$e¢nsorimotor system. For
example, consider what can be determined by simply rotatimgp-wheeled robot that has
a set of 22 range sensors arranged equi-spaced on a cirdem@&shat the control signal
results in a slow rotation parallel to the plane of robot mofji.e., each range sensor moves
through a small angle to produce its next sample) and rotates thar2w radians. Then
each range sensor produces a data sequence that is a shiiexh\of each of the others
—i.e., there is a translation symmetry (of periodic signbé&tween each pair. The general
problem is then:

General Symmetry Transform Discovery Problem Given two sensors,
S; and S;, with data sequencef andTs, find a symmetry operatar such
thatTQ = O'(Tl).

2.4 Symmetry-based Sensorimotor Reconstruction Algorithm

Using the symmetries described above, we propose the fiolgpalgorithms.

Algorithm SBSG: Symmetry-based Sensor Grouping

=

Collect sensor data for given period
Classify Sensors as Basic Types
3. For all linear sensors

a. Group if similar regression error
4. For all periodic sensors

a. Group if similar P and C
5. For all Gaussian sensors
a. Group if similar variance

N

This algorithm assumes that sensors have an associated Moge that this requires no
actuation and assumes the environment does not changdy Rimasimilarity test for the
above algorithm depends on the agent embodiment.

Algorithm SBSR: Symmetry-based Sensorimotor Reconstructin

1. Run single actuator and
collect sensor data for given period
2. For each set of sensors of same type
a. For each pair
i. If translation symmetry holds
Determine shift value
(in actuation units)

This determines the relative distance (in actuation ubiéyveen sensors. E.g., for a set of
equi-spaced range sensors, this is the angular offset.

3 Comparison to Pierce’s Work

3.1 Pierce’s Simulation Experiment

A set of simulation experiments are described in Chapter dietc@s dissertation [23].

The first involves a mobile agent with a set of range sensqewer level sensor, and four
compass sensors. The sensors are grouped and then a atriagtomt in 2D is determined.

The second experiment concerns an array of photorecepittegse we examine the first
experiment, and in particular, the group generator.

3.2 Pierce’s Experiment Definition

The basic setup involveséx 4 m? rectangular environment with a mobile robot defined
as a point. The robot is equipped with 29 sensors all of whagle tvalues in the range
from zero to one. Sensors 1 to 24 are range sensors whichrargyad in an equi-spaced
circle aiming outward from the robot. Range sensor 21 is diefeand always returns
the value 0.2. Sensor 25 gives the voltage level of the lyattbile sensors 26 to 29 give
current compass headings for East, North, West and Sousibecavely. The value is 1 for
the compass direction nearest the current heading and @etioef other compass sensors.
There are two motorsy, anda,, to drive the robot, and these can produce a maximum
foward speed of 0.25 m/sec, and a maximum rotation speeddadd@rees/sec. We assume
that the values of the motors range frem to 1, where—1 produces a backward motion
and1 produces a forward motion (more specifically, assume ttaiootal axis of the tracks
is aligned with they-axis; then a positive rotation movesinto = and corresponds to a
positive rotation aboug in the coordinate frame).

Some details of the motion model are left unspecified; tloeeetve use the following
model:

if a0>= 0 and al>=0
then robot moves forward min(a0,al) *0.25 m/sec
robot rotates ((a0-al)/2) * 100 degrees/sec

elseif a0<=0 and al<=0
then robot moves backward abs(max(a0,al)) *0.25 m/sec
robot rotates ((a0-al)/2) * 100 degrees/sec

9

elseif a0>0 and al<O0
then robot rotates ((a0-al)/2) * 100 degrees/sec

elseif a0>0 and al<O
then robot rotates ((a0-al)/2) * 100 degrees/sec

end

Moreover, if the robot attempts to move out of the rectangeironment, no translation
occurs, but rotation does take place.

Two pairwaise metrics are defined (vector and PDF distanees) based on these the
sensors are grouped pairwise. Then the transitive closuakeén on these. Pierce runs the
simulation for 5 simulated minutes and reports results ensimple data generated from
that run. Based on the samples generated from this run, tkp generator produces seven
groups:

Range: {1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,22,23,24}

Defective range: {21}

Battery Voltage: {25}

Compass (East): {26}

Compass (North): {27}

Compass (West): {28}

Compass (South): {29}

It is not clear why range sensors are grouped, but compasersesre not.

3.3 Symmetry-based Grouping Operator

Any simulation experiment should carefully state the goestto be answered by the ex-
periment and attempt to set up a valid statistical framewbrladdition, the sensitivity of
the answer to essential parameters needs to be examineck 8es not explicitly formu-
late a question, nor name a value to be estimated, but it seleaasthat some measure of
the correctness of the sensor grouping would be appropiiatan the description in the

10

disertation, Pierce ran the experiment once for 5 minutesadlated time, and obtained a
perfect grouping solution.

From this we infer that the question to be answered is:

Grouping Correctness What is the correctness performance of the pro-
posed grouping generator?

This requires a definition of correctness for performanakvas propose the following (for
more details, see [5]):

Correctness Measure Given (1) a set of sensor§S;,i = 1 : n} (2) a correct grouping
matrix, G, whereG is ann by n binary valued matrix withz(i, j) = 1 if sensorsS; and.S;
are in the same group ai¢{z, j) = 0 otherwise, and (3} ann by n binary matrix which
is the result of the grouping generator, then the groupimgectness measure is:

if G()==H(); O otherwise.

3.3.1 Sensor Grouping with Noise (No actuation)

Assume that the sensors each have a statistical noise nTdaeteal-valued range sensors
have Gaussian noise sampled fromV#0, 1) distribution (i.€.,v50mpie = Virue + w. The
binary-valued bearing sensors have salt and pepper nose\he correct value is flipped
p% of the time. Finally, the energy sensor has Gaussian ntisesampled fromV (0, 1).
(The broken range sensor returns a constant value.)

Based on this, the grouping correctness results are giveigumé=1. Sensor data sampling
time was varied from 1 to 20 seconds for binary noise of 5%, 80%25%, and Gaussian
variance values of 0.1, 1, and 10. Ten trials were run for eask and the means are shown
in the figure. As can be seen, perfect sensor grouping is\athegter 20 seconds without
any actuation cost. Previous methods required driving ladtbels for a longer time and
they cost about0k,,; more in energy than our methoki,(, is the actuation to sensing cost
ratio).
11

b, =0.05 b, =0.10 b =025
err ert ert

0 100 200 0 100 200 0 100 200
Time Steps Time Steps Time Steps

Figure 1: Grouping Correctness vs. Number of Samples; leitjka are for binary salt and
pepper noise of 5%, 10%, and 25%; curves for 0.1, 1.0, andvidince are given in each
plot.

3.3.2 Sensor Grouping (Actuated)

Given a set of sensors that characterize the group openaditbme of an actuator (in this
case rotation), the sensors can be grouped based on thédasirhilar sensors produce
data that has a translation symmetry along the temporal Bijare 2 shows representative
data for the range and compass sensors. The simple detéoniofa translaiton symme-
try between signals allows both grouping (i.e., the signadsch well at some time offset),
and the angular difference between the sensors (given bythe at which the symmetry
occurs);t,rrset IS proportional to the angle between the the sensors in tefrastuation
units. Figure 3 shows the perfect grouping result with nois&% in the compass sensor
data and 0.1 variance in the range sensor data (the figuressn@&x29 similarity matrix
where white indicates sensors are in same group, and bldates that are not).

4 Physical Experiment

We have performed experiments with physical sensors tdataithe proposed approach.
Data was taken for both the static case (no actuation) anddiuated case (camera rota-
tion).

12

500 1000 1500
Time Step (0.1 sec)

Range Sensor 26

500 1000 1500
Time Step (0.1 sec)

Range Sensor 27

500 1000 1500
Time Step (0.1 sec)

Range Sensor 28

o 1
=
Sos
3
206
5
&
04
02

500 1000 1500
Time Step (0.1 sec)

o 1
E]
Sos
o
206
5
&
04
02

0
500 1000 1500 0
Time Step (0.1 sec)

o 1
=2
Sos
o
206
5
&
04
02

Figure 2: Sensor data showing translation symmetry: Row Wslsensors 1, 2, and 13;
Row 2 shows compass sensors 27,28, and 29.

|

500 1000 1500
Time Step (0.1 sec)

0

4.1 Unactuated Experiment

Two sensors were used in this experiment: a camera and aphame. The camera was
set up in an office and a sequence of 200 images was taken atzardteH Figure 4 shows
one of these images. The 25x25 center set of pixels from thgéncomprise a set of 625
pixel signals each of length 200. An example trace and itepram are given in Figure 5.
As can be seen, this is qualitatively a Gaussian sample.ré&igshows a 200 sequence
signal of microphone data, and its histogram which alsosdBkussian.

The application of our symmetry detectors classified alepand microphone signals as
Gaussian signals, and grouped the pixel signals sepafatatythe microphone due to the
difference in their variance properties.

4.2 Actuated Experiment

We also took a set of images by rotating the camera by one eémr860 degrees. Domain
translation symmetry allows the identification of all theqdisignals along a row as similar
to each other (i.e., they are all in the plane of the rotati@n)e to the translation amount,
the offset between the signals is also discovered.

13

Figure 3: Grouping Matrix29 x 29 binary matrix; sensors 1-24 are range sensors (sensor
21 returns constant value); 25 is energy; 26-29 are COMpasHKs.

5 Conclusions and Future Work

We propose symmetry theory as a basis for sensorimotor s&cation in embodied cog-

nitive agents and have shown that this allows the identifinadf structure with simple and

elegant algorithms which are very efficient. The explotiatof noise structure in the sen-
sors allows unactuated grouping of the sensors, and a sonplactuator rotation permits
the recovery of the spatial arrangement of the sensors.m&isod was shown to hold for
physical sensors as well.

Several directions remain to be explored:

1. Consider rotational actuators; these can be seen to defjrmup in the following
way: any specific rotation is an element of the group set, aptiGation of rotation is
the operator. Group properties can be seen to hold in ththe(§equential application
of two rotations is a rotation, (ii) the opposite rotationhe inverse element, (iii) the
application of no actuation is the identity element, anjldssociativity holds. [Note
that rotation in just one sense forms a group, and variousbowtions of actuators
may form larger groups - e.g., two wheels.]

— The analysis of actuators as specific group operators esysiudy.

2. Higher-dimensional symmetries offer many opportusife research. For example,
the transformation from spatial image layout to log-potant allows 1D symmetries
to be sought which characterize object scaling and rotation

14

Figure 4: One of the 200 Static Images.

— The analysis of higher-dimensional symmetries requinegyst

3. Higher-level sensorimotor symmetries will allow the ceptualization of physical
objects in terms of sensorimotor sequences characterizesbiine invariant (e.g.,
stand-off distance in circumlocuting the object).

— The analysis of symmetries in sensormotor interactionl thi¢ environment re-
quires study.

4. Finally, we are instrumenting a set of mobile robots withge and other sensors and
a series of experiments will be conducted to study thesederdasues.

— Experimental studies in broader environmental interactie required.

Acknowledgments

This material is based upon work supported by the Nationarge Foundation under
Grant No. 1021038.

15

©
o

60

3
o

501

~
=}
T

o
=)
T

40

Pixel Gray Level
IS o
o o
Pixel Count
w
S

w
=)

N
=)

=
S
T

o

I I I
0
0 50 100 150 200 0 20 40 60 80 100

Time Index Pixel Gray Level

Figure 5: Trace and Histogram of the 200 Pixel Values of thet€@dpixel of the Images.

A Basic Signal Classification

The determination of the similarity of signals is an impattaspect of sensorimotor recon-
struction. We propose that signals be classified into a seabf basic types, and then sets

of similar signals can be found based on their types and peteas The basic signal types
are:

=

constant every value is exactly the same.
linear: y = ax + b + w, wherew represents noise.

periodic 37 > Vty(t) = y(t + T') + w, wherew represents noise

WD

Gaussian y is a sample from\ (u, 0?), where N is the normal distribution with
meany and variance.

A.1 Constant Signals

The main point about constant signals is that each signakyalt), is exactly equal to

every other signal value. The associated parameter of dardrsggnal is the value of the
constant.

16

560 T T T 70

550 ol

540
50

530

N
S
T

520

w
=)
T

Amplitude Level
Amplitude Count

510

20+
500 -

101

490

480
0

. . .
0
50 100 150 200 480 500 520 540 560
Time Index Amplitude Level

Figure 6: Trace and Histogram of the 200 Amplitude ValuesefNicrophone Data.

Algorithm: SYM _constant

Input: y (an n vector)
Output: b (Boolean): 1 if constant signal, else 0
c (float): value of constant signal

c=y(l);
fori+2:n
if ¢ # y(i)
b« 0;
return,
end
end

A.2 Linear Signals

Signal values are acquired sequentially in time, and eaoplkeas assigned the next integer
index, starting at 1. That is, the independent variable f@igaal ranges through the whole
numbers (i.e{1,2,3,...}), and therefore, no vertical lines are possible. A leasasegifit

17

is made to the signal points:
{(6,y())]i = 1,n}

Next, the vertical distances of the signal points to the éirechecked to see if they form a
sample from a Gaussian distribution. If so, the signal isa@ttarized as linear.

Algorithm: SYM _linear

Input: y (an n vector)

Output: e (float): error in linear fit
a,b (float): linear parameterg & ax + b)
m,s (float): noise parametet&/'(m, s))

[params,error] = polyfit([1:n],y,1);
a = params(1);

b = params(2);

e = error.normr

vals = polyfit(params,[1:n]);

diffs = y-vals;

m = mean(diffs);

s = var(diffs);

A.3 Periodic Signals

A periodic signal is characterized by the fact that therstexa valuel” such thaty(t) =
y(t+T) for all T. Of course, noise and sampling effects disturb the equélity approach
to the characterization of periodic signals involves a preot analysis: (1) find maxima and
minima to determine possible periodsand (2) checky(t) — y(t + T)| for signal points
up toy(n — T'). The likelihood that the signal is periodic depends on figdinsuitable
period,T’, as well as the associated erronjinalues and displacements of best matching
values.

Algorithm: SYM _periodic

Input: y (an n vector)
18

Output: e (float): error in periodic fit
T (float): period estimate so y(t) = y(t+T)

yc = low_passfilter(y);
T_set = findbestestimatedor_T(yc);
T = find_best T_from_distributionsof_error(T_set,yc);

A.4 Gaussian Signals

Samples from a Gaussian distribution (called a GaussiaraBigre characterized by the
fact that most of the power in the signal autocorrelationoisaentrated in the O displace-
ment component.

Algorithm: SYM _Gaussian

Input: y (an n vector)
Output: mu (float): mean of signal
sigma? (float): variance of signal

yc = autocorrelation(y);

if most. magnitudein_0_component(yc)
mu = mean(y);
sigma2 = variance(y);

end

These basic signal classification algorithms were tested®8ri-D signals of various types
(including 2 acoustic recordings - one a periodic tone, ttleerobackground Gaussian
noise), and the resulting confusion matrix was:

Type/Type | constant| linear | periodic | Gaussian
constant | 2 0 0 0

linear 0 42 0 0
periodic 0 1 47 5
Gaussian | 0 0 0 31

19

The errors on the periodic signals are mainyly due to the &ighunt of Gaussian noise in
the periodic signals. The periodic nature of these sigisadéfficult to ascertain.

A test was also performed on two sequences of 200 25x25 imagee set of images,
D(r, e, t), wherer is the row,c is the column, and is the time, was produced by taking
images of a dark scene at 0.1 second intervals. Signals wected at each pixel as
Sre = {D(r,c,1:200)}. The second set of images was obtained by rotating the camera
about thez-axis4r degrees, thus, producing at each pixel a periodic signa.t@s$t results

on these pixel signals were (1) 621 of 625 (99%) were coyregtissified as Gaussian
and 4 were mis-classified periodic), and (2) 625/625 (100Pthe periodic signals were
classified periodic and none werre mis-classified. Figurédivs the signal generated

by the central pixel (13,13) of the Gaussian images, andr&i§wshows the central pixel
(13,13) of the set of periodic images.

920

80

701

)
=]
T

Gray Level Value
@
o
T

N
S

w
=]

N
=)
T

=
o
T

o

I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200
Image Number

Figure 7: Center Pixel Signal of Gaussian Image Sequence.

B Matlab Code

function [best_T,best_expected_error, T_expected_error] = SYM_best T(...
T _dist_hist_t,T_dist_hist_y,y)
% SYM_best T - determine best value T for period
% On input:
20

300

250
200
150
100

w My

1
0 500 1000 1500

50

0

Figure 8: Central Pixel Signal of Periodic Image Sequence.

% T _dist_hist_t (structure): has histograms of difference between
% proposed T and actual spacing

% T_dist_hist_y (structure): has histograms of y value errors at T
% y (vector): input signal

% On output:

% best T (float): best estimate of period T

% best val (float): expected value of error from T for best T
% T_expectde_error (vector): expected values of error for all T's
% Call:

% [bT,Bv,Tv] = SYM_best T(T_t,T_y,y);

% Author:

% T. Henderson

% uu

% Spring 2011

%

THRESH = 4;

num_pts = length(y);

half_pts = ceil(num_pts/2);

best T = 0O;

best_expected_error = 0;
T _expected_error = [];
if isempty(T_dist_hist_t)

21

return
end

num_T = length(T_dist_hist_t);

T _expected_error = zeros(1,num_T);

T _candidates = zeros(1,num_T);

for t = Linum_T
T_expected_error(t) = dot(T_dist_hist_t(t).htv,...

(T_dist_hist_t(t).hth/sum(T_dist_hist_t(t).hth)));

T_candidates(t) = T_dist_hist_t(t).T;

end

[T_sorted_expected_error_vals, T_sorted _expected_error_indexes] = ...
sort(T_expected_error);
best T = T _dist_hist_t(T_sorted _expected_error_indexes(1)).T;
best_expected_error = T_sorted_expected_error_vals(1);
best T index = T_sorted_expected_error_indexes(1);
[T_sorted_candidates_vals, T_sorted candidates_indexes] = ...
sort(T_candidates);
even_better T = Inf;
even_better_expected_error = 0;
found = O;
for t = Linum_T
if (C=best_T_index)&&(T_sorted_candidates_vals(t)<best_T)&&...
SYM_close_mult(T_sorted_candidates_vals(t),best_T)&&...
abs(T_expected_error(t)-best_expected_error)<THRESH
if (found==0)||T_candidates(t)<even_better T
even_better T = T_candidates(t);
even_better_expected_error = T_expected_error(t);
even_better_index = t;

found = 1;
end

end
end
if found==1

best T = even_better T;

best val = even_better_expected_error;
end

if half_pts+2<best T
best T = 0;

22

best_expected_error = O;
T _expected_error = [];
end

function b = SYM_close_mult(v,w)
% SYM_close_mult - determine if there exists an n so that nv'w
% On intput:

% v (float): smaller number
% w (float): larger number
% On output:
% b (Boolean): 1 if v is close mult of w, else 0
% Call:
% b = SYM_close ult(23.3,45);
% Author:
% T. Henderson
% uu
% Spring 2011
%
b = 0;
done = O;
n = 0;
while done==
n=n+1;
if abs(v *n-w)<v/10
b = 1,
return
end
if v *(n-1)>w
done = 1;
end
end
00— o

function pt = SYM_closest_int_pt(y_val,t_val,y)
% SYM_closest_int_pt - t value for closest y(t) equal to y val

% On input:

% y_val (float): required value of y
% t val (float): t value

% y (vector): signal

23

% On output:

% pt (2x1 vector): closest y point with y value equal y_val
% Call:

% pl = SYM_closest_int_pt(2.2,3,y);

% Author:

% T. Henderson

% uu

% Spring 2011

%

pt = [I;

int_pts = SYM_line_sig_int(y_val,y);
if isempty(int_pts)

return
end
[num_pts,dummy] = size(int_pts); best dist = Inf;
for p = 1.num_pts

d = abs(t_val-int_pts(p,1));

if d<best_dist

pt(1) = int_pts(p,1);

pt(2) = y val,
best_dist = d;
end
end
pt = pt;
0/ mmmmmmm e mmmmmmm e mmmmmmmmmmm e

function result = SYM_constant(y)
% SYM_constant - recognize perfectly (exact) constant signal
% On input:

% y (n vector): vector of length n

% On output:

% result (structure):

% type = 0 (indicates perfectly constant signal)
% .p (float): likelihood signal is constant (0 or 1)
% .c (float): constant value of signal

% .G_power (float): unused - set to O

% Call:

% rl = SYM_constant(ones(1,100));

% Author:

% T. Henderson

24

% uu

% Spring 2011
%

c = y();

p =1

result.type = O;
result.c = c;
result.p = 0;

result.G_power = O0;

n = length(y);
for i = 2:n
if ¢ "= y(i)
return
end
end

result.p = 1;

function [T_dist_hist t,T_dist_hist y] = SYM_dist_hist(T_set,y)
% SYM_dist_hist - produce distance histogram info for period analysis

% On input:

% T _set (vector): possible period values

% y (n vector): input signal

% On output:

% T_dist_hist_t (structure): has independent variable distance info
% (i).htv (vector): time variable histogram x-axis (from hist)
% .hth (vector): histogram info (from hist)

% T _dist_hist_y (structure): has y value distance info

% ().hyv (vector): y variable histogram x-axis (from hist)
% .hyh (vector): histogram info (from hist)

% Call:

% [Tdt, Tdy] = SYM_dist_hist(Ts,y);

% Author:

% T. Henderson

% uu

% Spring 2011

%

25

T dist_hist_t = [];
T dist_hist .y = [];
if isempty(T_set)

end

return

num_T = length(T_set);
num_samps = length(y);
for t = Linum_T

end

[t,num_T]

T = T_set(t);

n = num_samps - ceil(T);
dists_t = zeros(n,l1);
dists_y = zeros(n,l);

pt_y p_dists = zeros(1,n);

for p =
[p,n];
y_p = y(p);
tT =p + T,
y_T = SYM._interpolate_sig(t_T,y);
pt_t = [py_pl;
pt.T = [t Ty_T];
pt_y p = SYM_closest_int_pt(y_p,t T,y);
if “isempty(pt_y_p)
Io _y_p_dists(p) = norm(pt_y_p-pt_t);
end

if “isempty(pt_y_p)
dists_t(p) = abs(pt_y p(1)-pt_T(1));
dists_y(p) abs(pt_t(2)-pt_T(2));

end
end
[hth,htv] = hist(dists_t);
[hyh,hyv] = hist(dists_y);
T_dist_hist_t(t).T =

T dist_hist_t(t).htv = htv;
T_dist_hist_t(t).hth = hth;
T dist_hist_y(t).T = T,

T _dist_hist_y(t).hyv = hyv;
T _dist_hist_y(t).hyh = hyh;

function result = SYM_Gaussian(y)
%SYM_Gaussian - Gaussian if autocorrelation has specific form

% On input:

% y (float vector): function samples

% On output:

% result (structure):

% type (int): 3 (indicates Gaussian)

% .p (float in [0,1]): likelihood that y is Gaussian sample
% .mu (float): mean of y

% .sigma2 (float): variance of y

% .G_power (float): autocorrelation

% Call:

% res = SYM_Gaussian(0.001 *randn(1000,1));
% Author:

% T. Henderson

% Spring 2011

% uu

%

T1 = 0.10;

MAX_VALS = 2;
MAX_RATIO = 1/3;
result.type = 3;
result.p = 0;
result.mu = 0;
result.sigma2 = 1;
result.G_power = O0;

h = hist(y); % check if binary signal
indexes = find(h>0);
if length(indexes)<3
return
end

ym = mean(y);
y0 = y-ym;
yc = xcorr(y0,y0);

max_value = max(yc);
indexes = find(yc>max_value * MAX_RATIO);

27

num_indexes = length(indexes);

if num_indexes<MAX_VALS
[mv,mi] = max(yc);
result.mu = ym;
result.sigma2 = var(y);
result.p = 1 - max([yc(1:mi-1),yc(mi+1l:end)])/mv;
result.G_power = yc;
end

function statistics = SYM_gen_statistics(signals)
% SYM_gen_statistics - generate statistics for signal classification

% On input:

% signals (sturcture stored in file):

% ().type (int):

% 0: constant

% 1: linear

% 2: periodic

% 3: Gaussian

% ().y (num_samps vector): signal values

% (i).parameters (depends on type):

% type 0O: c (float): constant value

% type 1. y = ax + b + N(mu,sigma’2)

% a (float): x coefficient in equation

% b (float): y intercept in equation

% m (float): mean noise value in signal
% s (float): variance in noise in signal
% type 2: y(t) = y(t+T) + N(mu,sigma’2)

% T (float): period of signal

% m (float): mean noise value in signal
% s (float): variance in noise in signal
% type 3: y(t) sampled from N(mu,sigma’2)

% m (float): mean noise value

% s (float): variance of noise in signal
% On output:

% statistics (structure):

% .confusion_matrix (4x4 array). classifications made
% row 1: constant signals

% row 2: linear signals

% row 3: periodic signals

28

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Call:

sig_
sl

Author:

row 4: Gaussian signals
.constant_c_mean (float): mean in constant value error
.constant_c_var (float): variance in constant value error
Jinear_a_mean (float): mean in linear a value error
Jinear_a var (float): variance in linear a value error
Jdinear_b_mean (float): mean in linear b value error
Jinear_b_var (float): variance in linear b value error
.periodic_T_mean (float): mean in periodic T value error
.periodic_T_var (float): variance in periodic T error
.Gaussian_mu_mean (float): mean in Gaussian mu error
.Gaussian_mu_var (float): variance in Gaussian error
.Gaussian_sigma2_mean (float): mean in Gaussian error
.Gaussian_sigma2_var (float): var in Gaussian error
Jikelihoods (vector): likelihoods produced classifiers
.res_constants (structure): output from SYM_test function
.res_linear (structure): output from SYM_test function
.res_periodic (structure): output from SYM_ test function
.res_Gaussian (structure): output from SYM_test function

= SYM_gen_test_signals(100,1,1);
= SYM_gen_statistics(sig_1);

T. Henderson

uu

Spring 2011

statistics.confusion_matrix = zeros(4,4);
statistics.constant_ ¢_mean = O0;

statistics.linear_a_mean = 0
statistics.linear_b_mean = 0
statistics.periodic_T_mean =

0;

statistics.Gaussian_mu_mean = 0;
statistics.Gaussian_sigma2_mean = O0;
statistics.constant_c_var = O;

statistics.linear_a_var =
statistics.linear_b_var =
statistics.periodic_T_var

oo

0;

statistics.Gaussian_mu_var = 0;
statistics.Gaussian_sigma2_var = 0;

29

num_signals = length(signals);

res_constant = SYM_test function(SYM_constant’,signals);
near = SYM_test function('SYM_linear’,signals);

res_li

res_periodic

SYM_test_function('SYM_periodic’,signals);

res_Gaussian = SYM_test function(SYM_Gaussian’,signals);
statistics.res_constant = res_constant;

statistics.res_linear = res_linear;

statistics.res_periodic = res_periodic;

statistics.res_Gaussian =

c_err
a_err
b _err
T err

e e

—
 —

mu_err = [;
sigma2_err
likelihoods

res_Gaussian;

= [];
= zeros(num_signals,5);

p = zeros(1,4);

= 1:num_signals
s_type = signals(s).type;
res_constant(s).s_p;

for s

p(1)
p(2)
p(3)
p(4)

switch

case 1

case 2

res_linear(s).s_p;

res_periodic(s).s_p;
res_Gaussian(s).s_p;
likelihoods(s,1) = s_type;
likelihoods(s,2:5) = p;
[max_p_val,max_p_index] = max(p);
statistics.confusion_matrix(s_type+1,max_p_index) = ...
statistics.confusion_matrix(s_type+1,max_p_index) + 1;

max_p_index

% constant signal

if signals(s).type==0
c_err = [c_err,...

end

abs(res_constant(s).s_c-signals(s).c)];

% linear signal

if signals(s).type==1
a_err = [a_err,abs(res_linear(s).s_a-signals(s).a)];

b_err

[b_err,abs(res_linear(s).s_b-signals(s).b)];
30

end
case 3 % periodic signal
if signals(s).type==2
T err = [T_err,...
abs(res_periodic(s).s_T-signals(s).T)];
end
case 4 % Gaussian signal
if signals(s).type==3
mu_err = [mu_err,...
abs(res_Gaussian(s).s_mu-signals(s).mu)];
sigma2_err = [sigmaZ2_err,...
abs(res_Gaussian(s).s_sigma2-signals(s).sigma2)];
end
end
end
if “isempty(c_err)
statistics.constant_¢c_mean = mean(c_err);
statistics.constant_c_var = var(c_err);
end
if “isempty(a_err)
statistics.linear_a_mean = mean(a_err);
statistics.linear_a _var = var(a_err);
statistics.linear_b_mean = mean(b_err);
statistics.linear_b_var = var(b_err);

end

if “isempty(T_err)
statistics.periodic_T_mean = mean(T_err);
statistics.periodic_T_var = var(T_err);

end

if “isempty(mu_err)
statistics.Gaussian_mu_mean = mean(mu_err);
statistics.Gaussian_mu_var = var(mu_err);
statistics.Gaussian_sigma2_mean = mean(sigma2_err);
statistics.Gaussian_sigma2_var = var(sigma2_err);

end

statistics.likelihoods = likelihoods;

function statistics = SYM_gen_statistics_one_function(fname,signals)
% SYM_gen_statistics - generate statistics for signal classification
% On input:

31

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

fname (string): name of classification function
signals (sturcture stored in file):
(i).type (int):
0: constant
1: linear
2. periodic
3: Gaussian
().y (num_samps vector): signal values
(i).parameters (depends on type):
type 0O: c (float): constant value
type 1: y = ax + b + N(mu,sigma’2)
a (float): x coefficient in equation
b (float): y intercept in equation
m (float): mean noise value in signal
s (float): variance in noise in signal
type 2: y(t) = y(t+T) + N(mu,sigma’2)
T (float): period of signal
m (float): mean noise value in signal
s (float): variance in noise in signal
type 3: y(t) sampled from N(mu,sigma“2)
m (float): mean noise value
s (float): variance of noise in signal
On output:
statistics (structure):
.confusion_matrix (4x4 array): classifications made
row 1: constant signals
row 2: linear signals
row 3: periodic signals
row 4: Gaussian signals
.constant_c_mean (float): mean in constant value error
.constant_c_var (float): variance in constant value error
Jlinear_a_mean (float): mean in linear a value error
Jlinear_a_var (float): variance in linear a value error
Jinear_b_mean (float): mean in linear b value error
Jinear_b_var (float): variance in linear b value error
.periodic_T_mean (float): mean in periodic T value error
.periodic_T_var (float): variance in periodic T value error
.Gaussian_mu_mean (float): mean in Gaussian mu value error
.Gaussian_mu_var (float): variance in Gaussian error
.Gaussian_sigma2_mean (float): mean in Gaussian error
.Gaussian_sigma2_var (float): var in Gaussian error

32

% Jikelihoods (vector): likelihoods produced by classifiers

% .res (structure): output from SYM_test function

% Call:

% sig_1 = SYM_gen_test_signals(100,1,1);

% sl = SYM_gen_statistics_one_function(SYM_Gaussian’,sig_1);
% Author:

% T. Henderson

% uu

% Spring 2011

%

statistics.confusion_matrix = zeros(1,4);
statistics.constant_ ¢_mean = O0;
statistics.linear_a_mean = 0;
statistics.linear_b_mean = 0;
statistics.periodic_T_mean = O0;
statistics.Gaussian_mu_mean = 0;
statistics.Gaussian_sigma2_mean = O0;
statistics.constant_c_var = 0;
statistics.linear_a_var = 0;
statistics.linear_b_var = 0;
statistics.periodic_T _var = 0;
statistics.Gaussian_mu_var = 0;
statistics.Gaussian_sigma2_var = 0;

num_signals = length(signals);

res = feval(f_handle,y);
statistics.res = res;

c err = [];

a err = [;
b err = [];
T err = [];
mu_err = [];

sigma2_err = [];

likelihoods = zeros(num_signals,3);
f type = res.type;

likelihoods(:,1) = f type;

for s = 1:num_signals
33

s_type = signals(s).type;
p = res(s).s_p;
likelihoods(s,?2)
likelihoods(s,3)
switch f_type
case 1 % constant signal
if signals(s).type==0
c_err = [c_err,...
abs(res_constant(s).s_c-signals(s).c)];

s_type;
P;

end
case 2 % linear signal
if signals(s).type==1
a_err = [a_err,abs(res_linear(s).s_a-signals(s).a)];
b_err = [b_err,abs(res_linear(s).s_b-signals(s).b)];

end
case 3 % periodic signal
if signals(s).type==2
T err = [T_err,...
abs(res_periodic(s).s_T-signals(s).T)];
end
case 4 % Gaussian signal
if signals(s).type==3
mu_err = [mu_err,...
abs(res_Gaussian(s).s_mu-signals(s).mu)];
sigma2_err = [sigma2_err,...
abs(res_Gaussian(s).s_sigmaz2-signals(s).sigma2)];
end
end
end
if “isempty(c_err)
statistics.constant_c_mean = mean(c_err);
statistics.constant_c_var = var(c_err);
end
if “isempty(a_err)
statistics.linear_a_mean = mean(a_err);
statistics.linear_a_var = var(a_err);
statistics.linear_b_mean = mean(b_err);
statistics.linear_b_var = var(b_err);
end
if “isempty(T_err)
statistics.periodic_T_mean = mean(T_err);

34

statistics.periodic_T_var = var(T_err);

end

if “isempty(mu_err)
statistics.Gaussian_mu_mean = mean(mu_err);
statistics.Gaussian_mu_var = var(mu_err);
statistics.Gaussian_sigma2_mean = mean(sigma2_err);
statistics.Gaussian_sigma2_var = var(sigmaZ2_err);

end

statistics.likelihoods = likelihoods;

function signals =SYM_gen_test_signals2(num_samps,num_trials,default)
% SYM_gen_test signals2 - generate set of signals for basic type test

% On Input:

% num_samps (int): number of samples per test signal
% num_trials (int): number of samples from given distribution
% default (Boolean): if 1 use the random default stream, else not
% On output:

% signals (structure stored in file):

% (i).type (int):

% 0: constant

% 1: linear

% 2. periodic

% 3: Gaussian

% ().y (num_samps vector): signal values

% (i).parameters (depends on type):

% type 0: c (float): constant value

% type 1: y = ax + b + N(mu,sigma’2)

% a (float): x coefficient in equation

% b (float): y intercept in equation

% mu (float): mean noise value in signal
% sigma2 (float): variance in noise in signal
% type 2: y(t) = y(t+T) + N(mu,sigma’2)

% T (float): period of signal

% mu (float): mean noise value in signal
% sigma2 (float): variance in noise in signal
% type 3: y(t) sampled from N(mu,sigma“2)

% mu (float): mean noise value

% sigma?2 (float): variance of noise in signal
% Call:

% SYM_gen_test_signals2(200,5,1);

35

% Author:

% T. Henderson
% Uu

% Spring 2011
%

if default==1

randn(’state’,1);
end

% Signal 1. Constant with y = 0
y = zeros(l,num_samps);
signals(1).type = O;

signals(1).y = v;

signals(1).c = 0;

% Signal 2: Constant with y = 2.5
y = 2.5 *ones(1,num_samps);
signals(2).type = 0;

signals(2).y = vy;

signals(2).c = 2.5;

% Signal 3: Linear with y = X (no noise)
x = -5:10/num_samps:5;

X = X(1:num_samps);

y =X
signals(3).type
signals(3).a =
signals(3).b =
signals(3).mu = 0;
signals(3).sigma2 = 0;
signals(3).y =v;

1;

1;
0;

index = 3;
% Signals 4: Linear with y = x + N(O,.1)
for t = l:num_trials
index = index + 1;
yl =y + 0.1 *randn(1,num_samps);
signals(index).type 1,
signals(index).a
signals(index).b

1;
0;

36

signals(index).mu = O;
signals(index).sigma2 = 0.1;
signals(index).y = y1i;

end

% Signals 5: Linear with y = x + N(0,1)

for t = 1l:num_trials
index = index + 1;
yl = y + randn(1,num_samps);
signals(index).type = 1;
signals(index).a = 1;
signals(index).b = 0;
signals(index).mu = O;
signals(index).sigma2 = 1;
signals(index).y = y1;

end

index = index + 1;
% Signal 6: Linear with y = 2x+1 (no noise)

X = -5:10/num_samps:5;
X = X(1:num_samps);
y = 2xX+1;

signals(index).type 1;
signals(index).a =
signals(index).b =
signals(index).mu = 0;
signals(index).sigma2 = O;
signals(index).y = vy;

2,
1;

% Signals 7: Linear with y = 2x + 1 + N(0,.1)
for t = 1l:num_trials
index = index + 1;
yl =y + 0.1 *randn(1,num_samps);
signals(index).type 1,
signals(index).a
signals(index).b
signals(index).mu = O;
signals(index).sigma2 = 0.1;
signals(index).y = y1;

2;
1;

end

37

% Signals 8: Linear with y = 2x + 1 + N(0,1)

for t = 1l:num_trials
index = index + 1;
yl = y + randn(1,num_samps);
signals(index).type = 1;
signals(index).a = 2;
signals(index).b 1;
signals(index).mu = O;
signals(index).sigma2 = 1;
signals(index).y = y1;

end

index = index + 1;
% Signals 9: Periodic with y = sin(x) with no noise
dx = 4=*2*pi/num_samps;

X = 0:4 *2*pi/num_samps:4 *2=*pi;
X = x(1:num_samps);

T = (2 *pi)dx;

y = sin(x);

signals(index).type =
signals(index).T = T;
signals(index).mu = O0;
signals(index).sigma2 = O0;
signals(index).y = v;

2;

% Signals 10: Periodic with y = sin(x) + N(0,0.1)
for t = 1l:num_trials
index = index + 1;
yl =y + 0.1 *randn(1,num_samps);
signals(index).type = 2;
signals(index).T = T,
signals(index).mu = O;
signals(index).sigma2 = 0.1;
signals(index).y = y1;
end

% Signals 11: Periodic with y = sin(x) + N(0,1)
for t = 1l:num_trials
index = index + 1;
yl = y + randn(1,num_samps);
signals(index).type = 2;

38

signals(index).T = T,

signals(index).mu = O;

signals(index).sigma2 = 1;

signals(index).y = y1i;
end

index = index + 1;
% Signals 12: Periodic with y = sin(x) + sin(3x/2) with no noise
dx = 4=*2*pi/num_samps;

X = 0:4 *2+pi/lnum_samps:4 *2xpi;
X = X(1:num_samps);

T = 4.3 *pildx;

y = sin(x) + sin(3 * X/[2);

signals(index).type = 2;
signals(index).T = T;
signals(index).mu = 0;
signals(index).sigma2 = O;

signals(index).y = v;

% Signals 13: Periodic with y = sin(x) + sin(3x/2) + N(0,0.1)
for t = 1:.num_trials

index = index + 1;

yl =y + 0.1 *xrandn(1,num_samps);

signals(index).type = 2;

signals(index).T = T,

signals(index).mu = 0;

signals(index).sigma2 = 0.1;

signals(index).y = y1i;
end

% Signals 14: Periodic with y = sin(x) + sin(3x/2) + N(0,1)
for t = 1l:num_trials

index = index + 1;

yl = y + randn(l,num_samps);

signals(index).type = 2;

signals(index).T = T,

signals(index).mu = O;

signals(index).sigma2 = 1,

signals(index).y = y1;
end

39

% Signals 15: Periodic signal comprised of repeated random sample
for t = 1l:num_trials

index = index + 1;

sn = max(1,floor(num_samps/3));
s = randn(1,sn);
y = [sss.5];
y = y(l:num_samps);
signals(index).type = 2;
signals(index). T = sn;
signals(index).mu = 0;
signals(index).sigma2 = O;
signals(index).y = v;

end

% Signals 16: Gaussian samples from N(0,0.01)
for t = 1l:num_trials
index = index + 1;
y = 0.01 *randn(1,num_samps);
signals(index).type = 3;
signals(index).mu = O;
signals(index).sigma2 = 0.01;
signals(index).y = v;
end

% Signals 17: Gaussian samples from N(0,0.1)
for t = 1:.num_trials
index = index + 1;
y = 0.1 *randn(1,num_samps);
signals(index).type = 3;
signals(index).mu = O;
signals(index).sigma2 = 0.1;
signals(index).y = v;
end

% Signals 18: Gaussian samples from N(0,1)
for t = l:num_trials
index = index + 1;
y = randn(1,num_samps);
signals(index).type = 3;
signals(index).mu = O;
signals(index).sigma2 = 1;

40

signals(index).y = v;
end

index = index + 1;

% Signal 19: Actual mono tone recorded signal
load micro_data
signals(index).type = 2;
signals(index).T = 7.3;
signals(index).mu = O;
signals(index).sigma2 = 0.01;
signals(index).y = micro_tone;

index = index + 1;

% Signal 20: Actual background noise recorded signal
signals(index).type = 3;

signals(index).mu = mean(micro_static);
signals(index).sigma2 = var(micro_static);
signals(index).y = micro_static;

function v = SYM_interpolate_sig(t,y)
% SYM _interpolate_sig - linear interpolation of signal
% On input:

% t (float): independent variable
% y (vector): signal

% On output:

% v (float): interpolated value y(t)
% Call:

% x = 0:0.1:2 =pi;

% ys = sin(x);

% v = SYM._interpolate_sig(3.2,ys);
% Author:

% T. Henderson

% uu

% Spring 2011

%

v = NaN;

num_samps = length(y);
if (t<1)|](t>num_samps)
return

41

end

if t==1
v = y(1);
return
end

if t==num_samps
v = y(num_samps);

return
end
sl = floor(t);
s2 = sl + 1;

frac = t - s1;
v = (1-frac) *y(sl) + frac *y(s2);

function result = SYM_linear(y)
% SYM_linear - classify linear signals

% On input:

% y (n vector): input signal

% On output:

% result (structure)

% type (int): set to 1 (indicates linear)
% .p (float): likelihood signal is linear

% .a (float): slope of line

% .b (float): y intercept of line

% .err (float): error in fit of line

% .mu (float): mean of signal noise

% .sigma2 (float): variance of signal noise
% .G_power (vector): autocorrelation of error values
% Call:

% r_lin = SYM_linear([1:20]);

% Author:

% T. Henderson

% uu

% Spring 2011

%

MIN_PROB = 0.5;
GAUSS_THRESH = 0.4;

42

result.type =
result.p = O;
result.a = O;
result.b = O;
result.err = Inf;
resultmu = O;
result.sigma2 = 0;
result.G_power = [];

1

num_samps = length(y);
X = [1l:num_samps];
[pars,err] = polyfit(x,y,1);
a = pars(1);

b = pars(2);

vals = polyval(pars,x);
diffs = y-vals;

r Gau = SYM_Gaussian(diffs);
= mean(diffs);
var(diffs);

err.normr;

('D(/)Bl

result.a = a;
result.b = b;
spread = max(y) - min(y);
if spread<eps

result.p = 1;
else

result.p = 1 - (max(abs(diffs))/(max(y)-min(y)));
end
int_pts = SYM_line_sig_int(mean(diffs),diffs);
if “isempty(int_pts)

int_p = length(int_pts(:,1))/num_samps;

if int_p<GAUSS_THRESH

result.p = int_p * result.p;

end
end
result.err = e;
result.mu = m;
result.sigma2 = s;
result.G_power = r_Gau.G_power;

43

function int_pts = SYM_line_sig_int(c,y)
% SYM_line_sig_int - intersection points of line with signal
% On input:

% c (float): y-value for horizontal line
% y (1xm vector): 1D signal values
% On output:

% int_pts (nx2): intersection points of line with signal
% Call:

% ip = SYM_line_sig_int(0.2,y);

% Author:

% T. Henderson

% uu

% Spring 2011

%

LINE_DIST_THRESH = 0.00001,

num_samps = length(y);
int_pts = [];
line_c = [1,c,0;2,c,0];
for p = 1.num_samps-1
line_p = [p, y(p), 0; p+1, y(p+1), O];
[p_int_pt, b_p] = cv_int_line_line(line_c, ...
line_p, LINE_DIST_THRESH);
if abs(b_p)==1
min_y = min(y(p).y(p+1));
max_y = max(y(p),y(p+1));
in_range = (min_y<=p_int_pt(2))&&(p_int_pt(2)<=max_y);
if in_range
int_pts = [int_pts;p_int_pt(1),p_int_pt(2)];
end
end
end

function y_local_max_interp = SYM_local_max_periodic_interp(y)

% SYM_local_max_periodic_interp - find local maxima by interpolation
% On input:

% y (n vector): input signal

% On output:

44

% y local_max (kx2 array): local max array

% Call:

% Im = SYM_local_max_periodic_interp(y);
% Author:

% T. Henderson

% uu

% Spring 2011

%

k = 3;

num_pts = length(y);
y_local_ max = [];
y_local_max_indexes = [J;

for p = 1.num_pts
p_min = max(p-k,1);
p_max = min(p+k,num_pts);
vals = y(p_min:p_max);
if y(p)>=max(vals)&&y(p)>min(vals)
y_local_max = [y_local_max; p, y(p)l;
y local_max_indexes = [y_local_max_indexes, pJ;
end
end

num_local_max = length(y_local_max_indexes);
y_local_max_interp = y local_max;
for n = 1:.num_local_max
n_ind = y_local_max_indexes(n);
if (n_ind>1)&&(n_ind<num_pts)
[p,s] = polyfit([n_ind-1:n_ind+1],[y(n_ind-1:n_ind+1)],2);
x_max = -p(2)/(2 *p(1));
y_max = polyval(p,x_max);
y local_max_interp(n,1) = x_max;
y_local_max_interp(n,2) = y_max;

end
end

function result = SYM_periodic(y)
% SYM_periodic - classify signal as periodic and give parameters
% On input:

45

% y (vector): input signal
% On output:

% result (structure):

% type (int): 2 (indicates periodic)

% .p (float in [0,1]): likelihood that y is periodic signal
% .T (float): period of y

% .err (float): error in periodic nature

% .yc (vector): extracted periodic signal

% .mu (float): mean of noise in y

% .sigma2 (float): variance of noise y

% .G_power (float): autocorrelation of noise in y
% Call:

% res = SYM_periodic([[1:10],[9:-1:1],[2:10],[9:-1:1]1,[9:-1:1]]);
% Author:

% T. Henderson

% Spring 2011

% uu

%

T1 = 0.2;

PERIOD_THRESH = 1;

warning off

result.type = 2;

result.p = 0;

result.T = O;

result.err = 0;

result.mu = O;

result.sigma2 = O;
result.G_power = O0;

num_samps = length(y);

D_y_= 0;
p_t = 0;
T =0;

yc =Yy,

indexes = find(y(1)==y); % check exact repeated sequence
if 1<length(indexes)
T_candidates = indexes(2:end)-1;

46

half_samps = floor(num_samps/2);
num_candidates = length(T_candidates);
for ¢ = 1:num_candidates
Tc = T_candidates(c);
found = 1,
for p = 1l:half_samps
[p,half_samps]

if (p+Tc<=num_samps)&&(y(p) =y(p+Tc))

found = O;
break
end
end
if found==1
result.p = 1;
result. T = Tc;
return
end
end
end
Y = fft(y);
m = abs(Y);
locs = find(m>(max(m) *T1));
YP = OV,

num_locs = length(locs);

C = zeros(num_locs,?2);

for p = 1.num_locs
YP(locs(p)) = Y(locs(p));
C(p,1) = locs(p);
C(p,2) = Y(locs(p));

end
yc = ifft(YP);
y = YG,

y_local_max = SYM_local_max_periodic_interp(y);
T set = SYM_T_set(y_local_max,y);
[T_dist_hist_t,T_dist_hist_ y] = SYM_dist_hist(T_set,y);
[T,T_best expected_error,T_expected_error] = ...
SYM_best_T(T_dist_hist_t, T_dist_hist_y,y);
if T<=0
return

47

end
p_t = 1-T_best_expected_error/T,

yc_err = 0; % include the error to periodic y values in error
num_pts = length(yc);
max_pt = num_pts - ceil(T);
for p = 1.max_pt
yc_int = SYM_interpolate_sig(p+T,yc);
yc_err = yc_err + abs(yc_int-yc(p));
end
yc_err_avg = yc_err/max_pt;

result.p = p_t * (1-yc_err_avg/(max(yc)-min(yc)));
result.T = T,

result.yc = yc;

result.err = T_best_expected_error/T;

warning on

00— o

function result = SYM_test_function(f_handle, sigs);
%
% SYM_test function: test basic classifier on set of signals

% On Input:

% f_handle (string): function name

% sigs (structure): signal set structure

% ().type (int):

% 0: constant

% 1: linear

% 2. periodic

% 3: Gaussian

% ().y (num_samps vector): signal values

% (i).<param> (depends on type):

% type O: .c (float): constant value

% type 1: y = ax + b + N(mu,sigma’2)

% .a (float): x coefficient in equation

% .b (float): y intercept in equation

% .mu (float): mean noise value in signal
% .sigma2 (float): variance in noise in signal
% type 2: y(t) = y(t+T) + N(mu,sigma’2)

% .T (float): period of signal

48

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

type 3:

On Output:

.mu (float): mean noise value in signal
.sigma2 (float): variance in noise in signal

y(t) sampled from N(mu,sigma”2)

.mu (float): mean noise value
.sigma2 (float): variance of noise in signal

result (structure): results
like signals structure with following fields for each sig:
.S_type (int): signal classified as this
.S_p (float): likelihood signal is this type
.S_<params>: value for paramter of this type signal
.s_err (float): measure signal fit to parameterized signal
.s_mu (float): estimate of noise mean
.5_sigma2 (float): estimate of noise variance
.s_DC (float): percentage of power at O in autocorrelation

res = SYM_ test function(SYM_Gaussian’,'t1’,[0.1],[0.01],10);

H. Peng and T. Henderson

Call:
Author:
uu
Spring 2011

num_sigs = length(sigs);

result = sigs;

for s = 1:num_sigs

y = sigs(s).y;

res = feval(f_handle,y);

switch res.type
case 0

result(s).s_type = 0;
result(s).s_p = res.p;
result(s).s_c = res.c;
result(s).s_err = 0;
result(s).s_mu = 0;
result(s).s_sigma2 = O;
result(s).s_ DC = res.G_power;

case 1

result(s).s_type = 1,

49

result(s).s_p = res.p;
result(s).s_a = res.a,;
result(s).s_b = res.b;
result(s).s_err = res.err;
result(s).s_mu = res.mu;
result(s).s_sigma2 = res.sigmaz;
result(s).s_DC = res.G_power;
case 2
result(s).s_type = 2;
result(s).s_p = res.p;
result(s).s T = res.T,;
result(s).s_err = res.err;
result(s).s_mu = res.mu;
result(s).s_sigma2 = res.sigmaz2;
result(s).s DC = res.G_power;
case 3
result(s).s_type = 3;
result(s).s_p = res.p;
result(s).s_mu = res.mu;
result(s).s_sigma2 = res.sigmaz2;
result(s).s DC = res.G_power;

end
end

function T_set = SYM_T_set(y_local_max,y)
% SYM_T set - get set of possible period values
% On input:

% y_local_max (kx2 array): local signal maxima as points
% y (n vector): input signal

% On output:

% T _set (vector): list of possible period values
% Call:

% Ts = SYM_T_set(Im,y);

% Author:

% T. Henderson

% uu

% Spring 2011

%

T set = [];

50

num_max = length(y_local_max);
if num_max<2

return
end
num_samps = length(y);
half_samps = ceil(num_samps/2);

for p = 2:num_max

% if y_local_max(p,1)<=half_samps

T set = [T_set, y local_max(p) - y_local_max(1)];
% end
end

if num_max<3
return
end

for p = 3:num_max
if y_local_max(p,1)<=half_samps
T set = [T_set, y _local_max(p) - y_local_max(2)];
end
end

References

[1] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Yoshikawa, M. Ogino,
and C. Yoshida. Cognitive Developmental Robotics: A SUrMBEE Transactions
on Autonomous Mental Developmeh{l):12—-34, 2009.

[2] F. Bullo and R. M. Murray. Proportional Derivative (PD) CaritOn The Euclidean
Group. InProceeding of the European Control Conferenoages 1091-1097, 1995.

[3] J.P. Elliott. Symmetry in Physics, Vol. I: Principles and Simple Appiaz Oxford
University Press, NY, NY, 1979.

[4] R. Grupen and T.C. Henderson. Apparent Symmetries in Raagge Battern Recog-
nition Letters 7:107-111, 1988.

[5] T. Henderson and H. Peng. A study of pierce’s group geoneralechnical Report
UUCS-10-001, The University of Utah, December 1984.

51

[6] T.C. HendersonComputational Sensor NetworkSpringer Verlag, New York, NY,
20009.

[7] J.C. Kinsey and L.L. Whitcomb. Adaptive Identification dretGroup of Rigid Body
Rotations. InProceedings of the IEEE International Conference on Robadicd
Automation pages 3256—-3261. IEEE Press, 2005.

[8] J.L. Krichmar and G. Edelman. Principles Underlying tBenstruction of Brain-
Based Devices. IfProceedingspages 37-42, Bristol, UK, 2006. Society for the
Study of Artificial Intelligence and the Simulation of Behawir.

[9] C.L. Nehaniv L. Olsson and D. Polani. Sensory Channel Graguand Structure from
Uninterpreted Sensor Data. Rroceedings of NASA/DoD Conference on Evolvable
Hardware pages 153-160, Seattle, WA, 2004. IEEE Computer SociessPre

[10] C.L. Nehaniv L. Olsson and D. Polani. The Effects on Vistdormation in a
Robot in Environments with Oriented Contours. In L. BerthouzeKozima, C.G.
Prince, G. Sandini, G. Stojanov, and G. Metta, editBreceedings of the Fourth In-
ternational Workshop on Epigenetic Robotics: Modeling Ggs Development in
Robotic Systempages 83—-88, Genoa, Italy, 2004. Lund University Cognifitied-
ies.

[11] C.L. Nehaniv L. Olsson and D. Polani. Discovering MotiBlow by Temporal-
Informational Correlations in Sensors. In L. Berthouze, Hzikm, C.G. Prince,
G. Sandini, G. Stojanov, G. Metta, and C. Balkenius, editersceedings of the Fifth
International Workshop on Epigenetic Robotics: ModelinggQibve Development
in Robotic Systempages 117-120, Nara, Japan, 2005. Lund University Cognitiv
Studies.

[12] C.L. Nehaniv L. Olsson and D. Polani. From Unknown Sessaord Actuators to
Visually Guided Movement. IfProceedings of the International Conference on De-
velopment and Learningpages 1-6, Osaka, Japan, 2005. IEEE Computer Society
Press.

[13] C.L. Nehaniv L. Olsson and D. Polani. Sensor Adaptatimh2evelopment in Robots
by Entropy Maximization of Sensory Data. Rroceedings of the International Sym-
posium on Computational Intelligence in Robotics and Autonapages 587-592,
Espoo, Finland, 2005. IEEE Computer Society Press.

[14] M. Leyton. Symmetry, Causality, MindMIT Press, Cambridge, MA, 1992.
[15] M. Leyton. A Generative Theory of Shap8pringer, Berlin, 2001.

[16] Y. Liu and R. Popplestone. A Group Theoretic Formali@atof Surface Contact.
International Journal of Robotics Reseayd8(2):148—-161, 1994.
52

[17] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. Diepenental Robotics: A
Survey.Connection Scien¢céd5(4):151-190, 2003.

[18] J. Modayil and B. Kuipers. Autonomous Development of a@rded Object On-
tology by a Learning Robot. I®roceedings of the Twenty-Second Conference on
Artificial Intelligence Vancouver, Canada, 2007. AAAI.

[19] J. Modayil and B. Kuipers. The Initial Development of @bj Knowledge by a Learn-
ing Robot.Robotics and Autonomous SysteB8(11):879-890, 2008.

[20] L. Olsson, C.L. Nehaniv, and D. Polani. Measuring Infatmanal Distances between
Sensors and Sensor Integration. Technical report 431,eBity of Hertfordshire,
Hertfordshire, England, 2005.

[21] L. Olsson, C.L. Nehaniv, and D. Polani. From Unknown Sessnd Actuators to
Actions Grounded in Sensorimotor Perceptior@@onnection Sciengel8:121-144,
2006.

[22] J.K. O’'Regan and A. N&. A Sensorimotor Account of Vision and Visual Conscious-
ness.Behavioral and Brain Science24:939-1031, 2001.

[23] D.M. Pierce. Map Learning with Uninterpreted Sensors and Effectd?tD thesis,
Austin, Texas, May 1995.

[24] R. Popplestone and R. Grupen. Symmetries in World Gegnaetd Adaptive Be-
haviour. InProceedings of the Workshop on Algebraic Frames for the épgian
Action Cycle pages 269-283, Kiel, Germany, 2000.

[25] J.M. Selig. Lie Groups and Lie Algebras in Robotics. IBytnes, editorProceedings
of the NATO Advanced Study Institute on Computational Noneative Algebra
and Applicationsll Ciocco, Italy, 2004. Kluwer.

[26] J.M. Selig.Geometric Fundamentals of Roboti&pringer, Berlin, 2005.

[27] J.F. Soechting and M. Flanders. Moving in Three-Dimenal Space: Frames of Ref-
erence, Vectors, and Coordinate SysteArsnual Reviews on Neurosciend®:167—
191, 1992.

[28] D. Vernon. Enaction as a Conceptual Framework for Dguwmlental Cognitive
Robotics.Journal of Behavioral Roboti¢d.(2):89-98, 2010.

[29] D. Vernon, G. Metta, and G. Sandini. A Survey of Artific@ognitive Systems: Im-
plications for the Autonomous Development of Mental Capiid in Computational
Agents.|IEEE Transactions on Evolutionary Computatjdi (2):151-180, 2007.

53

[30] M.A.G. Viana. Symmetry StudiesCambridge University Press, Cambridge, UK,
2008.

[31] J. Weng and I. Stockman. Autonomous Mental Developm@fdrkshop on Devel-
opment and LearningAl Magazing 23(2), 2002.

[32] H. Weyl. SymmetryPrinceton University Press, Princeton, NJ, 1952.

54

