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Abstract

Cognitive sensor networks are able to perceive, learn, reason and act by means of a dis-
tributed, sensor/actuator, computation and communication system. In animals, cognitive
capabilities do not arise from a tabula rasa, but are due in large part to the intrinsic archi-
tecture (genetics) of the animal which has been evolved over a long period of time and



depends on a combination of constraints: e.g., ingest nutrients, avoid toxins, etc. We have
previously shown how organism morphology arises from genetic algorithms responding to
such constraints[6]. Recently, it has been suggested that abstract theories relevant to spe-
cific cognitive domains are likewise genetically coded in humans (e.g., language, physics
of motion, logic, etc.); thus, these theories and models are abstracted from experience over
time. We call this the Domain Theory Hypothesis, and other proponents include Chom-
sky [2] and Pinker [11] (universal language), Sloman [16, 17] (artificial intelligence), and
Rosenberg [13] (cooperative behavior). Some advantages of such embedded theories are
that they (1) make learning more efficient, (2) allow generalization across models, and (3)
allow determination of true statements about the world beyond those available from direct
experience. We have shown in previous work how theories of symmetry can dramatically
improve representational efficiency and aid reinforcement learning on various problems
[14]. However, it remains to be shown sensory data can be organized into appropriate el-
ements so as to produce a model of a given theory. We address this here by showing how
symmetric elements can be perceived by a sensor network and the role this plays in a cog-
nitive system’s ability to discover knowledge about its own structure as well as about the
surrounding physical world. Our view is that cognitive sensor networks which can learn
these things will not need to be pre-programmed in detail for specific tasks.

1 Introduction

The development of effective mental abilities for cognitive systems is a longstanding goal
of the AI and intelligent systems communities. The major approaches are the cognitivist
(physical symbol systems) and emergent (dynamical systems) paradigms. For a detailed
review of the relevant characteristics of cognitive systems and how these two approaches
differ, see [18]. Basically, cognitivists maintain that patterns of symbol tokens are manipu-
lated syntactically, and through percept-symbol associations perception is achieved as ab-
stract symbol representations and actions are causal consequences of symbol manipulation.
In contrast, emergent systems are concurrent, self-organizing networks with a global sys-
tem state representation which is semantically grounded through skill construction where
perception is a response to system perturbation and action is a perturbation of the environ-
ment by the system. The emergent approach searches the space of closed-loop controllers
to build higher-level behavior sequences out of lower ones so as to allow a broader set of
affordances in terms of the sensorimotor data stream. We propose to combine these ap-
proaches in order to exploit abstraction and specific cognitive domain theories to overcome
sensor data analysis complexity. Our specific hypothesis is:



Figure 1: Innate Theory based Cognitive Architecture.

The Domain Theory Hypothesis: Semantic cognitive content may be effectively discov-
ered by restricting sensor-actuator solutions to be models of specific domain theories in-
trinsic to the cognitive architecture.

Sloman [16, 17] has argued for this from an artificial intelligence point of view, while
Chomsky [2] and Pinker [11] have explored universal structures for human natural lan-
guage, and Rosenberg [13] explores the genetic evidence for cooperative behavior among
humans. We proposed a framework for intrinsic sensor-actuator behaviors [5], and recently
have studied the hypothesis in the context of some standard AI and robotics problems [14].
In particular, we considered there the role that a theory of symmetry can play in various
learning scenarios. When symmetry can be exploited in reinforcement learning, the time
to learn the solution to the task should be proportional to the size of the set of asymmetric
states (note that this may be characterized in terms of the quotient space of the associated
group where it exists). Figure 1 shows the cognitive architecture for this approach.

Pinker previously proposed a schema for innate computational modules in humans; he also
outlined the following tests for possible computational modules (what we call theories) in
humans and gives some examples (pp. 436-438): (1) Does the theory help solve a problem
that our ancestors faced in their environment (biological anthropology)? (2) When children
solve problems for which mental modules exist, they should know things they have not
been taught. (3) Neuroscience should discover that the brain tissue computing the problem
has some kind of physiological cohesiveness (tissue or subsystem). Pinker also lists some
possible modules, including: (1) Intuitive mechanisms: knowledge of the motions, forces
and deformations that objects undergo, (2) Intuitive biology: understanding how plants and
animals work, (3) Number, and (4) Mental maps for large territories. Here we explore
theories of time, space, and motion in cognitive sensor networks.



In summary, the Domain Theory predicates: (1) A representation of an innate theory and
inference rules for the theory, (2) A perceptual mechanism to determine elements of a set
and operators on the set, (3) A mechanism to determine that the set and its operators are a
model of the innate theory, and (4) Mechanisms to allow the exploitation of the model in
learning and belief construction.

In previous work, we have developed many aspects of sensor networks: an object-oriented
methodology called logical sensors for sensor networks, knowledge based multisensor sys-
tems, instrumented logical sensors, leadership protocols, simulation experiments, gradient
calculation, reaction-diffusion patterns and computational sensor networks (see [7, 8]). Our
most recent work on computational sensor networks emphasizes the exploitation of strong
models of the sensed phenomena (e.g., the heat equation), and showed how inverse solu-
tions to the model equations allows a solution to the mote localization problem, as well
as estimates of sensor bias. Thus, models are very important for sensor networks, and the
current work expands by demonstrating how models can be discovered.

A sensor network involves hardware, software, sensors, radios, and physical phenomena.
In order to handle this complexity, models are exploited to allow abstract descriptions and
a quantitative analysis of performance. For example, a sensor model usually describes the
resolution, quantization, accuracy, and noise associated with the sensor data. R/F models
describe a broadcast range and probability of packet reception. Models of the physical
phenomena range from PDE’s to finite state automata. With such models, it is possible to
determine the performance capabilities of a sensor network, as well as to adapt the sensing,
computation and communication to achieve more efficient operation. The major drawbacks
with this approach include: (1) models must be constructed and exploited by human effort,
and (2) models are usually static and may not be valid during execution. Thus, one of
our goals is to develop methods to address these issues allowing the sensor network to
become more cognitive by allowing it to: (1) learn models from its own observations, and
(2) validate models during operation by comparing model predictions to sensed data.

To achieve these goals, that is, to achieve a cognitive sensor network, we propose to provide
the sensor network with: (1) representations of innate theories and inference rules for the
theories, (2) a perceptual mechanism to determine elements of a set and operators on those
elements, (3) a mechanism to determine that the set and its operators are a model of an
innate theory, and (4) mechanisms to allow the exploitation of the model in learning and
belief construction. In [14] we demonstrated the last point by assuming that a theory of
symmetry was available, and showed that reinforcement learning was made much more
efficient on the Towers of Hanoi and the Cart-Pole Balancing problems. Here we address
the first three points by examining how a theory of symmetry might be used to construct
models of interest to a sensor network.



2 Symmetry Perception in Model Discovery

Symmetry plays a deep role in our understanding of the world in that it addresses key is-
sues of invariance. By determining operators which leave certain aspects of state invariant,
it is possible to either identify similar objects or to maintain specific constraints while per-
forming other operations (e.g., move forward while maintaining a constant distance from
a wall). For an excellent introduction to symmetry in physics, see [3]. In computer vision,
Michael Leyton has been a strong advocate of the exploitation of symmetry in computer
vision [9]; we have shown how to use symmetry in range data analysis for grasping [4].
Popplestone and colleagues showed the intrinsic value of this approach, particularly in as-
sembly planning problems [10], while more recently, Selig has provided a very technical
basis geometric basis for many aspects of advanced robotics using Lie algebras [15].

In our work, we follow the formal development provided by Popplestone and Grupen [12];
they develop a formal description of general transfer functions (GTF’s) and their symme-
tries. The basic idea is that a transfer function characterizes the input-output relationship
of a system. This means that they are functionals which map from a specification of how
the input to a system evolves over time to a specification of how its output evolves over
time. Their key question is: “How do world symmetries relate to symmetries of transfer
functions which are used to characterize reactive systems?” Their goal was to develop a set
of elementary controllers that would span the space of behaviors of interest. See Appendix
A for a summary of the propositions we use here to show how innate theories can be used
by a cognitive sensor network to build models of its own structure.

We use their theory to allow expression of symmetries as transfer functions (i.e., input-
output maps). Suppose we have a set of operators, S, their product, written as catenation,
and the following four axioms: (1) Closure: a, b ∈ S ⇒ a + b ∈ S, (2) Associativity:
a+ (b+ c) = (a+ b) + c, (3) Identity element: ∃e ∈ S such that a ∈ S ⇒ a+ e = a, and
(4) Inverse: ∀a ∈ S∃a−1 ∈ S such that a + a−1 = e. Then S is a group of operators.

Now let’s consider how this framework can be applied so that a sensor network can learn
models of sensed phenomena as well as its own structure. Suppose that we have a set
of sensor elements (SEL’s), and that each SEL is equipped with an intensity sensor and a
microphone. Moreover, the sensor at each SEL produces sequences of data which can be
collected and analyzed. Each sensor, S, is viewed as a map from the integers to the reals:
S : I → < (i.e., we assume that time steps are equal and just use the ordinals). Thus,
operators on < can be extended to act on sensor functions as described after Definition 1.
Thanks to Propositions 1 and 2, we are allowed to treat the symmetry operators on sensor
data as a group. Proposition 5 allows us to restrict our attention to translations on the
integers due to our time indexes.



Figure 2: Sensing Scenario for Moving Object with 2 SEL’s.

Assume we have theories for certain subgroups of SR, the symmetric group on < (i.e., the
set of all one-to-one mappings from < to <). Let I(<) be the group of isometries on <;
that is, I(<) is the subgroup of elements of SR which preserve distance:

σ ∈ I(<)⇔ (σ ∈ SR) ∧ ∀a, b ∈ <, d(a, b) = d(aσ, bσ)

If σ ∈ I(<), then rσ = εr + 0σ where ε = ±1. More specifically, rσ = r + a moves the
real line a units to the right, while rσ = −r+ a inverts about the origin and then translates
a units to the right. (See [1] for details.)

2.1 Discovering Sensor Models

We now show how symmetry in the sensor data can be used to determine which sensors
are similar (i.e., sense the same phenomenon). First, the signals are correlated, then the
maximum correlation is used to determine the possible translation isometry coefficient,
and finally, the transformed data are compared.

Suppose now that the sensor network has two SEL’s located at [−5; 0] and [5; 0] on the
x-axis. See Figure 2. Moreover, assume that an object moves at a constant velocity along
a line parallel and at distance 5 from the x-axis, and that the object emits light and a ramp
noise (i.e., a signal whose amplitude goes from 0 to 30 DB in steps of 5). Now let these
data sequences taken by the two SEL’s be considered as elements to be analyzed by the
network. The goal is to cluster these into similar sensor sets.

We propose as one set of building operator the correlation coefficient between shifted ver-
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Figure 3: Data from 2 SEL’s in Moving Object Scenario.

sions of the signals. The top row of Figure 3 shows the intensity and audio data recorded
by the two SEL’s (in simulation) for a two-cycle trip by the object. The bottom row shows
the correlation results among various pairs of signals. As can be seen, the linear, constant
velocity motion of the object results in translational symmetries in the data.

Consider now the translation operator described above. Since the maximum correlation
between I1 and I2 occurs at t = 100, we have that the translation operator is defined by
0σ = 100. This means that I1σ = I1(t + 100) = I2. There is then a translational sym-
metry between the two signals. This allows the sensor network to perform several control
operations: (1) Turn off redundant sensors to minimize energy usage, (2) Select a sensor to
minimize noise, (3) Use the sensor data at one sensor to predict the signal at another sensor
in order to detect bad data (e.g., drift, hysteresis, etc.), and (4) Use relations between the
sensor symmetries to solve the localization problem (e.g., where the sensors are located
with respect to a given coordinate frame). This very simple example demonstrates how a
theory of symmetry may be exploited by a sensor network to build effective models of its
own structure.

We have performed experiments with SunSPOT motes to corroborate the results found in
simulation. The experimental setup is shown in Figure 4. The two motes record intensity
data as a light emitting object moves along a line directly above the motes. Figure 5 shows
the data recorded from the two motes on a 2-cycle trip by the object. The symmetry dis-
covered in the data allows the transformation between the data of the two sensors to be
discovered as shown in the second row.
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3 Conclusions and Future Work

We have shown here that the exploitation of a simple theory of symmetry can allow a
sensor network to build models of its environment and its own structure. However, even
broader advantages arise. For example, given an appropriate theory, true statements can
be discovered (by syntactic inference or semantic truth analysis) which are beyond the
phenomena observed by the sensor network. Moreover, such theorems will be considered
true and need not have a probabilistic structure. Where competing theories exist in a single
cognitive sensor network (perhaps due to alternative axioms), it is possible to represent and
entertain contradictory conclusions (e.g., believe A and ¬A simultaneously), but without
falling into inconsistency since the source of the inconsistency can be referenced.

Another key question that arises is for which domains such theories might exist, as posed by
Pinker above. This gives rise to a vigorous future research agenda: (1) Which domains are
significant for cognitive sensor networks? Clearly, time space and sensor data are impor-
tant; but this also includes network and communication resources, energy, and some sort of
internal goals, (2) What theories are appropriate for which domains? (3) How can theories
be represented in the cognitive sensor network? (4) How can observations be mapped to the
appropriate theory (i.e., how are models created)? (5) How can such models be exploited
to improve learning? (6) How can such models be exploited to arrive at new knowledge?
These questions can be studied in animals as well as artificial cognitive agents, including
sensor networks, and give rise to deep questions about brain form and function, as well as
to the possible genetic coding of innate theories.

These also give rise to certain predictions concerning the exploitation of symmetry in hu-
mans and some requirements on cognitive sensor networks: (1) Cognitive sensor networks
should be able to perceive symmetry. That is, sensor data analysis mechanisms should exist
which respond to symmetric stimuli (as demonstrated here). (2) Mechanisms should exist
to exploit symmetric relations during learning. (3) Using symmetry should reduce the size
of the search space during learning (e.g., we have seen an order of magnitude reduction in
some problems).

Appendix A

Proposition 1 Let T be a GTF with input domain Uin and output domain Uout and preset
domain P . Let Σ be a set of operators acting on these domains. Then the set of full
symmetry operators on T form a group.



Proposition 2 The product of transfer functions is associative, with the identity transducer
as its identity.

Proposition 5 Let Σ
′ ⊂ Σ be a group of full symmetries of a transfer function T whose

input space is U , whose output space is X and whose preset space is P . Let θ = 1/Σ
′ .

Then the function T/Σ
′

defined by (T/Σ
′
)(u.θ, p.θ) = T (u, p).θ is a GTF.
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