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Abstract

The automatic classification of semantic classes (background, vegetation, roads, water, political bound-
aries, iso-contours) in raster map images still poses significant challenges. We describe and compare the
results of three unsupervised classification algorithms: (1) k-means, (2) graph theoretic (GT), and (3) ex-
pectation maximization (EM). These are applied to USGS raster map images, and performance is measured
in terms of the recall and precision as well as the cluster quality on a set of map images for which the ground
truth is available. Across the six classes studied here, k-means achieves good clusters and an average of
78% recall and 70% precision; GT clustering achieves good clusters and 83% recall with 74% precision.
Finally, EM forms very good clusters and has an average 86% recall and 71% precision.
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1 Introduction

Digital maps contain a wealth of information which can be used for a variety of applications, including the
analysis of cultural features, topographical terrain shape, land use classes, transportation networks, or maps can
be registered (conflated) with aerial images in order to localize and identify photo imagery structures. Unfortu-
nately, raster map images are typically encoded in such a way that semantic features are difficult to extract due
to noise, error or overlapping features. Semantic features of interest include roads, road intersections, water
regions, vegetation, political boundaries, and iso-elevation contours. This is still a difficult problem, although
various techniques have been proposed in the past[1, 2, 6]. We have worked on road segmentation and road
intersection detection [4, 5].

Our goal is to achieve a semantic segmentation of an arbitrary raster map image through the use of unsuper-
vised classification algorithms. An example USGS map sub-image is shown in Figure 1. We are interested in
six basic classes:

• Background

• Vegetation

• Roads

• Water

• Political Lines

• Iso-contours

Figure 2 shows the ground truth for these classes for the map in Figure 1.



Figure 1: Example USGS Map Sub-image (200x200).

2 Method

The ground truth was determined using a knowledge-based analysis of a set of sub-images (200x200 pixels)
taken from ten USGS map images. (Appendix A shows the ten test images taken from the USGS maps.) These
maps use six colors (black, white, blue, red, brown, green), and are given as indexed images (i.e., the colors
have indexes 0, 1, 2, 3, 4, 5). The classification analysis process is shown in Figure 3. The index histogram is
based on a w × w window at each pixel. The cluster centers are the representative histogram for a class, and
the covariance matrix gives the variation between the colors for that class. These models are found by using
a subset of n samples from the index histogram image. The number of classes may be pre-defined (as with
k-means) or determined automatically by the method (e.g., GT). Thus, the parameters of study across the three
algorithms are w, the histogram window size, n, the number of samples used to construct the model, and k, the
number of classes sought.

The quality measures for the class models are defined in terms of:

• the cluster inter-center distances where, in general, a greater value is better, and

• the distances of points in the cluster from the center where a smaller value is better.

As for the quality of the classification result, recall and precision are defined as:

recall =
| relevant ∩ retrieved |

| relevant |

precision =
| relevant ∩ retrieved |

| retrieved |
where relevant is the set of ground truth pixels in a class and retrieved is the set of pixels segmented into that
class by the algorithm. The general layout of the classification process is:
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Figure 2: Classes from Example Image.

Algorithm: Classification Test Process

for each test image
for each w in Window_sizes
for each n in Sample_sizes
for each k in Number_of_classes
Obtain class centers (means and covariances)
Compute class quality
Compute recall and precision

end
end

end
end

Compute statistics over all test images

The algorithms under study include k-means, GT and EM. k-means initially selects k random centers, then
alternates between assigning points (i.e., histogram vectors) to the nearest center and calculating the centers as
the means of the points in the cluster. The graph theoretic method forms an affinity measure between all sample
points (e.g., exp−|p1−p2|), then obtains the eigenvalues and eigenvectors of that matrix; finally, the eigenvectors
serve to classify pixels in each class. The EM algorithm alternates between the expectation calculation step and
the maximization step to determine the set of classes. See [3] for more details on these three methods.

The centers and covariances are found for each classification algorithm by computing the mean of the sample
points segmented into a class, and the covariance of those points. Although these are produced directly by k-
means and EM, this is done after the fact for GT based on the set of points in the sample.

The map image is classified by simply labeling each pixel according to the closest center to the pixel’s index



Figure 3: Segmentation Analysis Process.

color histogram. Note that the method cannot know which, if any, of its discovered classes correspond to
ground truth classes. Therefore, we determine the recall and precision by mapping each discovered class to the
nearest (Euclidean distance) ground truth class mean histogram vector.

3 Data

Here we give the results of the Algorithm Classification Test on the three algorithms. The possible values for
the parameters were:

• k-means:

w ∈ {1, 3, 5}

n ∈ {1000, 2000, 3000}
k ∈ {6, 8, 10}

• Expectation Maximization (EM)

w ∈ {1, 3, 5}

n ∈ {1000, 2000, 3000}
k ∈ {6, 8, 10}

• Graph Theoretic

w ∈ {1, 3, 5}

n ∈ {25, 50, 75}
s ∈ {0.1, 10, 20}

These w values correspond to a single pixel (w = 1) up to a window that almost always includes background
with any linear feature. The values of n range from about 25% of linear features in an average 200 × 200
sub-image, up to the full number of linear features in a typical sub-image. Of course, there is no guarantee that
pixels in a linear feature will be selected as samples. The number of classes of interest is six; however, not



w n k mean recall mean precision recall + precision
1 2000 8 0.78 0.70 1.48
1 3000 10 0.78 0.70 1.48
1 2000 10 0.77 0.70 1.47
1 1000 10 0.78 0.69 1.47
1 3000 6 0.79 0.67 1.46
1 1000 6 0.80 0.66 1.46
1 3000 8 0.78 0.68 1.46
1 2000 6 0.80 0.66 1.46
1 1000 8 0.77 0.68 1.45
3 1000 10 0.59 0.54 1.13
3 2000 10 0.58 0.53 1.12
3 2000 8 0.59 0.52 1.11
3 3000 10 0.58 0.53 1.11
3 1000 8 0.59 0.52 1.11
3 3000 6 0.60 0.49 1.09
3 1000 6 0.60 0.49 1.09
3 2000 6 0.60 0.49 1.09
3 3000 8 0.58 0.51 1.09
5 2000 10 0.49 0.45 0.93
5 3000 6 0.52 0.42 0.93
5 1000 10 0.49 0.45 0.93
5 2000 8 0.49 0.44 0.93
5 3000 10 0.48 0.44 0.93
5 1000 6 0.50 0.42 0.92
5 1000 8 0.49 0.43 0.92
5 2000 6 0.50 0.41 0.91
5 3000 8 0.48 0.42 0.91

Table 1: k-means Ranked Parameter Combinations (first 3 values per row), followed by average recall (over all
classes all images), average precision, and sum of average recall and precision.

all classes may be present in a sub-image; moreover, pixels at the boundary of two classes actually represent a
different class (e.g., vegetation-water boundary). Finally, the s value is a distance scaling measure in the graph
theoretic method which controls the scale of the affinity.

There are 27 combinations of w, n, and k/s values. Tables 1 through 3 give the parameters of the top
performing combinations and the recall and precision values averaged over all classes and all images. Figure 1
shows an example raster map image of size 200 × 200, while Figure 2 shows the ground truth for this image.
Figure 4 shows the classes found by k-means; Figure 5 shows the graph theoretic classes, and Figure 6 shows
the EM classes.

4 Conclusions and Future Work

The results show that the three clustering methods perform well for unsupervised raster map image classifica-
tion. Moreover, the optimal parameters all have the window size set to 1 × 1 (a single pixel). However, the
models developed do a little better than simply classifying each pixel based on its color which achieves recall
of 80% and precision of 72% for a sum of 1.52; this is worse than graph theoretical and EM, but better than k
means.



w n s mean recall mean precision recall + precision
1 50.0000 0.1000 0.8282 0.7414 1.5697
1 25.0000 0.1000 0.8282 0.7414 1.5696
1 75.0000 0.1000 0.8282 0.7414 1.5696
3 25.0000 0.1000 0.8203 0.6895 1.5098
3 50.0000 0.1000 0.7786 0.6798 1.4585
3 75.0000 0.1000 0.7511 0.6765 1.4276
1 75.0000 20.0000 1.0000 0.2662 1.2662
5 25.0000 0.1000 0.6680 0.5798 1.2478
1 75.0000 10.0000 1.0000 0.2330 1.2330
5 25.0000 10.0000 0.6439 0.5890 1.2329
5 75.0000 10.0000 0.6375 0.5921 1.2295
1 50.0000 20.0000 1.0000 0.2228 1.2228
5 50.0000 10.0000 0.6343 0.5821 1.2164
1 50.0000 10.0000 1.0000 0.1998 1.1998
3 75.0000 20.0000 1.0000 0.1908 1.1908
1 25.0000 10.0000 1.0000 0.1897 1.1897
1 25.0000 20.0000 1.0000 0.1803 1.1803
3 50.0000 20.0000 1.0000 0.1793 1.1793
3 25.0000 20.0000 1.0000 0.1788 1.1788
5 50.0000 0.1000 0.6006 0.5613 1.1619
5 50.0000 20.0000 0.5122 0.6280 1.1402
5 75.0000 20.0000 0.4758 0.6354 1.1112
3 75.0000 10.0000 0.4547 0.6468 1.1016
5 75.0000 0.1000 0.5483 0.5504 1.0987
3 50.0000 10.0000 0.4402 0.6480 1.0881
3 25.0000 10.0000 0.4144 0.6662 1.0807
5 25.0000 20.0000 0.4384 0.6330 1.0713

Table 2: Graph Theoretic Ranked Parameter Combinations (first 3 values per row), followed by average recall
(over all classes all images), average precision, and sum of average recall and precision.



w n k mean recall mean precision recall + precision
1 3000 8 0.8644 0.7054 1.5697
1 2000 8 0.8681 0.6850 1.5532
1 3000 10 0.8515 0.7011 1.5526
1 1000 10 0.8482 0.7023 1.5505
1 2000 10 0.8503 0.7001 1.5504
1 1000 8 0.8549 0.6897 1.5446
1 1000 6 0.8710 0.6719 1.5429
1 2000 6 0.8784 0.6637 1.5421
1 3000 6 0.8764 0.6628 1.5392
3 2000 8 0.9550 0.2114 1.1664
3 3000 10 0.9519 0.2123 1.1642
3 2000 10 0.9518 0.2120 1.1638
3 1000 8 0.9540 0.2093 1.1633
3 3000 8 0.9568 0.2063 1.1630
3 1000 6 0.9577 0.2034 1.1611
3 1000 10 0.9509 0.2081 1.1589
3 3000 6 0.9599 0.1986 1.1584
3 2000 6 0.9599 0.1948 1.1547
5 1000 6 1.0000 0.0171 1.0171
5 1000 8 1.0000 0.0171 1.0171
5 2000 6 1.0000 0.0171 1.0171
5 3000 6 1.0000 0.0171 1.0171
5 3000 8 1.0000 0.0171 1.0171
5 2000 8 0.9716 0.0176 0.9892
5 3000 10 0.9541 0.0187 0.9728
5 1000 10 0.9455 0.0186 0.9641
5 2000 10 0.9408 0.0188 0.9596

Table 3: Expectation Maximization (EM) Ranked Parameter Combinations (first 3 values per row), followed
by average recall (over all classes all images), average precision, and sum of average recall and precision.
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Figure 4: k-means Segmentation Results.

The fact that a small number of samples can be used is also good; the graph theoretic method must calculate
the eigenvalues of an n× n affinity matrix, and thus, the lower n, the better.

Of course, these are relatively simple raster map images with only six colors. It is necessary to study these
methods on map images with more colors. This will increase the length of the histogram vectors unless some
form of color clustering is performed first to reduce the number of color classes. This may require conversion
to a color representation with a reasonable distance metric between colors (i.e., where various types of blue are
close in the metric space).

Another issue worthy of study is a more informed method to select samples. It may be worthwhile to
ensure that samples represent the variety of classes in the image (as opposed to the standard sampling goal of
proportional representation of the sampled population). It may be possible to use edge detection to distinguish
class boundary pixels or texture parameters to determine classes expressed as textures. Of course, edge and
texture information may be included in the feature vector (in addition to the color histogram).

Finally, all these classification methods have a variety of possibilities in algorithm implementation. Initial-
ization methods, re-starting empty classes, thresholds, and distance measures all offer a number of options
which should be studied.
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A Test Images

Figure 7 shows the ten test images used in the study.
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Figure 5: GT Segmentation Results.
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Figure 6: EM Segmentation Results.

Figure 7: Test Images.


