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It has become increasingly popular to study animal behaviors with the assistance of video recordings.
An automated video processing and behavior analysis system is desired to replace the traditional manual
annotation. We propose a framework for automatic video based behavior analysis systems, which consists

Keywords: . of four major modules: behavior modeling, feature extraction from video sequences, basic behavior
Vector fusion . . . .. . .
Affinity graph unit (BBU) discovery and complex behavior recognition. BBU discovery is performed based on features

extracted from video sequences, hence the fusion of multiple dimensional features is very important. In
this paper, we explore the application of feature fusion techniques to BBU discovery with one and multiple
cameras. We applied the vector fusion (SBP) method, a multi-variate vector visualization technique, in
fusing the features obtained from a single camera. This technique reduces the multiple dimensional data
into two dimensional (SBP) space, and the spatial and temporal analysis in SBP space can help discover
the underlying data groups. Then we present a simple feature fusion technique for BBU discovery from
multiple cameras with the affinity graph method. Finally, we present encouraging results on a physical
system and a synthetic mouse-in-a-cage scenario from one, two, and three cameras. The feature fusion

Basic behavior unit
Feature extraction
Multiple cameras

methods in this paper are simple yet effective.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It has become an increasingly important research area to
automatically analyze object behaviors from visually (e.g., motion)
captured data or video recordings. The major tasks are to
automatically detect and track objects from video sequences
and analyze its high level activities or behaviors. Humans and
vehicles have been mostly the focus of the visual surveillance
and behavior understanding research [1-4] for security purposes,
e.g., access control in certain area, anomaly detection in crowded
mass transportation area, etc.

In areas of biology, pharmacology, toxicology, entomology and
animal welfare, video recordings are popularly used to analyze
the behaviors of animals (e.g. lab mice, rodents, poultry, wild
animals, etc.) The traditional human annotation approach is time
consuming and results may vary from one observer to another.
Hence the automatic animal behavior analysis from visual data
is drawing more and more attention in both the research and
industrial community [5,6].

In the area of visual robot control, it is also desired for robots to
automatically learn and recognize behaviors from motion capture
or visual data [7-9], which would enable the intelligent robots to
respond according to the visual information captured by cameras.
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Among all the efforts made in an automated behavior
analysis system, the basic behavior unit (BBU) classification (or
segmentation) is one important task [10]. Usually the sequences
of visual data from images need first to be grouped into BBUs [11],
or primitive (atomic) behaviors [7], and then complex behaviors
are analyzed based upon the relationship between the BBUs
and context. Prior to the BBU segmentation step, spatiotemporal
features are usually extracted. In the literature, interest points,
shape properties of the detected object blobs, contours, or features
derived thereby are used to perform BBU classification. Feature
extraction itself is an important task.

In the literature, researchers has been trying to solve the
BBU classification and feature extraction tasks separately. In this
paper, we take a integrated approach and propose a framework
for such an automatic behavior analysis system. We first present
the framework, and then focus on investigating feature fusion
techniques in BBU discovery: we will present the exploration of the
vector fusion method [12] in feature dimension reduction, and the
fusion of features from multiple cameras using the affinity graph
method.

Our research is motivated by the need of a professor in
medicine, who is interested in the automatic video analysis of
behavior changes before and after injecting certain medicine to the
lab mouse, as shown in Fig. 1. The behaviors interested includes
resting, eating, exploring, and mostly importantly, grooming. In
this paper, we use behaviors of the mouse-in-cage scenario for our
experiments and analysis.



240 X. Xue, T.C. Henderson / Robotics and Autonomous Systems 57 (2009) 239-248

/ e*'_i:ﬁg«asﬂa%f
‘5.\\\35"3 ‘\k

_« Behavior |
Modelmg [

o X

Extract BBU
I

1 Features Discovery

e Bmldl J' Use o
|

g . R
Behavior
Sequences

" Animal
Video |

Complex
Behavior

Fig. 2. Work-flow for Video Based Behavior Analysis.
2. Automatic animal behavior analysis framework

Here we present a four-module framework for video animal
behavior analysis: behavior modeling, feature extraction, basic
behavior unit (BBU) discovery, and complex behavior analysis, as
shown in Fig. 2 (see [10] for a detailed description of relationships
between the four blocks enclosed in the dashed box).

Behavior modeling. We need to define, characterize, and repre-
sent the behaviors of interest in terms of three factors: physical
(spatiotemporal) features; the relationship between these behav-
iors; and the relationship between the animal and its environ-
ment. This step interacts with the other three modules. The behav-
ior characterization can then drive the task of feature extraction
for basic and complex behaviors (or behavior pattern) recognition,
which may in turn help the interpretation of behaviors. Further-
more, another important component in this block is the internal
generative model driving the behaviors of an animal [11], which
can be helpful in behavior recognition or prediction.

Feature extraction. To be able to distinguish behaviors, we
need to be able to extract sufficient spatiotemporal physical
features of the object from video sequences that represent
different behaviors. The features may include: the object’s position,
posture, speed, contour or region pixels, kinematics and dynamics,
motion patterns, etc. We may also need to extract features of
the environment, and calculate any other features that can be
calculated from these basic features. This process usually requires
the ability to detect and track objects from video sequences.
Feature dimension reduction and fusion may be necessary when
the feature dimensionality is high and features come from more
than one sensors.

Discovery of basic behavior units (BBUs), or behavioral segmen-
tation. BBUs are the behavior primitives and higher level analy-
sis will be carried out in terms of these. A BBU can be defined as
an activity that remains consistent within a period of time, and
that can be represented by a set of spatiotemporal variables or fea-
tures. This step is based upon successful feature extraction. For a
mouse-in-cage example, the BBUs of a mouse in a cage can be rest-
ing, exploring, eating, grooming, etc. The process of BBU extraction

involves mapping the extracted physical features to distinctive be-
havior units, hence classifying subsequences of the video frames
into a sequence of BBUs. BBUs of interest are usually defined for
specific applications. The choice of BBUs are completely applica-
tion dependent.

Complex behavior analysis. A complex behavior consists of
multiple BBUs with spatial or temporal relationships between
them. It is in a higher level of behavioral hierarchy. Once basic
behaviors are discovered, complex behaviors can be constructed
and analyzed based upon the relationship between the animal’s
basic behaviors, the interactions of the animal with environment,
and with other animals.

In this paper, we concentrate on the feature extraction and
BBU discovery modules. We present and discuss feature fusion
from one and multiple cameras for BBU discovery. The rest of the
paper is organized as follows: Section 3 describes the related work;
Section 4 presents the vector fusion method for BBU discovery;
Section 5 presents the affinity graph method for BBU discovery
and its extension to multiple cameras; Section 6 presents our
experiments and shows the results; finally, conclusions are drawn
in Section 7.

3. Related work

In the visual surveillance literature, most of the existing
techniques extract basic behaviors (or actions) directly based
upon one or more features extracted (trajectory, motion, posture,
etc.) from the detection and tracking results. Pattern recognition
techniques (template matching, clustering analysis) are used to
classify the video sequence into actions or behavior units, as
discussed in the survey papers [1-4]. These methods are effective
in their specific applications. The idea is to utilize all the available
distinguishing features to perform classification.

Recently, new approaches based on data (or feature) variance
or similarity analysis have been developed for discovering BBUs:
PCA-related techniques [7,9], and affinity graph-based techniques
[13,11,14]. The former capture the variance in a dataset in terms
of principle components, and the latter utilize the degree of
similarity between the data elements. The commonality of these
two approaches lies in the fact that, first a covariance matrix
(for PCA) or affinity matrix (for affinity method) is constructed,
then Singular Value Decomposition (SVD) is performed to derive
eigenvalues and eigenvectors. Segmentation is performed upon
the eigenvector corresponding to the largest eigenvalue.

PCA-related techniques. Jenkins [7] employs a spatiotemporal
nonlinear dimension reduction technique (PCA-based) to derive
action and behavior primitives from motion capture data, for mod-
ularizing humanoid robot control. They first build spatiotemporal
neighborhoods, then compute a matrix D of all pairs’ shortest
distance paths, and finally perform PCA on the matrix D. Barbic
et al. [9] propose three PCA-based approaches which cut on where
the intrinsic dimensionality increases or the observed distribution
of poses changes, to segment motion into distinct high-level be-
haviors (such as walking, running, punching, etc.).

Affinity graph method. The affinity graph method has mostly been
applied in image segmentation, as summarized in [15]. Recently,
this method has been applied to event detection in video [13,14].
Though not exactly the same approach, the concept of similarity
matrix for classification is applied in gait recognition [16] and
action recognition [17].

Different affinity measures have been proposed to construct the
affinity matrix. In image segmentation, distance, intensity, color,
texture and motion have been used [18]. In video-based event
detection, as in [13], a statistical distance measure between video
sequences is proposed based on spatiotemporal intensity gradients
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at multiple temporal scales. [14] uses a mixture of object-based
and frame-based features, which consist of histograms of aspect
ratio, slant, orientation, speed, color, size, etc., as generated by the
video tracker. Multiple affinity matrices are constructed based on
different features, and a weighted sum approach is utilized for
constructing the final affinity matrix.

The most closely related methods to our work are [13,14]. [13]
constructs an affinity matrix from temporal subsequences using a
single feature, while [14] constructs the affinity matrices for each
frame based upon weighted multiple features.

We are particularly interested in discovering animal behaviors
from video sequences. We propose a framework for discovering
basic behaviors from temporal sequences based on multiple
spatiotemporal features. In our approach, we combine the
advantages of the approaches from [13,14]: (1) We use a
classification tree approach with the affinity graph method.
(2) We construct the affinity matrix on a subsequence of the
frame features (multiple-temporal scale), instead of on one frame.
Thus we can encode the time trend feature into the problem, and
capture the character of the gradual temporal changes. (3) We
apply the affinity graph technique to multiple cameras. Multiple
cameras have been used in human posture classification [19,20],
where either multiple 2D information fusion or reconstructed 3D
information is used. Approaches other than the affinity graph
method are used. In our work, we use the multiple camera image
information in the simplest way to demonstrate the effectiveness
of multiple cameras.

In most of the BBU segmentation methods, the feature
data usually have a large dimension, which usually makes the
algorithms computationally expensive. Hence feature dimension
reduction is often applied before applying BBU segmentation
algorithms. The vector fusion method [12,21], is inherently one
such technique: it reduces an arbitrarily large dimension to a two
dimensional space, which can help discovering the underlying
structure of the data. This method was originally proposed as an
aid for visualizing the structure of multiple dimensional data, and
has also been applied in characterizing and measuring data. Here
we propose to explore its applicability in grouping behavioral data.

4. The vector fusion algorithm for BBU segmentation

In this section, we describe Johnson’s vector fusion method
(denoted as SBP — Single-point Broken-line Parallel-coordinate in
[12,21]) and how we apply it in BBU discovery.

The vector fusion method is a vectorized generalization of the
parallel coordinates [22] method for visualizing multi-dimensional
datasets, which allows one to see any number of dimensions
concurrently by arranging the coordinates parallel to each other.
The vector fusion method maps a multi-variate vector into a 2D
vector, by adding each element of the row (the multi-variate
vector) rotated by some angle to the prior one, and summing the
whole row to a single-end-point resultant, as expressed in Eq. (1).

w = w1e191 + w2e192 + . + wdeled

=Y wicos(®) +i Y wisin(6)
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= (wsum x> Wsum y)
= (SBPx, SBPy) 1)

where

6; = (i— 1)180°/d

d is the dimension of the multi-variate vector

wj is the feature value of the ith dimension.

This concept is further demonstrated in Fig. 3, which shows
how the 4 dimensional vector is fused to form a two-dimensional
vector (coordinate). By fusing each element vector of the data, and
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Fig. 3. Vector fusion demonstration (vector of 4 dimensions, @ = 45°).

plotting the final coordinate sequence, this method is able to reveal
some underlying structure within the data. The advantage of this
method is its simplicity in representing the multiple-dimension
vectors. However many dimensions the data element may have,
it reduces it to a two dimensional coordinate in SBP space. Johnson
has demonstrated its effectiveness in several applications, such as
spectral signature identification, medical data analysis, etc.[12,21].

We are interested in BBU segmentation of visually captured
data. The data we have are multiple dimensional sequential
feature points, either extracted from video sequences, or calculated
analytically. By applying the vector fusion method, the multiple
dimensional data is reduced to two-dimensional points in SBP
space. We analyze the 2D SBP points in two ways: one is to
directly find the spatial structure of the sequence in the SBP space,
i.e., identifying clusters of SBP points; the other is to analyze the
temporal properties in the SBP space, and discover motion patterns
for different BBUs. This can be considered the training process.
Then we can group BBUs based upon the spatial and temporal
properties of the SBP points.

In Section 6, we present and discuss the results of applying
this approach to different dataset, which are based on simulations
of a physical system, and an artificial mouse that mimicks the
behaviors of a real mouse in a cage scenario.

5. BBU discovery with multiple cameras

5.1. The affinity graph method

We propose to use the affinity graph method, an unsupervised
learning method to discover basic behavior units. Firstly, the
spatiotemporal features are extracted from video frames, as in
the Feature Extraction block, shown in Fig. 2. Then we take a
subsequence (of length T) of the features extracted from video
images as an element, and calculate the affinity measure between
each pair of elements to construct the affinity matrix. Each element
overlaps with the next element by a couple of frames, as shown in
Fig. 4, like a sliding window.

This is done by choosing an element for consideration. Next a
matrix is constructed in which each (i, j) entry gives an affinity (or
similarity) measure of the ith and jth elements. The eigenvalues
and eigenvectors of the matrix are found, and the eigenvalues
give evidence of the strength of a cluster of similar elements. As
described in [18,23], if we maximize the objective function wzﬁwn
with affinity matrix 4 and weight vector w, linking elements to
the nth cluster, and requiring wlw, = 1, then the Lagrangian is:

w;Awn + )\(w:wn -1
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Fig. 4. Demonstration of video image subsequence.

where A is Lagrangian multiplier. Differentiation of this formula
and dropping a factor of two leads to solving Aw, = Aw.
Therefore, w, is an eigenvector of 4. The eigenvector correspond-
ing to the largest eigenvalue is used to partition the data into two
clusters. Then we can iteratively partition the eigenvector corre-
sponding to the next significant eigenvalue until there are no more
major clusters [18].

After the eigenvector is generated by Singular Value Decom-
position (SVD), a thresholding technique is applied to partition
the eigenvector. In [23], manual threshold selection is used, while
in [24], the median or a threshold (by search) that minimizes the
CUT or NCUT value (see [24]) is used. Here we take a different ap-
proach. We first calculate the accumulative histogram of the eigen-
vector, and smooth it with a Gaussian kernel, and then find the first
threshold value that has gradient value smaller than a certain per-
centage of the number of bins, say 10%. This seems to be effective
for our experiment.

The affinity measure we use is the exponential function as used
in [18,23,24]:

aff (e1, €2) = exp{—((f(e1) — f(€2))'(f(e1) — f(€2))/257)}.

Our approach differs from the closest literature [13,14] as
described in the related work in four aspects: (1) We construct
one affinity matrix based on a feature vector consisting of a set of
weighted features, instead of calculating affinity matrices for each
feature. The combined features provide us with more information.
(2) We propose a sequential hierarchical BBU segmentation based
upon the distinguishing power of the features. We first use this
method to split the video sequences into static and dynamic
groups, and then further split each of the static and dynamic groups
into BBUs. (3) We construct the affinity matrix on a subsequence
of the frame features (multiple-temporal scale), instead of on
one frame. Selecting the optimal affinity measure, and time scale
(length of the subsequence) is our next step. (4) We also apply this
approach to multiple camera scenarios.

5.2. Affinity graph method for single and multiple cameras

For the one camera case, each element consists of a stack of
spatiotemporal features extracted from a subsequence (of length
T) of video images. Here we denote each element as E[T][D] (D
is the feature dimension). For multiple cameras that capture the
video synchronously, we simply construct the affinity matrix based
on elements that concatenate features from the multiple cameras:
e.g., the length of the new feature vector for each image is doubled
or tripled and so on. So each element is now E[T][n * D] (n is the
number of cameras). This is simple, but we are going to show that
it is effective.

Extract Video
Features

/ Intrinsic Feature BB
BBUs auables Scleutlo 1scovery.

Fig. 5. Feature extraction steps.

5.3. Feature extraction and selection

As in the framework shown in Fig. 2, features need to
be extracted and selected prior to performing BBU discovery.
Basically, our methodology [25] starts from BBUs to find the
intrinsic variables (based on the notion of intrinsic images in [26])
that can characterize and distinguish them, and then find the
corresponding best suitable spatiotemporal features to use for BBU
discovery. Several critical questions need to be answered:

(1) What are the intrinsic variables for BBU discovery?

(2) What video features allow recovery of the intrinsic variable
values?

(3) What methods to use to extract those features?

(4) How does feature error relate to BBU error?

To answer these questions, the feature extraction and selection
module needs to be implemented in the following steps, shown in
the Fig. 5.

Generally, a human or animal behavior can be characterized in
terms of variables in global motion, local motion, posture, dynam-
ics, orientation, shape, substructure, contexts, etc. depending upon
specific BBUs. Let’s consider as an example a synthetic mouse sce-
nario consisting of resting, exploring, eating, and grooming BBUs
described in Section 6.

The first question is how to determine the intrinsic variables.
The following criteria are the general guidelines in finding the
intrinsic variables and video features:

e Complete. A sufficient number of intrinsic variables need to be
found to ensure the full recovery of the BBUs.

e Independent. It is desirable that these variables are independent
from each other, hence their distinguishing power fully utilized.

e Minimal. It is desirable that the set of intrinsic variables are
minimal, hence less redundancy, which would reduce the
search in feature space.

For the synthetic mouse, the three variables are: (1) Global
motion (speed of the mouse body). The explore behavior can be
distinguished. (2) The local motion pattern (kinematics of the head
or limbs of the mouse). This can distinguish grooming behavior
from the other BBUs. (3) The posture of the mouse (orientation)
and its changing pattern, and the distance of the mouse to the food
tank. These variables can distinguish the eat behavior from the rest
of BBUs. The global and local motion variables can single out the
rest behavior. The value of these variables can be directly derived
from the simulation process. We add noise to these variable values
to see how feature noise affects the BBU discovery result.

Next, we find the corresponding features from the synthetically
generated mouse video. (1) For global motion variable, we can
calculate the speed of the centroid of the bounding box of the
detected mouse. (2) For the mouse body posture, we can compute
the orientation of the mouse and the eccentricity of its bounding
box. (3) The local motion variable of the head and limbs of the
mouse can not be directly obtained from the video, but we can
approximate this variable by means of calculating the change
pattern of the optical flow or the motion history image (MHI) [27].
To extract these features, we need to detect and track the animal
silhouette, and calculate these features.

Each intrinsic variable can be translated into more than one
video features. Here a feature selection algorithm can be applied.
The impact of feature errors on BBU errors can be simulated
by degrading the feature values with additive Gaussian noise, as
discussed in [25].
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5.4. The classification tree approach to BBU discovery

The one-vs-all approach has been popular in the literature.
Here we propose to use the classification tree approach (sequential
hierarchical classification) with the affinity method, as shown in
Fig. 6:

(1) Select the feature set with most distinguishing power,
and perform the affinity graph method with these features. This
segments the image sequence into several segments.

(2) Select the next feature set with most distinguishing power,
and perform BBU segmentation with these features on the
segments produced by the previous step.

(3) Repeat step (2) with the rest of the features.

This hierarchical approach is advantageous in utilizing domain
knowledge, and is computationally more efficient.

6. Experimental results

6.1. Vector fusion for BBU discovery

We have experimented with the vector fusion method with
data derived from two cases: (1) a bouncing ball, and (2) an
artificial mouse.

6.1.1. Bouncing ball

Data: In this case, a ball falls down and bounces back, assuming
no friction. A temporal sequence of the ball position and speed
is generated by simulation, as shown in Fig. 7. The BBUs to be
distinguished are ‘falling down’, ‘bounce’, and ‘rising up’. We use
the position and velocity of the ball as input feature data (2D), with
the length of 100.

Result: The result of applying vector fusion method to the
bouncing ball is shown in Fig. 8. Note that, in this figure, as well
as in the Figs. 11-17, the horizontal axis is the SBP, coordinate,
and the vertical axis is the SBP, coordinate. In the bouncing ball
example, the point where the ball reaches its highest position
corresponds to the rightmost point (denoted as P1) in Fig. 8, the
point where the ball has the lowest position corresponds to the
upper-left-most point (denoted as P2) in Fig. 8, and the point
immediately after the lowest position corresponds to the bottom-
left-most point (bouncing point, denoted as P3) in Fig. 8. The
‘falling down’ BBU corresponds to the section of curve between the
P1 and P2, ‘bounce’ corresponds to the transition from P2 to P3,
and ‘rising up’ corresponds to the curve from P3 to P1.
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Fig. 7. Bouncing ball example (position and speed).
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Fig. 8. Vector fusion result for bouncing ball (position and speed). Horizonal axis:
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6.1.2. Artificial mouse video data

We synthesized several clips of the mouse-in-cage scenario,
where the artificial mouse is constructed with ellipsoids. There are
four behaviors simulated in this video, shown in Fig. 9:

e Resting. No movement. The body and limbs do not move.

e Exploring. The body moves in random directions, while the
limbs move in such a fashion: the front right and back left legs
move at the same pace (same rotating angle), and the front left
and back right legs move at the same pace.

e Eating. Reaching up to the ‘food’ above (represented as a little
sphere), and getting down, and repeat up and down.

e Grooming. Standing on tail with two front legs brushing the
head with slight body motion.

This 2000-frame synthetic video sequence consists of 8 rest
segments, 4 segments of reaching up, 2 grooming segments, and
the rest are exploring segments, as shown in Fig. 10.

Data. The feature data are obtained in the following two ways:

e Extraction from synthetic video data: First, the artificial
mouse blob is tracked and extracted from each frame by
simple background subtraction method. Then we calculate
the following features: the speed (x,y), aspect ratio, filling
ratio, the orientation of the extracted bounding box of the
synthetic mouse blob, and the orientation of the mouse. Here
the orientation can be simply approximated by its angle from
horizontal line. Each feature element is a 5-D vector.
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(a) Rest.

(b) Explore.

(c) Eat.
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(d) Groom.

Fig. 9. Synthetic mouse-in-cage scenario video clips.

Ground Truth: Rest= 0, Explore =1, Eat =2, Groom = 3
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Fig. 10. Behaviors in the synthetic video sequence. Rest = 0, Explore = 1,Eat = 2,
Groom = 3.

e Direct analytical data from simulation: We use a selection
of the following features that are calculated analytically or
recorded during simulation: position (x, y, z), speed (vx, vy, v;),
orientation (6, 6y, 6,), and orientation change (dé,, d6,, do;,)
of the body and four limbs of the artificial mouse simulation.
Both position and orientation are derived analytically from the
simulation. Each feature element is a 60-dimensional vector.

Results. In all the experiments, each selected feature has the same
weight. For the feature data extracted from the synthetic video, the
results are shown in Figs. 11 and 12. The four BBUs are not clearly
separated.

For the analytical artificial mouse data, if we use all 60-
dimensional feature data, the vector fusion result does not
distinguish the behaviors either. Fig. 13 uses absolute position of
the mouse body and limbs, the orientation is in radians (0-2).
Fig. 14 shows the result using relative position of the limbs
(relative to the mouse body), and the orientation is in radians.
The result of using relative position using radians starts to show
some kind of pattern for different BBUs, comparing to using
absolute positions. This is reasonable, since the relative motion
of the limbs best distinguishes the four BBUs. Also, we found
that proper normalization is needed for each dimension of the
feature data. Otherwise, the result would not be meaningful. Here
in these experiments, we normalize each feature by its mean. An
alternative could be z-scaling, i.e., use the difference with mean
divided by standard deviation.

Based upon the previous results and the analysis of motion
pattern (Explore, Eat, and Groom also exhibit some periodic limb
motion) for each BBU for the analytical data, we changed to use
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Fig. 11. Vector fusion result for mouse BBU.
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Fig. 12. Vector fusion result for mouse BBU Zoom In. ‘e’—Rest, Green ‘x’—Explore,
‘+'—eat, Yellow ‘x'—Groom. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

only artificial mouse limb orientation (rotation angles relative to
the mouse body—local motion). Each dimension of the feature
data is normalized to the range of 0-1. This time we get much
better results, as shown in Fig. 15. The result using artificial mouse
limb orientation (four limbs) (61, 62, 63) and the body speed (dx)
is shown in Fig. 16, comparable to Fig. 15. Now we can easily
distinguish the BBUs, by fitting lines or ellipses to the data.

Fig. 17 shows the vector fusion result for each BBU, where
the SBPx and SBPy coordinates of each BBU sequence are plotted
(in the vertical axis) against the time step (in the horizontal
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5 VecFusion for BBU: absolute position, orientation(rad)
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Fig. 13. Vector fusion result for mouse BBU — Absolute limb position, total 60
dimensions. ‘O’—Rest, ‘«’—Explore, ‘+’'—eat, ‘e’—groom.
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Fig. 14. Vector fusion result for mouse BBU — Relative Limb Position, Total 57
Dimensions. ‘O’—Rest, ‘«’—Explore, ‘+'—eat, ‘e’—Groom.

axis). The SBPx coordinate of each BBU sequence is plotted in
the top figure, and the SBPy coordinate of each BBU sequence is
plotted in the bottom figure. We can see that the SBP coordinate
sequence for each BBU exhibits either a stationary or periodic
pattern. By making movies of how the SBPx, SBPy coordinates
(or the SBP point in the SBP space) change over time for each
BBU, we can observe more clearly the temporal patterns of each
BBU (see http://www.cs.utah.edu/~xwxue/vectorFusion/ for the
movies): The rest BBU is basically a stationary point, the explore,
eat, and groom BBUs show obvious periodic motion along different
lines. Hence we can easily distinguish each BBU in the sequence.

6.2. BBU discovery results with single and multiple cameras

Here we present BBU discovery results on single and multiple
cameras. We use the synthetic mouse data for BBU discovery with
one, two and three cameras. For multiple cameras, we simply
record the video in multiple locations and record the sequences.
The three images captured by three cameras are shown in Fig. 18.

We experimented with the following features extracted from
the silhouette of the artificial mouse, as the result of contour
tracking or background subtraction: position (centroid of the
blob), speed (of the blob centroid), orientation (principle axis of
the blob), orientation change, aspect ratio (width/height), aspect

Vector Fusion for BBU: limb angle only
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Fig. 15. Vector fusion result for mouse BBU — Normalized limb angles only total 8
dimensions. *’—Rest, ‘+'—Explore, ‘e’—eat, ‘x’—Groom.
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Fig. 16. Vector fusion result for mouse BBU — normalized limb angle and body
speed, total 9 dimensions. “’—Rest, ‘+'—Explore, ‘o’—eat, ‘X’—Groom.

ratio change, and similar features of the motion history image
(MHI)[27]. We used a subsequence of length 10 (T = 10)andslides
one frame at a time in the experiments.

We have tried two approaches: one using combined weighted
features in the BBU detection step, the other using a sequential
inference approach. The experiment results show that the global
motion (i.e., the speed) of the blob is a good feature for segmenting
out the frames with no or slight motion. The orientation and its
change, and features of MHI are good to separate the grooming
(slight global motion, with locomotion) from resting behavior, and
separate the reaching up behavior from the exploration behavior.
Based upon this observation, here we take a sequential hierarchical
BBU segmentation approach with the affinity method, as described
in Section 5. We first segment the video into static and dynamic
sequences using the affinity measure on the speed feature in
step 1. Then the rest of the features are used to segment the
grooming behavior from the resting behavior, and segment the
eating behavior from the exploring behavior.

In our experiment, the BBU segmentation results using multiple
cameras achieves better detection accuracy than using only a
single camera. We have run 5 experiments with one, two and
three cameras, with each experiment having a random variable
controlling the moving speed and direction of the artificial mouse.
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Fig. 18. Images captured by three cameras.

The results shows unanimous better results with more cameras.
The average error rates are about 10%, 8% and 6% for single, two
and three cameras, respectively (this does not include the errors
in the interval between each behavior transition, to account for
the size of the subsequence window). Fig. 19 compares the static
frame discovery results between ground truth, and the best results
of single camera, stereo, and three cameras. Fig. 20 shows the best
BBU result of the corresponding cases among the 5 experiments.
In the computational aspect, constructing the affinity ma-
trix and SVD process are two major computation compo-
nents. The computation time for constructing the affinity matrix
is proportional to the square of the number of elements

n(n = nFrames/T). In our experiment for the 2000-frame syn-
thetic sequence (T = 2000/10), it takes about 115 s and 3 s, re-
spectively to compute these two components and overall about 2
min in Matlab on a 1.6 GHz laptop with 768 MB RAM.

The errors come from two major sources, one is the selection
of features. In the BBU detection, the distinguishing power of the
features is essential. Better spatial-temporal features need to be
further explored. The other is the choice of affinity measure and
the optimal selection of parameters (such as subsequence length,
skip length, weights of features, value of sigma in affinity measure,
and the threshold selection for bipartition the eigenvector, etc.),
which is the next step of this research.
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BBU Discovery: Static (1) vs. Dynamic (0)
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Fig. 19. Discovery of static frames: top row: three cameras; second row: stereo
cameras; third row: single camera; bottom row: ground truth.

BBU Discovery: Rest

— Ground Truth

— Single Camera
Stereo Camera

4r Three Cameras

45+

35¢ 1

S

200
(a) Rest.

400 600 800 1000 1200 1400 1600 1800 2000

BBU Discovery: Groom

— Ground Truth
45¢ — Single Camera 1
Stereo Camera
Three Cameras

35 1

25} 1

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

(c) Groom.

247
7. Conclusions

We propose a framework for video based animal behavior
analysis, and concentrate on feature fusion methods for BBU
discovery. We have explored the vector fusion method for its
application in object basic behavior unit segmentation in a
temporal sequence, and presented results on a physical system and
a synthetic mouse-in-a-cage scenario. The vector fusion method
reduces multiple dimensional data into the 2D SBP space, and
the spatial and temporal analysis in SBP space provides a good
distinction and interpretation for the bouncing ball example and
the analytical data from the synthetic video simulation upon
certain selected features.

Our experiments show that several factors influences the
effectiveness of the vector fusion method in BBU segmentation.
First, proper features with enough BBU distinguishing power needs
to be selected, just as in other BBU segmentation methods. Second,
the weights of each feature element in the multiple-dimensional
feature space play an important role, hence, each feature element
needs to be properly normalized to account for the different value
range (hence different weight) for each feature element, and the
distinguishing power of the features. The result of the temporal
analysis in SBP space suggests it can be very powerful for BBUs
consisting periodic motion [28], and may be potentially a good
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Fig. 20. BBU Discovery result (a) Resting (b) Eating (c) Grooming (d) Exploring Top row: three cameras; second row: two cameras; third row: single camera; bottom row:

ground truth.
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approach for motion capture data analysis (where joint angles
can be easily calculated). Its great simplicity (reducing multi-
dimensional feature space to the 2D SBP space) is a great advantage
over the more complex methods.

We applied the affinity graph method and classification tree
approach to perform BBU discovery using features extracted
from single, stereo and multiple cameras. The simple feature
concatenation fusing method is shown to be effective in the
experimental results on synthetic mouse video. The results are
encouraging and promising.

Meanwhile, we have noticed that in applying the affinity
method in BBU discovery, optimal feature (spatio-temporal
features) and parameter (size of subsequence, and number of
frames to skip) selection is critical for the successful behavior
clustering.

Mutual information feature selection and other feature ranking
algorithm could be explored in finding the distinguishing power of
the features for BBU discovery. In addition, a probabilistic approach
to BBU discovery on top of these methods would be an interesting
future research, as well as the study for connecting both SBP and
affinity in BBU grouping.

Finally, we are going to apply this method to the real mouse
video. Our next step will be conducting complex video animal
behavior analysis and uncovering underlying behavior models.
For multiple camera cases, where the cameras shall be deployed
to get optimal information [29], and how the more complicated
information fusion techniques can be applied here will also need
to be studied in the future.

Acknowledgments

The authors thank Bob Johnson for helpful discussions on the
vector fusion method.

References

[1] J. Aggarval, Q. Cai, Human motion analysis: A review, Computer Vision and
Image Understanding 73 (3) (1999).

[2] L. Wang, W. Hu, T. Tan, Recent developments in human motion analysis,
Chinese Journal of Computers 25 (3) (2002) 225-237.

[3] W. Hu, T. Tan, L. Wang, S. Maybank, A survey on visual surveillance of object
motion and behaviors, IEEE Transactions on Systems, Man, and Cybernetics 34
(3)(2004) 334-351.

[4] T. Moeslund, E. Granum, A survey of computer vision-based human motion
capture, Computer Vision and Image Understanding 81 (3) (2001) 231-268.

[5] P. van Lochem, M. Buma, J. Rousseau, L. Noldus, Automatic recognition of
behavioral patterns of rats using video imaging and statistical classification,
in: Measuring Behavior, Groningen, The Netherlands, 1998.

[6] L. Noldus, AJ. Spink, R.A. Tegelenbosch, Ethovision: A versatile video
tracking system for automation of behavioral experiments, Behavior Research
Methods, Instruments, & Computers 33 (3) (2001) 398-414.

[7] 0.C.Jenkins, M.J. Mataric, Deriving action and behavior primitives from human
motion data, in: Proc. IEEE/RS] Int. Conference on Intelligent Robots and
Systems, IROS, Lausanne, Switzerland, 2002, pp. 2551-2556.

[8] A. Fod, M.J. Mataric, O.C. Jenkins, Automated derivation of primitives for
movement classification, Autonomous Robots 12 (1) (2002) 39-54.

[9] J. Barbic, A. Safonova, J.-Y. Pan, C. Faloutsos, J.K. Hodgins, N.S. Polland,
Segmenting motion capture data into distinct behaviors, in: Proc. Graphics
Interface 2004, GI'04, London, Ontario, Canada, May 2004.

[10] X. Xue, T.C. Henderson, Video-based animal behavior analysis, University of
Utah, TechReport UUCS-06-006, June 2006.

[11] T.C. Henderson, X. Xue, Construct complex behaviors: A simulation study, in
ISCA 18th Intl. Conf. on Computer Applications in Industry and Engineering,
CAINE, Hawaii, Nov. 2005.

[12] R.Johnson, Visualization of multi-dimensional data with vector fusion, in: IEEE
Proc. Visualization, 2000, pp. 297-302.

[13] L. Zelnik-Manor, M. Irani, Event-based analysis of video, in: Proc. IEEE CVPR,
Hawaii, 2001.

[14] F. Porikli, T. Haga, Event detection by eigenvector decomposition using object
and frame features, in: Workshop on Event Mining, IEEE CVPR, Washington
DC, 2004.

[15] Y. Weiss, Segmentation using eigenvectors: A unifying view, in: Proc. [EEE Int.
Conference on Computer Vision, Kerkyra, Corfu, Greece, 1999, pp. 975-982.

[16] C. BenAbdelkader, R.G. Cutler, L.S. Davis, Gait recognition using image self-
similarity, EURASIP Journal on Applied Signal Processing 4 (2004) 572-585.

[17] A.A.Efros, A.C. Berg, G. Mori, ]. Malik, Recognizing action at a distance, in: IEEE
Int. Conference on Computer Vision, Nice, France, 2003, pp. 726-733.

[18] D. Forsyth, J. Ponce, Computer Vision: A Modern Approach, Prentice Hall,
Upper Saddle River, NJ, 2003.

[19] R. Cucchiara, A. Prati, R. Vezzani, Posture classification in a multi-camera
indoor environment, in: Proc. IEEE Int. Conference on Image Processing, ICIP,
vol. 1, Genoa, Italy, 2005, pp. 725 - 728.

[20] S. Pellegrini, L. locchi, Human posture tracking and classification through
stereo vision, in: Proc. Intl. Conf. on Computer Vision Theory and Applicartions,
VISAPP, Setubal, Portugal, 2006.

[21] R. Johnson, Relational data analysis: Characterizing and measuring data to
discover relationships in that data. http://www.n-dv.com Research Papers,
2006.

[22] A. Inselberg, B. Dimsdale, Parallel coordinates, a tool for visualizing
multivariate relations, in: Human-Machine Interactive Systems, Plenum Press
Publishing, New York, 1991.

[23] P. Perona, W. Freeman, A factorization approach to grouping, in: Proc. 5th
European Conference of Computer Vision, ECCV, Freiburg, Germany, 1998,
pp. 655-670.

[24] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on
Pattern Analysis and Machine Intelligence 22 (8) (2000) 888-905.

[25] X. Xue, T.C. Henderson, Feature extraction and selection for behavior
identification from video sequences, unpublished.

[26] H. Barrow, J.M. Tenenbaum, Recovering intrinsic scene characteristics from
images, Computer Vision Systems (1978) 3-26.

[27] J.W. Davis, A.F. Bobick, The representation and recognition of action using
temporal templates, in: Proc. IEEE CVPR, San Juan, Puerto Rico, 1997.

[28] R. Cutler, L. Davis, Robust real-time periodic motion detection, analysis, and
applications, IEEE Transactions on PAMI 22 (8) (2000) 781-796.

[29] S. Abrams, P.K. Allen, K.A. Tarabanis, Dynamic sensor planning, in: Proc. IEEE
International Conference on Robotics and Automation, 1993.

Xinwei Xue is currently working with Fair Isaac Corpo-
ration as an Analytic Science Scientist and he receives his
Ph.D. degree in Computer Science from School of Comput-
ing, University of Utah in 2008. He got his and B.S. and
M.S. degrees in Precision Instruments from Tianjin Uni-
versity in 1997 and 2000 respectively. His research in-
terest includes image processing, computer vision, video-
based object behavior analysis, artificial intelligence and
machine learning.

Thomas C. Henderson received his B.S in Math with
Honors from Louisiana State University in 1973 and his
Ph.D. in Computer Science from the University of Texas
at Austin in 1979. He is currently a full Professor in the
School of Computing at the University of Utah. He has
been at Utah since 1982, and was a visiting professor at
DLR in Germany in 1980, and at INRIA in France in 1981
and 1987, and at the University of Karlsruhe, Germany in
2003. Prof. Henderson was chairman of the Department
of Computer Science at Utah from 1991-1997, and was
the founding Director of the School of Computing from
2000-2003. Prof. Henderson is the author of Discrete Relaxation Techniques
(University of Oxford Press), and editor of Traditional and Non-Traditional Robotic
Sensors (Springer-Verlag); he served for 15 years as Co-Editor-in-Chief of the
Journal of Robotics and Autonomous Systems and was an Associate Editor
for the IEEE Transactions on Pattern Analysis and Machine Intelligence and
IEEE Transactions on Robotics and Automation. His research interests include
autonomous agents, robotics and computer vision, and his ultimate goal is to help
realize functional androids. He has produced over 200 scholarly publications, and
has been principal investigator on over $8M in research funding. Prof. Henderson is
a Fellow of the IEEE, and received the Governor’s Medal for Science and Technology
in 2000. He enjoys good dinners with friends, reading, playing basketball and hiking.



