
Further Observations on the SNL Wireless Sensor Network Leadership
Protocol

Thomas C. Henderson

Abstract— It is sometimes important to have a local leader
for a set of wireless sensor nodes. Such a leader may be used as
the origin of a coordinate system, as the node responsible for
communication, etc. Thus it is important to have a reliable and
correct method to assign nodes as leaders. We presented the
Sensor Network Leadership (SNL) protocol in previous work.
Here we present further properties of this protocol: (1) SNL
is an optimal leadership protocol in terms of messages sent,
and (2) various statistics concerning the clusters formed by
this protocol are given, and in particular, it is noted that in the
limit, the cluster placement is similar to circle packing where
the radius of the circles is the broadcast range of a sensor
device.

I. INTRODUCTION

We gave an algorithm to solve the S-cluster leadership
problem [3]. For a good introduction to distributed algo-
rithms, including solutions to variations of the leadership
problem and correctness proofs, see [4]. For a leadership
election protocol in the context of target tracking, see [9].
Others have introduced leadership protocols (also called
cluster formation algorithms); e.g., Chan and Perrig [1]
described the ACE algorithm which is an emergent algorithm
to form highly uniform clusters, and Shin et al. gave a
variation of that [6]. However, both of these algorithms
are much more restrictive than SNL in that they require
that clusters be disjoint, and thus their methods require an
iterative broadcast procedure which consumes much more
energy than SNL which requires one broadcast per node
to determine the leaders. The leadership problem may be
defined as follows:

The Leadership Problem: Each SEL has a unique integer ID
(UID) and a fixed geographic location; SELs have a restricted
broadcast range which defines a connectivity graph. The
SELs are to be grouped into subgraphs, called S-clusters,
such that each S-cluster has a leader, and the leader of each
S-cluster has the lowest ID of all members of the S-cluster.

The algorithm is optimal with respect to the number of
broadcasts, and has some very nice properties as determined
on nodes whose locations are random samples from a uni-
form distribution in a square area. Given a set of SELs which
have determined their neighbors:

• Each SEL broadcasts exactly one message during exe-
cution of the leadership protocol.

T.C. Henderson is with the School of Computing, University of Utah,
Salt Lake City, UT USA tch@cs.utah.edu

• The number of leaders is bounded by the maximum
number of circles (whose radius is the broadcast range)
which can be packed into a square area.

II. LEADERSHIP PROTOCOL
An S-Net system will be represented as an undirected

graph where each node is a SEL. Note that the assumption
is that the graph is undirected; however, this is something
that must be established by a lower level algorithm (e.g, as
part of the communication protocols). It is not the case, in
general, that pairs of SELs can receive broadcasts from one
another. Each node is a distinct process and each is placed
in the environment as a distinct hardware device.

Formal definitions can be given for the nodes, and this
involves defining states, including start states, message gen-
erating functions, and state transitions. However, only an
informal description is given here. Such a description will
include broadcast() and receive() primitive functions with
their associated messages. A broadcast sends a message
to all SELs within range. Proof methods typically involve
either invariant assertions and a demonstration that they hold;
simulations are used to explore the average case behavior.

The LCR algorithm is a simple example of a leadership
algorithm which provides a basic solution to the leadership
problem in a synchronous ring network [4]; it involves each
process sending its UID in one direction around the ring to
its neighbor; when a process receives a UID, it will throw it
away if it is less than its own, resend it to its neighbor if it is
larger than its own, and declare itself the leader if it is equal
to its own. Our solution is related to this idea, although not
the same.

The S-Net leadership basic algorithm (SNL) is executed
by each node, and is as follows:

Algorithm SNL:

Step 1.
Broadcast own ID for a fixed time, T1.

Step 2.
Receive from other nodes
create neighbors
list for a fixed time, T1

Step 3.
Create remaining nodes list (initially, neighbors)
while not done

if nodes own ID is lower
than min ID in remaining nodes list,

then node is leader



Fig. 1. SNL Protocol Result on a 9x9 Grid with Broadcast Range 1.1
Units.

broadcast cluster (self and neighbors)
done

else receive broadcast cluster list
if in list

then
node is not a leader
re-broadcast list
done

else
remove list from remaining

Note that we assume that enough time is given to Steps
1 and 2 so that each node can complete the step correctly.
This will most likely be implemented as a fixed time delay in
an embedded system. Also, we assume that there are com-
munications protocols that are reliable enough to transmit
the messages without loss of information, and to ensure that
communication between nodes is bi-directional.

As can be seen from the algorithm, each node performs
exactly one broadcast before it is done. A leader broadcasts
its cluster, then quits. A follower broadcasts its cluster, then
quits. This is the minimum number of broadcasts possible.

III. SNL SIMULATION

Figure 1 shows the result of running a simulated version
of the SNL protocol on 81 SELs which are arranged in
a 9x9 grid layout. The broadcast range for each SEL is
circular with radius 1.1 units; this means each SEL can reach
its 4-neighbors (distance 1), but not its diagonal neighbors
(distance

√
2). This can be verified in the figure as each

leader is a circle, and SEL n, where n is odd, is a leader.
To better understand the way SNL works, consider the

4-node layout in Figure 2. The node locations, IDs and
neighbors are given in Table 3.1. The broadcast range is 1.5
units.

Fig. 2. Simple SEL Layout to Demonstrate SNL Protocol.

Node ID x y Neighbors
1 5 4 2,3
2 4 5 1,3,4
3 6 5 1,2,4
4 5 6 2,3

Table 1: A Simple SEL Set.

The nodes proceed asynchronously and at the first iteration
of Step 3, the following occurs:

Node 1: has a lower ID than its neighbors, and will assert
itself as a leader.

Node 2: has Node 1 as a neighbor and therefore performs a
receive.

Node 3: has Node 1 as a neighbor and therefore performs a
receive.

Node 4: has Nodes 2 and 3 as neighbors and therefore
performs a receive.

Eventually Node 1 will broadcast its cluster: [1; 2; 3]. The
other nodes will loop waiting to receive a broadcast. Nodes
2 and 3 will receive Node 1’s broadcast, but Node 4 is out
of Node 1’s broadcast range and will not receive it.

After Node 1 broadcasts its cluster, it exits and goes to
other tasks. Suppose Node 3 receives the broadcast first (this
is nondeterministic); then Node 3 finds its ID in the list and
asserts itself as a follower, rebroadcasts the list, and exits.
Node 2 will eventually receive the list and assert itself as
a follower, rebroadcast the list and exit. Eventually, Node 4
will receive the broadcast from Node 2 or Node 3. Node4
does not find itself in the cluster [1; 2; 3], and it re-assigns
its remaining list as [2; 3] - [1; 2; 3] which is the empty list.
At this point, Node 4’s ID is lower than anything on the list,
and so Node 4 asserts itself as a leader and exits. Figure 3
shows the resulting leadership structure (Nodes 1 and 4 are
leaders and Nodes 2 and 3 are followers).



Fig. 3. Result of SNL Protocol on Simple SEL Layout.

A. The Simulation Logic

The SNL protocol simulation is organized as follows:

Simulation Protocol:

SELs are initialized as described.
Broadcast ID events are scheduled for nodes.
Receive events are scheduled for nodes.
while event-queue 6= ∅ and ∃ unresolved nodes

Select next event.
Handle next event.

end.

The events are:

Broadcast ID: Broadcast ID and schedule next broadcast ID
if still in Phase I (Steps 1 and 2).

Broadcast receive: Receive a broadcast and schedule next
receive event if still in Phase I.

Broadcast neighbors: Broadcast neighbors list.

Broadcast cluster: Broadcast cluster list.

Receive ID: Receive ID and schedule next receive ID event
if still in Phase I.

Receive cluster: Handle part of Step 3 when node is not a
leader; i.e., receives cluster list and either resolves as follower
if in list or otherwise subtracts received list from remaining
and schedules new receive cluster event.

Phase I timer end: Initializes SELs neighbors and remaining
lists and schedules a first execution of Step 3.1 (i.e., if leader,
broadcast cluster; otherwise, schedule a receive list event).

Determine Role: Execute Step 3.1 of SNL algorithm. If SEL
is not a leader, schedule a receive cluster event.

B. Verification

The algorithm assumes that all neighbor relations are bi-
directional. A check is put into the code for this prior to
starting Step 3.

Other verification checks include (1) no leader neighbors
another leader, (2) every follower neighbors at least one
leader, and (3) every SEL is resolved (i.e., is either a leader
or follower).

Alternatively, this can be formulated as (1) every SEL
is either a leader or a follower and in a cluster, (2) every
follower neighbors at least one leader, and (3) every neighbor
of a leader is in its cluster. This is the check performed here;
the code has been run on thousands of randomly generated
networks, and correctness tested.

C. Validation

There are many sensor networks whose structure can
be exploited to test validity. For example, all odd-sided
unit grids numbered by row whose SELs have broadcast
range 1.1, should have all odd nodes as leaders. Regular
polygon nets with SELs on the unit circle and broadcast
range 1.1

√
2(1− cos(θ)), where θ is the angle between two

adjacent points, should only have the two nearest polygon
points as neighbors. Matlab simulations have been run for
max nodes up to 200 without error to test validity on such
polygon nets (a ring network).

D. SNL Protocol Statistics

The SNL protocol results in a structure of leaders and
followers, and some of the properties of this structure are
of interest. Given a set of n node locations sampled from a
uniform 2-D distribution, and with randomly assigned SEL
IDs, we study the following statistics:

• average number of leaders, and
• their spatial distribution.
To obtain these statistics, a suitable framework must be

established. We consider SELs distributed randomly in the
unit square, and each having the same broadcast range, r, 0 <
r ≤ 1. Thus, the leadership protocol structure is a function of
the spatial distribution and density, and the broadcast range.
Figures 4 and 5 show for various values of r (1, 0.707, 0.5,
0.25, 0.1, 0.05 and 0.01) the average number of clusters per
number of SELs (10 to 100).

The simulation protocol for a given number, n, of SELs
and broadcast radius r, is as follows: (1) a trial consists
of the generation of 200 random layouts for the SELs and
the execution of the SNL protocol for each layout; the mean
number of leaders is then computed for these 200 results; (2)
20 trials are run and the mean and variance computed for the
20 trials. As a verification check that the data is correct, the
average node degree is calculated and shown to grow linearly
with the number of SELs. No error bars are shown for the
average number of leaders since the 95% confidence interval
is about 0.001; thus, confidence is high for a narrow spread
about the mean.

As can be seen in Figures 4 and 5, the number of leaders
(and therefore clusters) approaches a limiting value for the



Fig. 4. Average Number of Clusters vs. Number of SELs in Network.

Fig. 5. Average Number of Clusters vs. Number of SELs in Network.

larger radii, but continues to grow through 100 SELs for the
smaller radii. Some interesting questions are: (1) What is
the maximum number of leaders possible? and (2) Does the
average approach the maximum as the number of SELs goes
to infinity?

The first question can be posed as a circle packing problem
(see [7], [8] for a good introduction to circle packing). The
best solutions for packing up to 200 circles into the unit
square are given in Table 13.1 in [8]; we give a selected
subset in Table 2 here.

N Radius
2 0.292893218813
3 0.254333095030
4 0.250000000000
5 0.207106781187

10 0.148204322565
64 0.063458986813

100 0.051401071774
196 0.036583075322

Table 2. Radius for Packing N Circles in the Unit Square.

Consider the SNL problem with circular broadcast range
inside the circle of radius r:

1) The SEL location serves as the center of the broadcast
circle, and thus all centers of the circles must be in
the unit square. However, part of the circle may extend
beyond the square.

2) No two leaders may directly communicate, and the
minimum distance between leaders is r.

Consider the case of 4 SELs, one at each corner of the square
and r = 1. For this case, 4 is the maximum number of SELs
possible. Note that Figure 4 shows that the average number
of clusters for r = 1 is about 1.5. The maximal case can
only be achieved if SELs are placed on or near the optimal
coordinates and if the SEL IDs are appropriate.

To convert the SNL problem to a circle packing problem,
the following steps are required:

1) In a circle packing problem, the circles are not allowed
to overlap; therefore, circles of radius r = 2 must be
used.

2) For the radius r = 2, the square of side 1+ r contains
all broadcast ranges of possible SELs with centers in
the unit square.

These two requirements lead to a scaling from the SNL
radius, rSNL, to a standard circle packing radius, rpack :

rpack = r/(2(1 + r))

This yields the following process to determine the maximal
(or upper bound on the) number of leaders (clusters) possible
for a given radius, r: Determine upper bound for number of
leaders:

Compute rpack = r/(2(1 + r)).
Find where rpack falls in the

Best Known Packing Results Table.

A Matlab function has been developed which calculates this
number.

Table 3 summarizes the results found for the set of radii
considered previously:



Fig. 6. Approximation of Berkeley Mote Broadcast Shape.

rNSL rpack Upper Bound Average
1.000 0.2500 4 1.5
0.707 0.2071 6 2.5
0.500 0.1667 10 4.0
0.250 0.1000 25 12.0
0.100 0.0455 129 ?
0.050 0.0238 1,849 ?
0.010 0.0050 41,209 ?

Table 3. Upper Bound and SNL Average Cluster Size for
Various Radii.

Of course, it would also be interesting to find a leadership
protocol that was equivalent to covering the unit square (see
[5]) since this would require the minimum number of leaders,
but at the moment, this seems to be a complex computation.

E. Irregular Broadcast Region Shape

The results given previously assume a circular broadcast
area, centered at the SEL. Ganesan has shown [2] that
physical motes do not broadcast this way. Thus, we must
examine how irregular broadcast shape influences the statis-
tics determined above.

Using the data given by Ganesan et al. as the basis
for a broadcast shape, the statistics for mean number of
clusters was recomputed. Figure 6 shows the shape used as
an approximation of the Berkeley mote’s broadcast shape.
A 271x336 array holds the characteristic function of the
shape (i.e., 1 where the shape is, and 0 otherwise). These
are scaled by 0.0194 in order to obtain a 5.2644x6.5270 unit
rectangle so that the shape has area 4 (equivalent area to
a circle with radius 2). Two SELs are broadcast neighbors
if the broadcast shape of each overlaps the location of the
other. The orientations of these broadcast shapes are random
across the SELs.

Figure 7 shows the mean number of clusters for various
numbers of motes randomly distributed in a 6x6 square. As

Fig. 7. Average Number of Clusters vs. Number of SELs in Network.

can be seen, the average number of clusters approaches 8 as
N grows larger.

IV. SUMMARY AND CONCLUSIONS

The SNL protocol is optimal in that it requires only
one broadcast per node. Moreover, the cluster statistics are
interesting and provide an upper bound on the number of
leaders in a square area.

Initial results of actual implementations of the S-Net
algorithms are very encouraging. The leadership protocol
algorithm is the basis for most of the other algorithms we are
implementing; e.g., coordinate frames, gradient calculation,
reaction-diffusion, and level set calculations.

REFERENCES

[1] H. Chan and A. Perrig. Ace: An emergent algorithm for highly uniform
cluster formation. In Proceedings of First European Workshop on
Wireless Sensor Networks, Berlin, Germany, January 2004.

[2] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly resilient,
energy efficient multipath routing in wireless sensor networks. Mobile
Computing and Communications Review, 1, 2002.

[3] Thomas C. Henderson. Leadership protocol for s-nets. In Proceedings
IEEE Conference on Multisensor Fusion and Integration, Baden-Baden,
Germany, August 2001.

[4] N. Lynch. Distributed Algorihtms. Morgan Kaufmann Pub, San
Francisco, 1996.

[5] K.J. Nurmela and P.R.J. Ostergard. Covering a square with up to
30 equal circles. Technical Report HUT-TCS-A62 A62, Helsinki
University of Technology, 2000.

[6] K. Shin, A. Abraham, and S.Y. Han. Self-organizing sensor networks
using intelligent clustering. In LNCS Proceedings of the Workshp
on Ubiquitous Web systems and Intelligence, Berlin, Germany, 2006.
Springer.

[7] K. Stephenson. Introduction to Circle Packing. Cambridge University
Press, New York, NY, 2005.

[8] P.G. Szabo, M. C. Markot, T. Csendes, E. Specht, L.G. Casado, and
I. Garcia. New Approaches to Circle Packing in a Square. Springer,
New York, NY, 2007.

[9] F. Zhao and L. Guibas. Wireless Sensor Networks. Elsevier Press,
Amsterdam, The Netherlands, 2004.


