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Knowledge representation is a traditional field in artificial intelligence. Researchers have
developed various ways to represent and share information among intelligent agents.
Agents that share resources, data, information, and knowledge perform better than
agents working alone. However, previous research also reveals that sharing knowledge
among a large number of entities in an open environment is a problem yet to be solved.
Intelligent robots are designed and produced by different manufacturers. They have var-
ious physical attributes and employ different knowledge representations. Therefore, any
non-standard or non-widely-adopted technology is unsuitable to provide a satisfactory
solution to the knowledge sharing problem. In this research, we pose robot knowledge
sharing as an activity to be developed in an open environment - the World Wide Web.
Just as search engines like Google provide enormous power for information exchange and
sharing for humans, we believe a searching mechanism designed for intelligent agents can
provide a robust approach for sharing knowledge among robots. We have developed: (1)
a knowledge representation for robots that allows Internet access, (2) a knowledge orga-
nization and search indexing engine, and (3) a query/reply mechanism between robots
and the search engine.
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1. Introduction

Knowledge representation is a traditional field of study in artificial intelligence 24,25.

More recently, knowledge sharing has attracted research interest. Previous research

has been focused on the formation of knowledge, representation of knowledge, cat-

egorization and partition of knowledge, etc. Various knowledge base structures,

knowledge interchange languages, and knowledge sharing infrastructures have been

developed. Knowledge sharing among intelligent agents, e.g., robots, brings more

power to each participating agent as it can accomplish its jobs more rapidly and/or

at a lower cost.

One problem of the previous studies was that most dealt with a closed envi-

ronment and defined a specific set of knowledge representation structures and com-

munication languages in a somewhat non-standard fashion. This limits the adopt-

ability and the flexibility of those systems. Another problem is the scalability of

∗Google is a registered trademark of Google, Inc.
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these systems, as most of them are designed to operate among a small number of

participants. These systems may work well in a small LAN, however, when they are

adapted to an open WAN, various problems emerge, i.e., network latency, platform

incompatibility, communication language incompatibility, etc. One major goal is to

vastly increase the scale of robot knowledge sharing.

We would like to build a knowledge sharing framework that supports a large

number of data formats, is able to scale to process large amounts of data and is

accessible to a large number of robots. To avoid some of the problems of earlier

approaches, we develop a web based approach for knowledge sharing among robots.

Our thesis is that robot knowledge sharing will be more efficient and successful than

robots learning and acting on their own. A web based open architecture helps to

bring more robots into the system and will enhance their performance even more.

In the past, when we needed to know something, we would look it up in an

encyclopedia or find a book on the subject. Nowadays, we turn to web search en-

gines, like GoogleTM a or YahooTMb, and are given pointers to a large amount of

information, and we usually find what we’re looking for relatively quickly and easily.

The semantic web holds promise for the future in which communities of practice

will share knowledge to meet their needs or solve problems. We propose to develop

similar capabilities for physical robots, including humanoid robots, which act in the

world and must know a great deal about it. This includes robot butlers, surgeons,

drivers, hospital orderlies, homecare nurses, etc. Thus, when a robot encounters an

unfamiliar or unknown object in its environment, or when it needs to know how

to perform a particular task with or on an object (e.g., clean it), it will be able to

query a RobotShare in order to get pointers to relevant information available in the

world wide web, or it will interact with a robot knowledge ontology-based sharing

community.

Humans achieve this sharing mainly through natural language: queries are words

that are matched to document content. For robots, it is not clear how to achieve this,

and the question arises as to what representations best facilitate robot knowledge

sharing. Restricting for the moment our consideration to 3-D physical objects, a

description may include: geometry, physical properties, functional use, context, and

natural language descriptions. Other knowledge, e.g., task procedures, may require

representation of desired forces, torques, wrenches, etc., described in an appropriate

sharable representation (e.g., some form of configuration space). The development

of and access to networked robot knowledge can provide the basis for very robust

intelligence for robot systems.

The developed framework for our solution is shown in Figure 1. In this figure,

each participant robot creates web accessible knowledge repositories; the Robot-

Share server harvests knowledge from each of the participant robots and then orga-

nizes and creates efficient indexes into the database. Participant robots query the

aGOOGLE is a trademark of Google Inc.
bYahoo is a trademark of Yahoo Inc.
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Fig. 1. The RobotShare Framework.

RobotShare server for knowledge and receive URLs pointing to other robots’ knowl-

edge. Robots, in this view, act as agents 10,21,26,27,30, and we assume their ability

to generate the necessary knowledge structures; this is not an issue of investigation

here.

There are at least two types of knowledge a robot may be interested to know:

• The knowledge of object identification, i.e., the knowledge to answer ques-

tions like: what is this?

• The knowledge of object manipulation, i.e., the knowledge to answer ques-

tions like: what can be done to/with this object?

Both of the two types of knowledge are closely tied to a robot’s physical capac-

ities, i.e., a robot’s sensors and its actuators, as sensor data are ultimately what a

robot knows about the external world and actuators define what a robot can possi-

ble do to the external world. Therefore, the proposed framework emphasizes sensor

information. We believe sensor data provides a solid grounding for this research.

2. Related Work

The study of knowledge representation can be traced back to ancient Greece. Epis-

temology, the study of the nature of knowledge and its justification, was established

by Plato in the fifth century B.C. 25. Since then, the study of knowledge, including

its nature, representation, development, etc. has been carried on by philosophers,

mathematicians, linguists, and scientists. Most knowledge representation developed

today is rooted in various logics. Recently, some computer scientists have expressed

belief that grounding knowledge purely in logic, e.g., in symbolic languages, is in-

sufficient for building intelligent agents and robots. They propose to develop sensor
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grounded and context-aware knowledge representations for robot 22,23. Even though

their work is promising, they are still far from providing a comprehensive and sat-

isfactory solution.

Although still in its formative stages, several groups are making progress on

sensor-grounded robot knowledge creation. In our provisioning effort we intend to

take advantage of this. Cohen et al. 5 describe a natural semantics approach in which

robots learn meanings through their interaction with the environment. Traditional

AI approaches reply on the reduction of semantics to syntax, and such systems have

no real understanding of the symbols that they manipulate. In natural semantics,

such meanings are acquired and maintained by the robot system, and not specified

externally by human programmers or knowledge engineers. In this work, a robot is

provided with a small number of behaviors (e.g., move, turn, open gripper, etc.),

and the robot records sensor data streams. From this, prototype sequences are

segmented and serve as the basis for more complex tasks. In this way, the robot

learns a sensor data based ontology through interaction with the environment, and

concepts are related to the sense data.

Another approach is the Spatial Semantic Hierarchy which allows bootstrap

learning from uninterpreted experience. This involves solving three problems: (1)

feature learning from the sense data, (2) control learning for achieving desired states,

and (3) place recognition to identify distinctive states 19. This fits well with our robot

knowledge provisioning scheme since raw data, as well as learned structures, will be

available.

Grupen et al. have based their approach on human developmental theory 13.

They have demonstrated a framework for the development of robot behavior. In

addition, they have proposed a relational representation for procedural task knowl-

edge 14. Joint probability estimates are learned which relate features of the senso-

rimotor stream to desired behavior quality. In this way, the robot can determine

salient features in its world experiences (sensor/actuator mediated) and choose ac-

tion policies. This group has examined many issues related to human-like activity

(e.g., grasping, walking, etc.).

As a last example of a group producing sharable robot knowledge (there are

many more, we have selected a representative sample here), Dillmann et al. have

focused on robot knowledge related to their humanoid project 3. Their recent PACO-

PLUS project aims to develop a cognitive robot 8. Their work will provide a way

to bridge knowledge between humans and robots. They have recently proposed a

reference model for human kinetics just for the purpose of enabling sharing. They

have recently proposed a reference model for human kinetics just for the purpose

of enabling sharing 2.

In order to exchange knowledge, robot agents also require a common language

for the expression of their data and processes. As a starting point, common sen-

sors and actuators give a direct mechanism for exchange. Analysis of the sensor

data is then straightforward, as well as control of actuators. More abstract sharing
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mechanisms are possible when specific sensors and/or actuators differ; for example,

Logical Sensor Systems 7,15 provide such a framework. In this case sensors are ab-

stracted as a data type in an object-oriented sense, and physical operations by the

agent on the world may be expressed as a sequence of force closures to be achieved

(e.g., in terms of forces, torques, wrenches, etc.) 16.

Another influential work in knowledge sharing is the Knowledge Interchange

Format, known as KIF 12. KIF was defined as an ANSI standard by the NCITS T2

committee on Information Interchange and Interpretation in 1998. KIF is a version

of typed predicate logic. It is still unclear what is the most appropriate knowledge

representation format for robots, and exchanging knowledge between robots in an

unrestricted environment is still a problem to be solved.

We are aware that currently there is a lot of ongoing research on the Semantic

Web 6, which is led by the World Wide Web Consortium. The aim of the Semantic

Web project is to create a universal medium for information exchange by putting

documents with computer processable meaning on the World Wide Web. Using the

Semantic Web, information can be better organized and more accurately delivered

to a human reader. The book by Davies et al. 6 provides a very clear review of meth-

ods and tools developed for the human semantic web, including methods to extract

information from text, retrieve information from other sources, and to compress,

visualize and disseminate information.

3. Knowledge Representation

3.1. Robot Knowledge

Humans recognize the external world first through sensory organs. This information

comes in various formats, some of them are more accurate than others; some of them

are more abstract than others; some of them have temporal properties while others

do not. It seems there is enough evidence for us to believe that sensory information,

i.e., information collected by our sensory organs, is the ground for all of our object

recognition process.

We believe robots can behave similarly, and that the best way for a robot to

recognize objects is through sensor data. We would not deny ontology information

like a fork is kitchenware; kitchenware is a tool used for dining or relevant purpose;

a tool used for dining or relevant purpose usually is an artifact; an artifact is an

object could be helpful at some place in our intellectual system.

We are aware that currently there is a good deal of research dedicated to various

aspects of image databases 4,20 to find methods for object segmentation, object

tracking, etc. Albeit interesting, these topics are beyond the scope of this research.

We assume robots are able to identify objects in the environment (i.e., segment

them in sensor data) and measure physical properties of the object using on-board

sensors.

The definition of knowledge is still fuzzy at this point, as philosophers love to

debate on this type of topics. The classic definition, found in Plato, states that:
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three criteria define knowledge: knowledge needs to be a statement, such that it is

justified, true, and believed 29. For the purpose of this research, we restrict the scope

of robot knowledge to be: strings, which contain information about objects and

activities. This includes physical properties of objects and verbal descriptions, which

are usually assigned by a human to objects; and strings that contain information

about activities that includes verbal descriptions and activity components recorded

in temporal sequence, i.e., trajectories. Physical properties of objects are present in

various forms, some of them are temporal, e.g., acoustic information, while others

are static, e.g., curvature of a surface.

We believe robots are built to help humans perform certain tasks which are

either impossible or inconvenient for humans to perform. Therefore, if it is beneficial

to have a robot know there are similarities between a fork and a spoon, i.e., the

distance measure between a fork and a spoon is less than a fork, say, a chair; then we

should program a distance evaluation function and make it to run on a robot, which

always returns a smaller number when a fork and a spoon are compared than a fork

and a chair. In such a measure, we define that identical objects have a distance

measure equal to zero; and this measure only returns non-negative numbers. If a

robot, or some programs running on the robot, could use this function to perform

tasks better, then we may say that the robot knows, or is able to infer that forks,

spoons and probably dinner knives, belong to one group while tables, chairs and

bookshelves belong to another.

In a nutshell, robot knowledge is information about objects and activities, in

string format, stored in robots’ memory. For a robot, to know an object or an

activity means to have information about that object stored in its memory. Rela-

tions between objects help robots to perform tasks better. However, relations are

developed or discovered based on information acquired through sensors.

3.2. Knowledge Extraction

In the previous section, we have presented our definition of robot knowledge. We

have emphasized that grounding knowledge to sensor data is essential to this work.

This section introduces how knowledge can be extracted from sensor data, and

presents data sample set that has been used for this work.

3.2.1. Data Type and Extraction

Sensors produce data in many formats. Typical sensors available to robots are sonar,

laser range finder, weight scale, CCD camera, infrared, odometers, etc. In general,

these sensors can produce results in two categories: direct measures and derived

measures. For instance, a weight measure of an object is a direct measure of a

weight scale; an RGB histogram of an image of an object is a derived measure

of a CCD camera. The accuracy of direct measures depends on the accuracy of

the instrument, i.e., the sensor; and the accuracy of derived measures depends on

the accuracy of the instrument and the algorithm used to produce the measure.
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Therefore, it is our hope to set standards on algorithms used to produce derived

measures, or regulate the format of these measurements, so comparable results can

be obtained.

To test the suitability of the direct/derived data measure taxonomy and the

possibility of the measurement standardization, and to provide a solid ground for

our research, we collect sample data for objects and measure their properties. Since

the prototype of this framework is to be applied to kitchen robots, we collect our

sample data from kitchenware, e.g., forks, spoons, knives, cups, plates, etc. CCD

cameras are readily available and the produced images are information intensive.

We choose to work with images as our starting point.

3.2.2. Data Sample

Sixteen objects, including four bowls, one cup, two forks, three knives, two plates,

and four spoons, are selected. Two images are taken of each object, one from the

top view, another one from the side view. All images are taken against a white

background and objects are later manually segmented. Images are stored in JPEG

format in the size of 640-by-480 pixels. For each image, the histograms of its color

in RGB channels are computed, with 256 bins for each channel. The image is then

converted to HSV color space, where the histogram of the hue channel is computed,

with 256 bins. The Sobel edge detection algorithm is applied to compute the distri-

bution of edge orientations, and a histogram with 256 bins is obtained. The color

image is then converted to a binary image. The perimeter and the area of connected

components in the binary image are computed. In order to capture the uncertainty

of the real world, we have studied how these measures may vary under different

picture-taking conditions, e.g., various lighting conditions. We used nature light

(indoor sunlight), two incandescent lights, and a flash light, as our light sources

in this test. Four objects: a cup, a plate, a spoon and a knife are imaged. Twenty

images under these four different light settings are taken of each object. The RGB

histograms, the hue histogram, the edge direction histogram, the perimeter and the

area are computed.

3.3. Knowledge Formulation

In order to build the RobotShare search engine, which supports a large amount of

data and fast retrievals, data indexing is needed. The indexing structure is discussed

in the next section. Data format/knowledge representation is presented here.

Unlike a traditional database query system, where system architects also control

the data source; or, at least, a tight connection between the data source and the

database is assumed. RobotShare has the problem that it knows little about its data

source, i.e., robots. It is normal for a robot to know certain features about an object;

and it is willing to share this knowledge with other robots though RobotShare.

In order to make RobotShare handle data from arbitrary robots, two knowledge

transformations are required.
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The first transformation takes place in robots, where knowledge is transformed

from a robot’s internal representations, which are probably only known to robots

themselves, to a form such that they are understandable to other parties. The second

transformation takes place in RobotShare, where knowledge is then transformed into

a representation that can be efficiently indexed.

3.3.1. The First Transformation

The purpose of the first transformation, from a robot’s internal format to an open

standard, is to transform knowledge in a systematic way such that an unambigu-

ous, widely-adoptable, format is achieved, while maintaining all information in a

knowledge piece.

Having a clear distinction between an object instance and an object class is

significant to this work for two reasons. First, RobotShare has deep roots in the

concept of sensor data grounded knowledge, i.e., sensor data is the ground for all

higher level knowledge structure. Therefore, knowing which instance a sensor data

group refers to is important to all higher levels, e.g., semantic level, knowledge struc-

ture formation. Second, it is desirable to support instance-based query in addition

to the general class-based query.

We employ the standard Extensible Markup Language (XML) to represent

knowledge as the result of the first transformation, as the XML format is widely

used and accessible. We give a precise definition of the language our framework

supports, using the Knowledge Definition Grammar (KDG). KDG is designed to be

flexible enough to capture various type of knowledge while still be parser friendly.

As all knowledge about objects in our framework is sensor grounded, even though

KDG provides the ability to support virtually any type of object property, we define

a set of XML tags to describe certain common object properties.

3.3.2. The Second Transformation

The purpose of the second transformation is to convert the easy-to-communicate

XML format into a representation that is easy to index. Hence we can build the

search engine efficiently. We take the vector space approach.

Every piece of knowledge in our system can be divided into three parts: text data,

sensor data and meta data. Text data are provided by humans. It includes the name,

function, use and possible other related description about an object. Sensor data

are collected through sensors. They represent physical properties of an object. They

are recorded by numerical values. For instance, the weight of an object is usually

recorded with a single numerical value, given a standard unit is used; the shape of an

object can be recorded by a histogram of the direction of the object’s edge, where

a histogram is usually represented by a vector. Meta data is recorded when the

object is measured by sensors. It contains information about collected sensor data.

For instance, the location of where the object is encountered, the time of when the
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object is encountered, the type/band/model of the sensor used to collect data, etc.

These three types of data can be indexed using two different approaches: different

data types are either indexed separately, using multiple indexing structures; or they

are combined together and we use only one uniform indexing structure to index

them. We build the indexing structure in a high dimensional vector space where

each object is mapped into a point in this space, i.e., every object is represented by

a long vector.

The length of a data vector needs to be controlled. Dimension reduction is

achieved by approximating histograms using the polynomial coefficient representa-

tion. This reduces a 256-element vector to a 5-element one. Appropriate distance

measures are used to match query vectors to stored vectors. Details on approxima-

tion methods and distance function performance can be found in 9.

3.3.3. An Example

We conclude this section with a simple example from our data set to demonstrate

the complete workflow. A robot notices an object in a kitchen. The robot measures

physical properties of the object as the following: length: 12.5 centimeters, height:

5 centimeters, width: 12.5 centimeters, weight: 2.5 ounce, two images are taken

on this object, one from the top view, and one from the side view. Images are

segmented; color and edge histograms are computed. The robot has learned from

a human that his object is a “Knife with black handle.” Since the robot wants to

share information about this object, in addition to organizing and uploading this

data into a web space, the robot registers this information at RobotShare. It then

packages the object into a RobotShare understandable XML file, and sends it to

RobotShare.

After RobotShare receiving this file, RobotShare first parses the XML file and

then constructs a set of vectors to capture information stored in this file. The text

part, i.e., “Knife with black handle” goes through the LSI process. It becomes a

four-element vector. The two images go through a sequence of image processing

procedures. Color histograms and edges are produced. Then dimension reduction

techniques are applied, histograms are reduced to short length vectors. Dimension

and weight measures are extracted. The final result can be viewed in Table 1. Using

these information, RobotShare builds an index for this data and stores it in the

RobotShare database.

3.4. Activity Knowledge

The previous section has discussed how object knowledge can be represented. Ob-

ject knowledge is one type of knowledge we would like to share, another type of

knowledge is activity knowledge. Activity knowledge represents a much broader

range of knowledge than object knowledge. If we consider that object knowledge is

mostly about object identification and classification, then activity knowledge can

be used not only for identification but also performance or execution of activities.
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In order for robots to share manipulation and actuation processes for action

in the physical world, we propose that specific robot mechanism reference models

be developed and used as the basis for sharing. For example, classes include: au-

tonomous vehicles, 6-DOF arms, and biologically-inspired systems. Here we use an

example of a humanoid robot reference model. Note that such a reference model is

analogous to the use of a universal Turing machine (e.g., Java) to share executable

code on a wide variety of computing platforms. That is, each robot must run a

custom interpreter to control its body to achieve the reference model specification.

This research focuses on activity knowledge identification. The problem statement

can be summarized as one robot records a sequence of human body movements

and queries RobotShare for information to identify the activity being performed by

these movements.

Collaborating with Prof. Dillmann’s humanoid robot research group at the Uni-

versity of Karlsruhe, we have obtained data generated by the VooDoo human motion

capture system 17,18, which gathers data of the human configuration over time, re-

sulting in 3D trajectories for every modeled limb and joint angle of the human body.

In VooDoo, the human body is represented by 19 4-by-4 transformation matrices,

where each matrix describes the state of a limb joint. In each transformation matrix,

the upper left 3-by-3 sub-matrix describes the rotation of the joint, the right most

column describes the movement of the joint. (See 18 for a complete discussion of

the VooDoo system representation.) We exploit two of these matrices: one that de-

scribes the trunk of the body transformation and the other that describes the right

forearm transformation from each activity instance frame. The motion description

is based on six values from each of the two transforms: 3 three diagonal elements of

the rotation matrix and the three translation components. This results in 12 feature

Field Value

red1: [1.8464e-011 -6.6396e-009 4.4481e-007 3.0729e-005 -4.8032e-004]

green1: [2.2378e-011 -8.7258e-009 8.0668e-007 8.9936e-006 -2.2540e-004]

blue1: [2.2060e-011 -8.5507e-009 7.6566e-007 1.3780e-005 -4.5634e-004]

red2: [1.4509e-012 2.5196e-009 -9.8969e-007 8.7476e-005 -2.4578e-004]

green2: [3.1170e-012 1.8227e-009 -9.2036e-007 8.8420e-005 -3.8085e-004]

blue2: [4.2376e-012 1.3480e-009 -8.7116e-007 8.9412e-005 -5.5129e-004]

edge1: [-1.2498e-010 6.3984e-008 -1.0713e-005 6.4745e-004 -0.0063]

edge2: [-1.3743e-010 6.9991e-008 -1.1638e-005 6.9704e-004 -0.0070]

LSI: [-0.0509 0.2674 0.2571 0.4403]

phy vec: [6.0190 1.6906 11.3570 0.4998]

weight: 0.4244

filename: ’knife2a.jpg’

desc: ’Knife with black handle’

Table 1. Knowledge Extracted for a Sample Object.
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vectors. We then approximate the trajectory of every feature field across frames of

an activity instance by a fourth order polynomial. The end result looks similar to

object knowledge that has been described in the previous sections, i.e., each activity

is represented in twelve vectors that can be indexed using techniques described in

the next section.

4. Knowledge Search Engine

4.1. Robot Knowledge Search Engine

As described by Frieden and Kuntz 11, the three main tasks of a search engine are to

(1) match query keywords with related material on the web, (2) rank web documents

according to relevance, and (3) provide pointers to the documents. Arasu et al. 1

set their major emphasis to be the creation of scalable index structures. Note that

search engines for human created web documents try to make the linkage among

web pages explicit and exploit this to create structure indexes.

4.2. Knowledge Harvesting

In the first generation robot search engine, i.e., RobotShare, we do not foresee a

major role for web crawlers. Even if web pages exist, the meta data is not available

to determine what pages to download, what is of interest in them (e.g., there are no

words to count and no lexicon to help define any semantics), no popularity measure,

and no standard places to find things (e.g., specific sites, in homepage, etc.). We

decide to have robots register with the system and provide direct meta data and

links to files.

In the previous section, we presented the format for knowledge communication

between a robot and RobotShare. Since the XML file presented in the previous

section solely contains the data of objects, a few extra fields are helpful for Robot-

Share. The most important one is the link to the web address where the original

data can be found. Storing information about the robot which registered the infor-

mation could be helpful as well. Therefore, three fields are added into a knowledge

registration XML file, the identity of the robot, the time of this registration, and

the link to the web page where original data is stored.

5. RobotShare Architecture

After reviewing the concept and related technologies of search engine, we are ready

to present the RobotShare architecture. Representing objects in a vector space is a

sensible approach for search engine/indexing structure construction. Here objects

are effectively represented by sets of vectors, not necessarily a matrix, as these

small vectors can have different lengths. A multi-index structure is used for query

processing (see Figure 2). The advantages include: more elegant architecture and

better performance with incomplete queries, i.e., queries with only certain feature

fields containing data.
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Fig. 2. The Multi-indexing Structure Architecture.

In the current implementation, RobotShare is composed of four components: a

query processor, indexing structures, a cross analyzer and a response formalizer. In

future, a feedback analyzer can be added to the system.

The query processor is the first component in a RobotShare query workflow.

It takes queries, in the format of XML files, and translates each of them into an

array of vectors and sends each vector to a corresponding indexing structure to

find matches. The query processor functions as a simple XML parser as it converts

data stored in XML to vectors, and computes various derived features from raw

data stored in the XML file. For instance, for object knowledge, it computes color

and edge histograms and transforms them into low dimensional representations. It

also computes the vector representation of text information into vectors using LSI.

In future, the query processor could be built with more intelligence so it not only

parses data but also pre-processes them. For example, currently, robots perform the

image segmentation, if the query contains an image before they query RobotShare.

We may later add a image segmentation component into the query processor.

The second component is the indexing structure. It is arguably the most signifi-

cant component in RobotShare. It takes inputs from the query processor in form of

vectors, and produces ordered lists of objects. The objects are sorted using measures

between the query sample and objects stored in RobotShare.

In the current implementation, eleven indexing components are created for ob-

ject knowledge processing. Six of them are built for color histograms (two images

of an object, three color channels in each image); two of them are built for edge

histograms (two images for each object); one of them is built for text data produced

from an LSI process; one of them is built for dimensional information of the object,

i.e., length, height, width, and the cube root of the product of the three; the last

indexing structure is built for the weight measure of an object. These properties are

summarized in Table 2. K-d trees have been used to index all of these fields except

the weight measure which uses a binary tree. In all k-d trees, branch dimension
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is selected in round-robin fashion, starting from the left most element of a vector.

This decision is made largely due to the fact that the eight histograms in one object

are all approximated by polynomials in which high order terms contribute more to

the curve shape of the polynomial. Text data are processed by LSI, which has the

same property that high order terms capture more information than low order ones.

All indexing components return fifteen items for each query, except the LSI text

indexing and dimensional properties component, in which thirty items are returned.

Component Vector Length Returned items

Red Channel (im1) 5 15

Green Channel (im1) 5 15

Blue Channel (im1) 5 15

Red Channel (im2) 5 15

Green Channel (im2) 5 15

Blue Channel (im2) 5 15

Edge Orientation (im1) 5 15

Edge Orientation (im2) 5 15

Text Data 4 30

Dimensional Properties 4 30

Weight 1 15

Table 2. The RobotShare Component Length Summary.

For activity knowledge, in contrast to the eleven index structure developed for

object knowledge sharing, a twelve index structure is constructed for activity recog-

nition as twelve trajectories are selected from each activity. K-d trees are used to

index all trajectories. For the reason stated above, branch dimension in each k-d

tree is selected in round-robin fashion. Each indexing component returns five items

for each query. Items are then sent to the next module in RobotShare: the cross

analyzer.

The cross analyzer takes item lists from each indexing component, “cross ana-

lyzes” them and produces a single sorted list. The cross analyzer creates the sorted

list based on a weighted sum of all query-item distances. This process works as

follows. The cross analyzer first creates a list contains all received items. It then

computes distance from the query sample to every item in the list. The distance

measure is a weighted L1 norm, which can be expressed as the overall distance

D(A, B) between two objects A and B:

D(A, B) =

k∑

i=1

|widi(Ai, Bi)|

where k equals the number of fields presented in the query; wi is the weight coeffi-

cient of the ith component; and di is the distance between ith components in the
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two objects. All di(Ai, Bi) are computed using the L1 norm, where

di(Ai, Bi) =

k∑

j=1

|Ai,j − Bi,j |

For all image histograms represented by polynomial coefficients, k equals 5; for the

LSI indexed text field, k equals 4; and for the singleton weight field, k equals 1.

We are at the very beginning stage to develop a systematic approach of computing

weight coefficients wi. Since the ideal ranking order can be robot and/or query de-

pendent, it ties to the intentional use of the knowledge, the content of the database,

and the content of the query template. To find the optimal weight coefficients, in-

formation about query robots must be taken into consideration. Currently, a static

analysis approach is taken. We design experiments for various data conditions and

query types. In each experiment we evaluate RobotShare performance using the

standard information retrieval measures: precision and recall 28. We then search for

weight coefficients that maximize these measures. The search algorithm we have im-

plemented is an n-dimensional binary search, which is a good compromise between

simplicity and performance.

Once the distance between the query sample and all items returned by indexing

structure are computed, the cross analyzer sorts the item list using these distances

and sends the sorted list to the next module: the response formalizer.

The response formalizer takes input, which is a sorted object list from the cross

analyzer, and generates an XML file that is understandable to the querying robot.

The size of returned files, i.e., the length of the returned list, should be large enough

so there is a high chance for the querying robot to find the information it needs in

the returned file; the file also needs to be reasonably small so (a) the file transmission

can be done in a small amount of time and (b) after receiving the file, a robot may

determine if any useful information can be found in this file quickly. To balance these

two requirements, there are two essential questions to be answered: (a) how many

results should be returned? (b) What information does one result contain? In the

current implementation, for object knowledge, indexing components returns either

30 or 15 items to the cross analyzer, and there are eleven indexing components in

RobotShare, so the number of items generated by the cross analyzer ranges from

30 to 180.

5.1. Experiments

This section presents RobotShare performance on object knowledge. In all of these

experiments, we have used common information retrieval performance measures:

precision and recall to evaluate our system. Precision in information retrieval is

defined as the following:

precision =
|relevantdocument

⋂
retrieveddocuments|

|retrieveddocuments|
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It is a measure of the percentage of results that are desired in the total retrieved

list. Recall is defined as:

recall =
|relevantdocument

⋂
retrieveddocuments|

|relevantdocuments|

It is the percentage of desired retrieval results in the entire database. Neither pre-

cession nor recall alone can indicate the performance of an information retrieval

system. But by combining the two, a comprehensive evaluation can be reached.

5.2. General Performance

We first examine how RobotShare performs in general. Two hundred samples are

randomly selected from the RobotShare database. They are used as query template

to query RobotShare. The RobotShare sample database contains four hundred and

eighty sample objects which are derived from sixteen real world collected sample ob-

jects, with each object duplicated twenty-nine times, with 20% random noise added

to each copy. All samples in the RobotShare database, including query samples,

are complete, i.e., no missing information in either queries or database samples.

Weight coefficients used for distance measure, in the cross analyzer are set to one.

All items returned from RobotShare are retrieved. Relevant items are siblings of

the images that are duplicated from the same sample object with added noise. One

result, measured in precision and recall, is presented in Table 3.

Min Max Median Mean Variance

Precision 0.2113 0.5882 0.3704 0.3677 0.0048

Recall 1 1 1 1 0

Retrieved 51 142 81 84.8400 321.5723

Table 3. Performance Test 1.1a

We can observe that the recall for such an experiment reaches its highest possible

value: one. Due to the relatively large number of retrieved documents, and the

relatively small number of relevant items in the database, the precision is on the

low side.

We then define the relevant items as items from the same class, i.e., bowls, knives,

etc. In this setting, the range of relevant items are enlarged. This test examines how

RobotShare perform on class-based queries.

From Table 4 we can see that since the average number of relevant items grows;

and the number of retrieved stays unchanged, the precision grows. Due to the same

reason, the recall drops.

5.3. Activity Knowledge Experiment

We have obtained a set of humanoid robot activity data from Prof. Dillmann’s

group. The VooDoo data representation is used here. These data contain 8 ac-
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tivities with each activity performed multiple times, resulting in 120 instances of

activities. Since all instances are performed by a human experimenter, recorded

lengths of instances range from 41 frames to 151 frames. We randomly select query

templates from the activity database. Since the purpose of activity recognition is

to identify human activities, Nearest-Neighbor search is more appropriate than k-

Nearest-Neighbor search or α-cut search used in previous experiments. We then

limit the number of returned activities for each search to be 2 (since every search

always returns the query template itself as the first activity) and define the clas-

sification as correct if the second returned item is the same activity as the query

template. Results are presented in Table 5. 17 indicates these results are comparable

to the FFNS approach used by Prof. Dillmann’s group.

6. Future Work and Conclusion

Knowledge sharing has played a major role in human civilization. The study of

knowledge sharing in man-made intelligent systems, such as robots and software

agents, is relatively young in the study of artificial intelligence, even though recent

development in robotics, semantic web and semantic grid start to touch on this

topic from various angles.

Previous sections have presented our work on the design and implementation of

RobotShare, a knowledge sharing framework for robots. We have demonstrated how

two important knowledge types: object knowledge and activity knowledge can be

shared through such a framework. We have discussed reasons behind various method

Min Max Median Mean Variance

Precision 0.3488 0.9178 0.6066 0.6117 0.0156

Recall 0.2500 1 0.5583 0.5668 0.0240

Retrieved 55 130 80.5000 83.2200 239.8097

Table 4. Performance Test 1.1b

Activity Correct

Hold Out Hand 91.0%

Hold Out Object 95.5%

Put Object On Table 89.9%

Read Book 73.6%

Sitting 89.9%

Standing 86.3%

Take Object From Table 77.7%

Typing On Laptop 100%

Table 5. Supplemental Experiment II
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selections and have compared trade-offs between different designs. The RobotShare

system has been examined on a set of different data sources and we have discussed

experiment results.

Future research can be divided into two categories: RobotShare refinement and

RobotShare expansion. In the refinement department, a set of approaches are worth

trying to discover if any of them gives better results. In the expansion department,

the concept of machine-readable knowledge search engine for knowledge sharing can

be taken to other domains, such as intelligent software agent. It is also necessary to

rank the relevance of the returned items; this may be achieved by having RobotShare

monitor the usage of the items by the querying agent (e.g., make retrieval go through

RobotShare).

Another interesting topic to be studied is having the query processor to discover

underlying relations between information stored in different fields in the same ob-

ject. For example, when an object comes with an image and a text description as

a “yellow bowl,” a color histogram is computed from the image. We know there

is an underlying relation between the word “yellow” and the shape of the color

histogram, developing a systematic approach to discover all relations cross feature

fields is an open problem. If such approach is developed, among other things, it

can help RobotShare to approximate missing fields in both queries and data entries

stored in its database, and possibly improve the retrieval performance.
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