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Abstract— We propose Computational Sensor Networks
as a methodology to exploit models of physical phenom-
ena in order to better understand the structure of the
sensor network. To do so, it is necessary to relate changes
in the sensed variables (e.g., temperature) to the aspect of
interest in the sensor network (e.g., sensor node position,
sensor bias, etc.), and to develop a computational method
for its solution. As an example, we describe the use of
the heat equation to solve the sensor localization problem.
Simulation and physical experiments are described.

I. INTRODUCTION

A model-based approach to the design and imple-
mentation of Computational Sensor Networks (CSNs)
is proposed. This high-level paradigm for the develop-
ment and application of sensor device networks pro-
vides a strong scientific computing foundation, as well
as the basis for robust software engineering practice.
The three major components of this approach include
(1) models of phenomena to be monitored, (2) models
of sensors and actuators, and (3) models of the sensor
network computation. We propose guiding principles
to identify the state or structure of the phenomenon
being sensed, or of the sensor network itself. This
is called computational modeling. These methods are
then incorporated into the operational system of the
sensor network and adapted to system performance
requirements to produce a mapping of the computation
onto the system architecture. This is called real-time
computational mapping and allows modification of
system parameters according to real-time performance
measures. This paper deals mainly with computational
modeling.

CSNs represent a scientific computing approach, and
this includes the Verification and Validation (V &
V) methodology of that discipline[19]; that is, model
implementations must be verified (e.g., for correctness
or numerical properties like error and convergence), and
appropriate tests embedded in the system to monitor

system correctness during execution. However, an im-
portant new aspect of this approach is that a CSN has
the ability to sense and interact with the environment,
and thus can run its own validation experiments to
confirm or refute model structure or parameter values.
Another intrinsic capability offered by CSNs is that
models can be used to determine unknown aspects of
the structure of the measurement system itself given a
known state of the physical phenomenon. For example,
given the heat flow PDE and known temperatures at
fixed (but unknown) sensor node locations, the equa-
tions can be reworked so as to determine the sensor
locations (i.e., to solve the sensor localization problem).
This can be done for a wide variety of initial conditions
and depends only on the equations defining the physical
process and the specific realization of the process
in the world. Thus, real-time V & V are performed
and this permits a scientifically repeatable basis for
sensor network experiments. Real-time computational
steering is achieved by (1) embedding verification and
validation modules into the executable code, and (2)
modeling module performance in terms of statistically
meaningful characterization of output features concep-
tually defined by the user.

On the sensor network side, many advances have
been made in sensor network technology and algo-
rithms in the last few years. See [25] for an overview of
the state of the art. Work has been done on: architecture
[15], systems and security [24], and applications. Our
own work has focused on the creation of an information
field useful to mobile agents, human or machine, that
accomplish tasks based on the information provided by
the sensor network [2], [3], [4], [9], [10], [11], [12],
[13], [14]. In order to address sensor networks in a
comprehensive manner, the sensor network community
has initiated a research program[16] that includes work
in the areas of sensor network architectures, program-
ming systems, reference implementations, hardware
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Fig. 1. Computational Sensor Network Large-Scale Utilization
Paradigm.

and software platforms, testbeds and applications. Here
we explore the impact of a computational science
approach on all these aspects of sensor networks,
and show that much benefit can be derived [7], [8];
in particular, the tools developed here can be highly
leveraged across many scientific communities. CSNs
will provide software engineering support for scientists
and engineers to exploit sensor networks where it is no-
toriously difficult to develop and validate systems, for
example, in our proposed snow monitoring application.

II. INTRODUCTION

The Computational Sensor Network (CSN) paradigm
is displayed in Figure 1. Physical phenomena of interest
are monitored by a set of CSNs, each with its own
models. CSNi produces its results (as specified by the
requirements) which are passed along to other CSNs
as well as to the general computational grid. These
results may provide information for observers, decision
makers, or may provide dynamic data for large-scale,
multi-physics simulations. Figure 2 gives our vision of
the two major issues addressed by the CSN system
development framework:

1) Computational Modeling: It is necessary to
develop a framework within which it is possi-
ble to define models of physical phenomena of
interest, as well as sensors and actuators, and
to produce computational methods to determine
state or structure of either the monitored system
or the sensor network itself.

2) Real-time Computational Steering: Given a
method developed in (1), it is necessary to com-
bine it with a conceptual model of the sensor
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network, and a set of verification and validation
requirements to produce a set of executable tasks
which can be mapped onto the sensor network
architecture as well as a wider computational
grid and provide a high-level interface for human
understanding.

The layout of an individual CSN is shown in Fig-
ure 3. CSNs provide a sensor network programming
paradigm built from a combination of (1) scientific
computing practice, and (2) the Instrumented Logical
Sensor methodology[6]. This combination permits the
construction of qualitatively different applications by
incorporation of the specific models for the phenomena
being monitored, the sensors and actuators deployed,
and the software requirements imposed.

III. COMPUTATIONAL MODELING

One of the major innovations of this approach is the
incorporation of a strong model of the phenomenon to
be observed. This allows the system developer great
insight into the V & V requirements. We demonstrate



Fig. 4. Heat Flow in a Uniform Rod.

the usefulness of the CSN approach by way of an
example:

• Sensor Node Localization: Given a strong model
of the physical phenomenon, and a set of sensor
nodes in unknown, but fixed, locations, use the
computational model to determine the sensor node
locations.

A. Sensor Node Localization

To demonstrate how this methodology can be ap-
plied, we show how the sensor node localization prob-
lem can be solved. Oftentimes sensor devices are
dropped at random into an environment or maybe
moved (e.g., in a snow monitoring application, the
devices may move with the snow both in depth as
well as tangential to the surface). Many approaches
to sensor node localization have been proposed [5],
[17], [18]; see [22] for a survey. As one example,
Whitehouse and Culler propose a macro-calibration
method for localization [23]. Their ad hoc localization
system estimates distance between nodes using received
signal strength information and acoustic time of flight.
Although these phenomena can be modeled in the
CSN context, their approach requires additional sensors
(microphones) and processes. Moreover, CSNs solve an
inverse problem based on the physical phenomenon -
the example given in this paper uses the heat equation
(note that temperature sensors are ubiquitous and the
method is robust).

Consider a rod of uniform cross-section and length
1 that is completely isolated except at the ends (see
Figure 4). The heat flow is therefore limited to the
x direction and the development of the temperature
y over time can be described by the following partial
differential equation (known as the diffusion equation):

∂y

∂t
= D ·

∂2y

∂x2
with D =

κ

c · ρ

where κ denotes the thermal conductivity, c the specific
heat capacity and ρ the density of the rod. Figure 5
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Fig. 5. Simulation of Heat Flow Equation.

shows how the temperature changes over time for an
arbitrary initial state. [Note that usually the tempera-
tures at the ends are fixed and the temperatures settle
to a linear ramp (one could easily assign locations to
the nodes given a temperature then); however, the basic
requirement is that the temperature values in the rod
change according to the heat equation in order for the
method to work. It is also possible to allow the ends to
vary. Also, there exist temperature distributions which
are ambiguous, and thus where the method will not
work – e.g., a constant temperature across the whole
rod.]

Such PDE’s are usually solved by discretization and
approximation of the derivatives. Then the temporal
variation of the rod at any location can be determined
using the standard finite difference approach: a grid
of discrete, general points over the domain is consid-
ered and the derivatives are replaced by their finite-
difference expressions at those points. We denote the
points along the x-axis by xi, the time points by tj
(with ∆t the time step) and finally the temperature at
point xi and time tj by yi,j. Then:

(

∂y

∂t

)

i,j

=
yi,j+1 − yi,j

∆t

(

∂2y

∂x2

)

i,j

=

yi+1,j−yi,j

xi+1−xi
− yi,j−yi−1,j

xi−xi−1

1
2(xi+1 − xi−1)

which yields:

yi,j+1 = yi,j +
2∆tD

(xi+1 − xi−1)
(

yi+1,j

(xi+1 − xi)

−
yi,j

(xi+1 − xi)
−

yi,j

(xi − xi−1)
+

yi−1,j

(xi − xi−1)
)



To solve the localization problem in this case, the set
of equations (one for each yi) must be solved for the
xi values. This requires solving a set of degree 3 poly-
nomial equations - which can be a difficult problem.
For example, given n sensor nodes, there are up to 3n

distinct solutions (most are complex solutions, and thus
not feasible). See [21] for analytical solution methods,
e.g., homotopy continuations. We do not pursue such
methods here since we have discovered that in the case
of sensor networks, a search over uniform samples can
be performed which produces the sensor node locations
quite efficiently. Consider Algorithm Heat 1D.

Algorithm Heat 1D
———————————————————
On input:

n: the number of sensor nodes
T

(j)
n : the temperature at node n at time j

x0, T0: min x value and temperature there
xn+1, Tn+1: max x value and temperature there

On output:
Si, i = 1 . . . n; sensor node locations

begin
num samples← 100 – number of location guesses
Sij ← U(x0, xn+1) – uniform samples for locations
T
′(k)
sij
← Heat 1D Sim – predicted temps for xi

Di ← ‖T
′

i − T‖ – distance from actual temps
D min = min(Di) – best temperature match
while Dmin > thresh

S1...10 ← choose best guesses
S11...100 ← add more random samples
T
′(k)
sij
← Heat 1D Sim – predicted temps for xi

Di ← ‖T
′

i − T‖
D min = min(Di)

end
end

The algorithm generates random locations for the
sensors, then simulates the heat equation to obtain pre-
dicted temperatures given the assumed node locations,
then uses a distance norm to obtain an estimate of
how much the actual and predicted temperature values
differ. Finally, it determines the minimum error guess.
If the best estimate is within a certain threshold, then
the algorithm returns the locations that best fit the
actual data. Otherwise, new guesses are generated from
perturbations of the best guesses, and random samples
added for the rest, and the process continues.

The results of Algorithm Heat 1D are shown in
Figures 6- 7. The performance of the algorithm is given
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Fig. 6. Number of Locations Expanded by Algorithm Heat 1D.
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Fig. 7. Error (m) in Solution Location by Algorithm Heat 1D.

in terms of number of guesses produced versus number
of nodes and error in the sensor locations found. Several
sets of node locations were used in this simulation
experiment, and there is no assumption on the order
of the nodes along the rod. The algorithm has also
been implemented and run on the Tmote Sky, and
runs quite efficiently; however, it has not been used
in physical experiments yet. [Note that in order to
get O(∆t + (∆x)2) error in approximation, we must
select ∆t sufficiently small to guarantee stability; i.e.,
∆t ≤ (∆x)2

2 . Sparse sampling on the interval may result
in a relatively large ∆x.]

We have also applied the method to data taken from
an experimental apparatus (Figure 8 shows the layout).
A one meter long stainless steel rod (304CG) of diame-
ter one inch is connected to a steam chamber at one end
and is instrumented with type T thermocouples located
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Fig. 9. Forward Temperature Simulation from Tmote Sky Execu-
tion.

at 0.005m, 0.035m, and 0.095m, respectively, from the
steam chamber. The thermocouples are connected to 10
channel selector switches which in turn are connected
to a digital readout. The rod is attached to the steam
chamber that provides a constant energy source at the
base. The steam is turned on, and temperature readings
are taken every 20 seconds as the rod heats.

In analyzing this data, an alternate algorithm was
developed. Given knowledge of the initial conditions
once the steam is activated (namely, 100 degrees C
at one end and room temperature elsewhere along
the rod), it is possible to run a careful simulation
to obtain temperature curves at a dense sample of
points along the rod (e.g., 1,000). Code was developed
for the Tmote Sky and Figure 9 shows the results
of a mote calculation. Each sensor is then matched
independently to determine the best fit location. Call
this Heat 1D dense.

x = 0.005 x = 0.035 x = 0.095
sim/measured sim/measured sim/measured

65.2/65.2 30.2/30.2 20.6/20.6
85.4/68.3 33.9/33.1 21.2/20.7
88.2/71.0 35.7/35.5 21.4/21.0
89.5/73.4 37.6/37.6 21.6/21.1
90.4/75.9 39.5/39.8 21.8/21.3
91.1/77.9 41.4/41.9 21.9/21.6
91.6/79.8 43.2/43.9 22.1/22.0

Table 4.1 Simulated and Measured Temperature Data
for Heated Rod Experiment.

Table 4.1 gives the simulated and measured temper-
ature values. The actual and recovered locations are:
(0.005, 0.035, 0.095) and (0.011, 0.035, 0.100), respec-
tively. As can be seen, the heat transfer model fits better
away from the steam source.

Discussion and Future Work
Several issues arise in terms of the application of

this method. First, there is a tradeoff between coarse
simulation (e.g., large spacing and time step) versus
high resolution simulation. Next, one approach is to
compute a sparse solution using only the points where
data is taken (or assumed taken). This involves running
the coarse simulation for each separate guess as to the
locations of the sensors. Alternatively, it is possible to
run one fine-grained simulation, if the initial conditions
are known and satisfied, and then simply match the
sensor data to the location with the temperature trace
which most closely matches the measured data. Note
that even if the data is not taken from time 0 (i.e., when
the steam is turned on), it is possible to find the best
matching locations for the measured data considered
simultaneously.

Another major issue is the determination of an ade-
quate model of the phenomenon. We take as our starting
point that this is possible, especially when the structure
of the model is known, and all that remains is to iden-
tify parameters. For recent work on this, see [20]. They
derive the system model and the measurement model
by the finite spectral method and show how nonlinear
phenomena with complex boundary conditions can be
reconstructed and predicted. More work needs to be
done to characterize the types of functions which allow
unique solutions in these circumstances.

These preliminary results are very encouraging.
However, there is much work to be done:

1) Analysis: The mathematical basis for the ap-
proach must be established. This is an instance of
the Inverse Heat Transfer Problem [1]. We would



like to couple the Heat 1D method with some
nonlinear solvers (e.g., Newton type methods). In
this way Heat 1D would provide starting points
for faster nonlinear solvers.

2) Stochastic Methods: Simple Monte Carlo tech-
niques are used here; however, we intend to
explore Markov Chain Monte Carlo, Bayesian
methods, Quasi-Monte Carlo, etc.

3) Experimental Considerations: Further experimen-
tation needs to be performed to establish the
method. We plan to build and test an experimen-
tal apparatus for monitoring snow. 2D and 3D
methods must be developed.

A few words are in order about the practicability of
the method:

• Each sensor node can solve the problem indepen-
dently in terms of sensor data from its neighbors.

• Generally, there will not be a large number of
neighbors, and thus the system should be readily
solvable.

• The only communication required is a time se-
quence sample of temperatures from the neigh-
bors.

• Solutions can be shared between nodes to improve
efficiency and accuracy.

• Temperature values can be averaged to reduce the
effect of noise.

• Off-network computation of the numerical solu-
tion is also possible.
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