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Abstract— A general framework is proposed for be-
havior modeling, analysis and synthesis. This allows a
better understanding and evaluation of the nature and
role of behavior models in the following disciplines:
ethology, robot behavior specification, animated char-
acter behavior specification, and automatic behavior
analysis. In addition, it is argued that the following
aspects of a system’s behavior usefully characterize
behavior models: (1) physical, (2) physiological, (3) con-
textual, and (4) conceptual. We demonstrate how basic
behavior units can be extracted from time sequence
data of a synthetic two-state problem. This is done by
detecting Basic Behavior Units using the affinity graph
method, and then determining higher level behavior
model parameters based on these.

I. INTRODUCTION

Our goal in this study is to better understand the
nature of behavior and behavior models in their many
forms. This ranges from the behavior of physical sys-
tems according to the laws of physics and chemistry
up to the goal-directed behavior of animals, people
and autonomous agents. What does it mean for a
system to behave? Does it mean, as in normal human
discourse, to follow the rules? What rules? Are these
encoded in the laws of nature, genetics, etc., or merely
convention? How do these various aspects interact?
Different disciplines take different approaches to for-
mulating and answering these questions. We propose
a conceptual framework for this discussion, a set
of dimensions of interest in characterizing behavior,
and present a method for the discovery of Basic
Behavior Units (BBUs), and higher-level behavior
model parameters based on them.

The study of the behavior of natural systems is the
basic undertaking of science, and the general goal is
to produce a description that not only explains what
happens, but that can be used to predict future events.
For example, a description of the change in height of
an object dropped from the top of a building might be

derived from Newton’s laws and given as a function
of height versus time. The behavior in this case is the
change in position, and the resulting equation models
this behavior. Such a model can be put to a variety
of uses; e.g.:

• explain behavior: determine time or velocity of
impact,

• predict behavior: given a desired time of im-
pact, determine the necessary initial height and
velocity, or

• characterize behavior: given a trajectory, deter-
mine if the object obeys the model.

The variables of such models are usually physical
quantities that can be measured by well-defined in-
struments. The result of such measurements is called
raw experimental data.

A similar approach may be taken in the study of
living organisms as in ethology [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10]. Here the situation is more
complicated because behavior is mediated not only by
physical laws, but also by physiological conditions,
internal drives and environmental context. Also com-
plicating the issue is the interplay between success
and survival at the individual and species levels.

In addition, the description of animal behavior
may be couched in special variables defined by the
investigator and discerned through the psychologi-
cal processes of the human observer. For example,
a gorilla may be watched to determine how often
it displays affection for its young; a videotape of
this would be raw experimental data, but a human
produced log of affection events based on the video
will be termed annotated behavior and serves as an
explanation of the observed data. Such an explanation
is mediated by and couched in terms of the conceptual
model.

In order to produce a life-like animation, it is nec-
essary to produce both physically and psychologically
correct behavior [11]. Models for animated characters
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Fig. 1. General Framework for Scientific Explanations

require a body component and a mind component. The
latter addresses goals, drives, beliefs, etc. A motion
sequence generated by such a model will be called
a generated behavior and is a predicted sequence of
events.

The mobile robot research community also pro-
duces generated behaviors [12]. However, unlike the
animation characters which exist only in an electronic
world, physical robots exist in the real world. Thus,
these behaviors also include a control aspect in terms
of the robot acting in the physical world. (While it
is true that an animated character interacts with its
virtual world, this again involves generated behaviors,
whereas the mobile robot gets physical feedback.)

Finally, the area which most interests us is auto-
matic behavior analysis. Here the goal is to combine
raw experimental data (usually video) with a behavior
model and produce what we term interpreted behav-
ior. This corresponds to annotated behavior except
that one is produced by humans and the other by
computation. Interpreted behavior thus also serves as
an explanation of the observations in terms of the
model.

To better understand the various manifestations of
behavior and the emphases of different disciplines,
we propose the general framework for scientific
investigation shown in Figure 1. The world (Box
1) signifies the object of study which may be, for
example, gravitational force, or the foraging behavior
of army ants. Typically, direct access to the world
is not possible (i.e., through Plato’s ideals, or Kan-
tian categories), and the world must be understood
through observation and measurement (Box 2). Such
observations may arise through human perception or
the use of measuring instruments.

A model (Box 3) of the object of interest is
developed based on measurements and observations
of the object. Modeling and observation are highly
coupled in that the observations provide desiderata
for model creation, while the model itself informs
the experimental framework for data acquisition. The
model serves two major purposes; first, it should
explain the observations; second, it should predict
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Conceptual Model.

new phenomena. These explanations and predictions
(Box 4) can be compared to the observations in order
to validate the model. Finally, the model can provide
guidelines to control the object of study; this can
either be to define or improve observation conditions,
or can be done with the goal of achieving a certain
predicted result.

Another level of detail is required to distinguish
computer models from other formal frameworks; this
is shown in Figure 2. The conceptual model is
converted to a computer model by programming an
implementation. To ensure the equivalence of the two
models requires verification. This includes, under-
standing and eliminating algorithmic errors, numer-
ical errors, coding errors, etc.

II. BEHAVIOR MODELING AND ANALYSIS

The automatic analysis of behavior requires:

• model building: theory and/or observations are
used to determine the component models (phys-
ical, physiological, conceptual).

• model exploitation: each model is combined
with the appropriate observations to explain (in-
terpret) the observables.

Model exploitation follows the framework given in
Figure 1 and provides explanations (interpretations)
of the observables in terms of the behavioral units
of the model. However, model building is not so
easily accomplished. As pointed out by Colgan[13],
a model; consists of two components:

1) a description of a mathematical (or other) sys-
tem, and

2) a map that links the variables of (1) with those
of the object under study.

It is often difficult to determine appropriate variables
and mappings. One major issue in model building is
that the observables may only be loosely connected to
the deeper behavior-driving phenomena. This leads to



the creation of models defined in terms of superficial
qualities which only indirectly allow understanding of
the behavior generator.

Another important aspect of a modeling effort is
the impact of error at various stages of the process. It
is important to quantify error and how it propagates
through the model into the interpretation. Of course,
standard error analysis can always be applied (e.g.,
see [14]), but it is also necessary to understand
discontinuous error. For example, if the desired expla-
nation is a label like grooming, then it is either correct
or not, and it may be difficult to relate smoothly to the
observation variables derived from images. However,
it is precisely this type of sensitivity analysis which
is needed and which should be supported by the
modeling technique. The simulation community has
developed a Verification and Validation approach to
the development of complex, multi-physics, multi-
scale codes [15], and we propose to incorporate some
of their ideas here.

We propose to construct a general behavior model
whose variables and their relations describe the fol-
lowing aspects of behavior:

1) physical: any known physical laws of mathe-
matical models (physics).

2) physiological: any rules relating body regula-
tion, etc. (chemistry and physiology).

3) contextual: space or time circumstances which
influence behavior (reactive).

4) conceptual: mental states or properties (AI).
Variables may be discrete or continuous, temporal,
spatial, internal or external, or abstract. What differ-
entiates models is the nature of the variables and their
relationships to each other and the modeled system.

Once a model has been determined, it is useful to
evaluate it. We believe that the following 2 aspects
are the most important:

• How well does it describe the 4 model levels
given above (i.e., physical, physiological, con-
textual, and conceptual)?

• How well does it enable arrow activity in Fig-
ures 1 and 2? Examples of this include: (1)
How well are observations used to inform the
model building? (2) What is the complexity of
generating explanations or predictions? (3) How
easily can validation be performed and at what
accuracy?1

We now turn our attention to the various forms
of conceptual models for behavior. Our approach to

1The authors would like to thank Ann Torrence for this
observation.
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modeling follows that of McFarland [16], [17]. The
basic model for the physical system behavior is shown
in Figure 3. The model is divided into two major
parts: (1) the Equations of State (EoS) which describe
all forces of interest at work in the system, and (2)
the specific characteristics of the particular object
under study. For example, (1) will usually elaborate
F = ma while (2) specifies mass, initial position
velocity, etc., as well as any other local constraints
(e.g., gravitational constant, existence of floors, walls,
etc.). (This area has been well studied and is not
addressed here.)

Since we are interested in biological systems, the
next level of behavior model describes the physiologi-
cal system. Figure 4 shows the basic scheme for this,
and it is much like the physical system. Although
at some level of description this is perhaps just a
physical system, the scale at which events of interest
occur is too far removed from physical forces to be
modeled that way. For example, we may want to
model hunger as a drive, and this approach allows
an appropriate conceptualization of hunger.

Finally, the full model for autonomous agents is
given in Figure 5. The physical and physiological
systems are integral components of this model. The
behavioral mechanisms (i.e., the action generating
processes) give the possible responses of the system.
Such actions have consequences both in terms of the
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behavioral state of the agent, as well as in terms of the
physical and physiological state. For example, if the
selected action is eat, then there are required physical
motions, and there are physiological consequences
such as decrease in hunger and increase in thirst.

The motivational processes are those that play a
role in creating goals, shifting attention, influencing
drives, etc. and which are not strictly physical or
physiological. Such processes may interact intimately
with lower level processes; for example, the agent
may choose to ignore pain in order to obtain food.

Note that although learning is a major aspect of
behavior, it is not addressed here. We hope to take
this up in a future study.

III. BASIC BEHAVIOR UNIT DISCOVERY

A. Approach

A behavior model is built in terms of basic behavior
units (BBUs). An appropriate BBU set must be found
for the particular modeling approach. For example,
suppose that we wish to model a mouse in a cage.
Then, a set of BBUs of interest might include: rest-
ing, eating, drinking, grooming, and exploring. If we
adopt the state-space approach, then the observable
variables we will use are: position (p(t)), speed (s(t)),
and acceleration (a(t)).

It is possible to make general functional characteri-
zations of the BBUs in terms of the temporal variation
of these variables. For example:

• resting: p(t) = ground level; s(t) = 0; a(t) = 0
• eating: p(t) = raised body; s(t) = 0; a(t) = 0
• drinking: p(t) = raised body; s(t) = 0; a(t) = 0
• grooming: p(t) = any; s(t) = sin(t); a(t) =

square(t)
• exploring: p(t) = any; s(t) varies randomly; a(t)

varies randomly

However, this is difficult since it involves high level
notions about motion (random, sine, square wave,
etc.), and in fact, should consider the motions of
the limbs and head separately. Another approach is
to obtain video data of the BBUs of interest, and
then calculate time sequences of position (e.g., of
the center of mass), speed, and acceleration, and
determine whether these allow discrimination of the
distinct BBUs. We follow this approach.

In related work, Jenkins [18] employs a spa-
tiotemporal nonlinear dimension reduction technique
(PCA-based) to derive action and behavior primitives
from motion capture data, for modularizing humanoid
robot control. First, spatiotemporal neighborhoods are
built, then a matrix D of all pairs shortest distance
paths is computed, and finally PCA is performed
on matrix D. Barbic et al. [19] propose three PCA-
based approaches. The approach we use, the affinity
graph method, has mostly been applied in image
segmentation, as summarized in [20]. Recently, this
method has been applied to event detection in video
[21], [22]. Others have used the concept of similarity
matrix for classification (e.g., gait recognition [23]
and action recognition [24]).

Different affinity measures have been proposed to
construct the affinity matrix. In image segmentation,
distance, intensity, color, texture and motion have
been used [25]. In video-based event detection, a sta-
tistical distance measure between video sequences is
proposed based on spatiotemporal intensity gradients
at multiple temporal scales. [22] uses a mixture of
object-based and frame-based features, which consist
of histograms of aspect ratio, slant, orientation, speed,
color, size, etc., as generated by a video tracker.

Most closely related to our approach are [21] and
[22]. [21] constructs affinity matrix from temporal
subsequences using a single feature, while [22] con-
structs the affinity matrix for each frame based on
multiple weighted features.

We are particularly interested in discovering animal
behaviors from video sequences, and use the affinity
graph method to segment temporal sequences into
BBUs. This is done by choosing an element for
consideration. For us, this element is a temporal
subsequence of length T. Next a matrix is constructed
in which each (i; j) entry gives an affinity (or sim-
ilarity) measure of the ith and jth elements (we
use the element-wise distance between the subse-
quences). The eigenvalues and eigenvectors of the
matrix are found, and the eigenvalues give evidence
of the strength of a cluster of similar elements.
As described in [25], if we maximize the objective



function wT
n Awn with affinity matrix A and weight

vector wn linking elements to the nth cluster, and
requiring wT

n wn = 1, then the Lagrangian is:

wT
nAwn + λ(wT

n wn − 1)

which leads to solving Awn = λwn. Therefore, wn

is an eigenvector of A. Thus, the eigenvectors of the
affinity matrix determine which elements are in which
cluster. We use this to extract basic behavior units in
terms of their position, velocity, etc. of various state
variables of interest.

Given a segmentation of the behavior sequence
into BBUs, the next goal is to determine higher-level
model parameters and structure. For example, we
might assume a Hidden Markov Model approach, or
some parameterized characteristic function, and use
the temporal relations between the BBUs to form a
concrete model.

B. Simulation of A Simple Two-State Example

Data Synthesis. For purposes of demonstration,
we model some very simple behaviors of a mouse
in a cage. Here we assume that the physiologi-
cal, contextual and conceptual models may be ex-
pressed as probabilistic functions of some S-curve
form (sigmoidal, hyperbolic tangent, etc.). As the
Basic Behavior Units, suppose the mouse can ei-
ther rest (BBUrest) or wander (BBUwander). Fur-
thermore, suppose that the transition between these
two behaviors is characterized by two functions,
Frest→wander(t) and Fwander→rest(t):

Frest→wander(t) = 1/(1 + eKrest−t)

Fwander→rest(t) = 1/(1 + eKwander−t)

where Krest is a parameter specifying the length of
rest periods, and the function gives the likelihood as
a function of time that the mouse will wake up and
start to wander. Kwander is a parameter specifying the
distance wandered, and gives the likelihood that after
moving a distance d the mouse will stop wandering
and begin to rest. Figure 6 shows the transition likeli-
hood for the sigmoid models used here to synthesize
data sequences. Behavior sequences are synthesized
over 20,000 time steps using fixed values of Krest

= 40 and Kwander = 40, and the observables are:
x, ẋ, y, ẏ, a, ȧ, where a is the mouse heading angle.

Data Analysis. First, the basic behavior units (rest,
explore) are determined using the affinity graph
method. Figure 7 shows the segmentation of part of
the data sequence (the actual behavior sequence is
shown as positive values and the segmented as nega-
tive to enhance the visual effect). A critical parameter
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in this temporal sequence analysis is the subsample
time period, T (set to 3 here). As can be seen in
the figure, there is a little error at the onset of each
behavior segment. The error in segmentation (i.e.,
number of time steps incorrectly labeled) is about 3%.
We are going to develop a statistical algorithm that
can choose the optimal T parameter.

The time spent in individual behavior units is
used to develop a statistical model of the transition
probability. These probabilities may be used to form
different types of models (HMM, etc.); here we
recover the same form as was used to generate the
data in order to allow a straightforward comparison of
the results. The best parameters for Frest→wander(t),
and Fwander→rest(t) are then determined. Let Crest

be the total number of resting BBUs and Cwander be
the total number of wandering BBUs.
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Transition likelihoods are calculated using the
length of time spent in each BBU; let the length of
the ith BBU be |BBUstate,i|; then:

Lrest→wander(t) =
|{|BBUrest,i| < t}|

Crest

Lwander→rest(t) =
|{|BBUwander,i| < t}|

Cwander

Figure 8 shows the histogram of the times spent at
rest, and Figure 9 shows the cumulative likelihood of
transition curve derived from the histogram (i.e., its
integral). K̂rest, the estimated value of Krest, is 37.5
(versus 40). Next consider the role of physiological,
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contextual or conceptual variables in determining
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with Light Context, for (a) Rest⇒Explore Transition and (b)
Explore⇒Rest Transition

behavior. Our premise is that these variables change
the parameter or form of the behavior likelihood
functions. For simplicity of the demonstration, we
assume that only the function parameter changes with
the change in physiology, context or conceptual frame
of mind. For example, suppose that the mouse tends to
rest for longer periods and wander for shorter periods
when it is dark; then the resting transition likelihood
function shifts to the right, and the wander function
to the left. If a behavior sequence is available which
includes periods of dark and light, then this is readily
determined by the appearance of multiple peaks in
the transition time histogram (see Figure 10).

Functions with the appropriate respective parame-
ters for light and dark can then be found. Figure 11



shows this with the shifted versions of the transition
likelihood functions. It is also possible to determine
the causal role of light if the observed data includes
some measure of the phenomenon (e.g., light intensity
as a function of time).

For physiological and conceptual variables, there
will be no corresponding observable data. However,
it is still possible to detect multiple peaks in the
behavior time histogram and infer hidden variables.

IV. DISCUSSION AND CONCLUSIONS

We propose a framework for the study of behav-
ior modeling which includes physical, physiological,
contextual and conceptual levels. The affinity graph
method is proposed for the segmentation of BBUs
based on physical observations. BBUs are required
to build higher-level behavior models. We show how
BBUs are used to determine parameters at the phys-
iological, contextual, and conceptual levels.

We are currently investigating the application of
the method to model the activities of a lab mouse
in a cage (Figure 12 shows a mouse in the lower
left sitting quietly in the cage). Its activities are

Fig. 12. Mouse in Cage.

observed and recorded manually (eventually we hope
to automatically extract this from video sequences).
Here we show our preliminary results of finding
basic behaviors using the affinity graph. The mouse’s
behaviors include: exploring, reaching up, grooming,
or staying still. The observed data consists of a vector,
including position (x,y), and two angles of the head of
the mouse relative to its rear body: one to distinguish
whether it is standing up or staying on ground, the
other to indicate whether it is grooming with its
body twisted. Here is a sample of observed parameter
sequence:

x y theta1 theta2 time lasts action
10 5 0 0 0 90 still

8 4 0 0 90 5 move
8 4 90 0 95 57 reach up
9 6 0 0 152 10 down

10 4 0 90 162 30 groom

The observed data consists of parameters recorded in
the same style as above. In the analysis, only the first
four parameters are used. The data is interpolated to
one second samples. We use the affinity graph method
to determine which elementary sequences cluster into
basic behavior units. There are 11 major eigenvalues
found – just as there are about this many distinct
behaviors for the mouse (of course, the behaviors can
be divided into different length time sequences to get
different numbers of behaviors). The BBU detection
seems adequate, and in future work aim to achieve
comprehensive behavior model construction for such
scenarios.
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