
Monte Carlo Sensor Networks

Thomas C. Henderson, Brandt Erickson,
Travis Longoria, Eddie Grant*, Kyle Luthy*,

Leonardo Mattos*, and Matt Craver*

UUCS-05-001

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

*Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, NC 27695 USA

20 January 2005

Abstract

Biswas et al. [1] introduced a probabilistic approach to inference with limited informa-
tion in sensor networks. They represented the sensor network as a Bayesian network and
performed approximate inference using Markov Chain Monte Carlo (MCMC). The goal is
to robustly answer queries even under noisy or partial information scenarios. We propose
an alternative method based on simple Monte Carlo estimation; our method allows a dis-
tributed algorithm, pre-computation of probabilities, a more refined spatial analysis, as well
as desiderata for sensor placement in the friendly agent surrounded by enemies problem.
In addition, we performed experiments with real microphones and robots to determine the
sensor correct response probability.

1



1 Introduction

Many advances have been made in sensor network technology and algorithms in the last
few years. See [14] for an overview of the state of the art. Work has been done on:
architecture [9], systems and security [4, 12, 13], and applications [10]. Our own work
has focused on the creation of an information field useful to mobile agents, human or
machine, that accomplish tasks based on the information provided by the sensor network
[6, 2, 3, 5, 8].

Some drawbacks of sensor networks include the need to conserve power and not run all the
nodes all the time (partial data), and sensors are noisy (sometimes return the wrong value).
This motivates a statistical approach to decision making. As described in the abstract,
Biswas et al. [1] introduced an interesting problem in the context of sensor networks, as
well as an MCMC solution. We present an alternative approach here.

1.1 The Problem

Suppose there is a 2D area of interest (we’ll consider the unit square), and a friendly agent
located at a fixed position, LF , in the area. In addition, there are m sensor nodes located
throughout the area (these sensor nodes report the presence or absence of enemy agents
within some fixed range). Finally, n enemy agents are placed in the area; each enemy
agent’s coordinates are chosen by independently sampling a uniform distribution for x and
y.

Query: Given a set of sensor responses, Ri (each declares there is or is not an enemy
within its range), and a set of probabilities of the correctness of the responses, what is
the probability, P (S | Ri), that the friendly agent is surrounded by the enemy agents
(surrounded means that it is within the convex hull of the enemy locations).

1.2 Previous Work

The authors cited above set up a Bayesian network with a given a priori probability of
correctness of the sensor responses, and conditional probabilities on the locations for the
enemies given the responses, and also a conditional probability of being surrounded given
the enemy locations. They present results of answering the query for two examples, and

2



investigate the affect of various parameters on the posterior probability; these parameters
include: number of sensors, number of enemies, sensing range and MCMC convergence.

2 Monte Carlo Sensor Networks

2.1 Sensor Model

We take a slightly different sensor model than Biswas et al. Let the ground truth be defined
as:

d̂i =

{

0 if there’s no enemy in range of sensor i
1 otherwise.

Then, let:

di =

{

d̂i with probability ρ

¬d̂i with probability 1 − ρ

2.2 No Sensor Data Available

In the absence of any sensor data, there is an a priori probability that the friendly agent
is surrounded. We use Monte Carlo simulation to estimate this probability (see Figure 1
for n = 3 . . . 6). Figure 2 shows the a priori probability that the center point (0.5,0.5) is
surrounded as the number of enemies goes from 3 to 10.

2.3 One Sensor Case

To determine the probability when sensor data is available, we use Monte Carlo as follows.
Consider the case when 1 sensor responds; i.e., R := d1 is the sensor response and is
correct with probability ρ. Then:

Prob(S | R) = ρMC(assume d1)

+(1 − ρ)MC(assume ¬d1)

3



0
5

10
15

0

10

20
0

0.2

0.4

0
5

10
15

0

10

20
0

0.5

1

0
5

10
15

0

10

20
0

0.5

1

0
5

10
15

0

10

20
0

0.5

1

Figure 1: A Priori Probability that Point in Unit Square is Surrounded (for 3,4,5 and 6
enemies).

3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Enemies

A
 P

rio
ri 

P
ro

ba
bi

lit
y 

of
 B

ei
ng

 S
ur

ro
un

de
d 

at
 [0

.5
;0

.5
]

Figure 2: A Priori Probability that Point in Center of Unit Square is Surrounded (for 3,4,5,6
and 10 enemies).

4



where MC(·) means to run the Monte Carlo simulation with condition · set. That is, if d1

is 1, then fix one enemy at LS1 (sensor 1’s location); if d1 is 0, then don’t use any sample
with an enemy in range of LS1.

2.4 m-Sensor Case

The same approach is used, but now there are 2m terms in the probability calculation. Let
d = [d1, d1, . . . , dm] be the set of sensor node assertions about the presence of enemies.
We must consider all combinations of these being true or false. This is characterized by
a vector b = [b1, b1, . . . , bm] and the contribution of each to the total probability of being
surrounded:

Prob(S | R) =
∑

b∈P({0,1}m)

Prob(b)Prob(S | b)

For example, if we assume that all the sensor nodes report that there is an enemy present,
and the first m − 1 sensor responses are correct but that sensor node m is wrong, then we
compute that term in the above summation as:

ρn−1(1 − ρ)Prob(S|Positions)

where Positions indicates that Monte Carlo is run assuming enemies in positions indicated
by nodes 1 to m − 1 and no enemy in range of node m.

3 Examples

We give here our results for the experiments of Biswas et al. (We estimate the locations
from their figures!) The layout of Experiment 1 is shown in Figure 3. The corresponding
table is given in Table 1; we give both our results (MC) and theirs (MCMC) for comparison.

R MC MCMC
56, 68 37 44
none 49 51
2, 41 87 80
41 82 81
41, 56, 68 99 86
36, 37, 41, 56, 68 99 93

5



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LE 0

LE 1

LS 41

LS 36

LS 37

LF

LE 2

LS 68

LE 3

LS 2
LS 56

LE 4

Figure 3: Biswas et al. Experiment 1 Layout of friendly agent (+), enemy agents, LE (◦)
and sensors, LS (∗).

Table 1. Results from Experiment 1.

Figure 4 shows the layout of Experiment 2, and Table 2 shows the results obtained from
both the MC and MCMC methods.

R MC MCMC
none 68 67
35, 50, 58 66 70
8, 36, 58 66 74
8, 36, 46 74 75
8, 35, 50, 58 87 78
8, 35, 36, 46, 50, 58, 75, 86 96 91

Table 2. Results from Experiment 2.

Figure 5 shows the convergence of the Monte Carlo process as the number of trials is
increased. These results are for row 2 of Table 2, and for the number of trials ranging from
10 to 104.

We also ran a simulation experiment in which the sensor responses’ correctness was sam-
pled from the appropriate distribution (uniform, 70% correct; see physical experiments
section). We ran one case with the friendly agent surrounded and one case with it not
surrounded. (We used Experiment 2 layout for the former, and switched LF and LE 3 for
the latter.) Table 3 gives the mean posterior found and the variance (the no sensor case is

6



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LE 0

LS 8

LS 86

LE 4

LS 36

LS 35

LF

LS 75

LS 58

LE 3

LE 1 LE 2

LS 50

LS 46

Figure 4: Biswas et al. Experiment 2 Layout of friendly agent (+), enemy agents, LE (◦)
and sensors, LS (∗).

eliminated).

Surrounded Case Not Surrounded Case
(Mean; Variance) (Mean; Variance)
(0.6776;4.7008e-005) (0.4216;2.0093e-004)
(0.6904;6.2806e-005) (0.3985;3.3633e-004)
(0.7298;1.0097e-00) (0.3019;1.2547e-004)
(0.7629;2.3356e-004) (0.3571;2.1346e-004)
(0.8418;5.5877e-004) (0.1093;2.7538e-004)

Table 3. Re-run Experiment 2 with sensor
correctness sampling and both with LF

surrounded and not surrounded.

4 Physical Experiments

A set of experiments was undertaken to better understand the physical nature of acoustic
detection systems, as well as their probability to produce a correct report of enemy pres-
ence. We determined the correctness probability to be around 70%.

For physical testing it was decided to use the EvBot II autonomous mobile robot testbed

7



10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Trials

P
os

te
rio

r 
P

ro
ba

bi
lit

y 
th

at
 L

F
 is

 S
ur

ro
un

de
d

Figure 5: Convergence of MC for row 2, Table 2.

in the Center for Robotics and Intelligent Machines (CRIM) at North Carolina State Uni-
versity [11]. The autonomous mobile robot platforms in the testbed, the EvBots, are used
widely for evolutionary algorithm and distributed sensor experimentation. To test the Mote
Carlo sensor network at the heart of this paper a simple microphone circuit was constructed
to provide the data for hit or miss decision making. For these experiments the EvBot II
robots served as stationary sensor nodes. The enemy in this case is a speaker providing
sound within a set range. The microphone circuit consists of a two stage amplifier, the
output of which is rectified to yield a DC approximation of the amplitude. A DC approx-
imation removes the need for rapid sampling and frequency determination and gives an
integer value after analog to digital conversion. An example of the output of this circuit
is shown in Figure 6. There is a slight voltage drop (approximately 0.7V) between the
sound source and the rectified signal due to the rectifying diode. This serves to reduce the
effective range of the ADC measurement (8 bits) from 1024 to around 930.

The output of the microphone circuit is sampled through an ADC channel that is part of
the circuitry of a BasicX 24 microcomputer; which in turn is part of the EvBot II platform.
Multiple robots can easily be used to represent a distributed network by utilizing their built
in wireless networking. While not necessarily a valid representation of a true distributed
sensor network (due to size, processing power, battery life, and cost), they serve as a good
test-bed to provide proof of concept. An EvBot fitted with a sensor circuit is shown in
Figure 7.

To provide a listening range for the robot, a 100Hz sound source was placed 22.25 inches
from the microphone. The sound level was set at an amplitude value that equates to a sensor
reading of 512, i.e., half the range of the ADC. Any fluctuations observed in the recorded

8



Figure 6: The Sensed Sound and the Rectified DC Approximation.

data were considered as being a function of a combination of sensor circuit design and
variations in the sound source. The sound was calibrated using a BK Precision model 732
digital sound level meter. For this setup, a level of 107.6dBC equates to approximately half
ADC range at 22.25 in. This calibration was performed in the center of the environment to
reduce error caused by noise reflection from the walls in the room.

A series of hit or miss experiments was performed in order to characterize the sensor. The
EvBot was placed at three positions within the environment, the center, the center to one
side, and in a corner, see Figure 8. At each of these positions the sound source was placed
at 11.125 inches, 22.25 inches, and 33.375 inches, well within range, putting it just in range
(defined previously as 22.25 inches), and well out of range. Likewise, at each range, data
from 3 threshold values were recorded; one at 512 (used to define the original range), one
at 256, and one at 768. Each measurement location and threshold is recorded 100 times.
Furthermore, this experiment is performed on two different sensor/EvBot systems.

The sound level was measured at the sensor while at standard range in each of the three
positions in the environment. While in the center, the amplitude was measured as 93.3dBC.
At the side, this number is higher at 94.2dBC, and similarly, in the corner, 94.6dBC is
measured. All three systems are 22.25 inches from the same source. This is an indication
of sound level variation due to location, most likely surface reflections.

Examination of the data in Tables 4 and 5 shows the variation in hit and miss results due
to the microphone sensor changing between the positions, ranges, and detection thresholds
(T is the threshold for enemy detection).

9



Figure 7: EvBot II with Affixed Sound Level Detection Circuit.

Center Side Corner
Correct Incorrect Correct Incorrect Correct Incorrect

Half Range T = 256 100 0 100 0 100 0
(11.125 inches) T = 512 100 0 100 0 100 0

T = 768 100 0 100 0 100 0
Full Range T = 256 100 0 100 0 100 0
(22.25 inches) T = 512 13 87 100 0 100 0

T = 768 0 100 0 100 0 100
Far Range T = 256 90 10 0 100 0 100
(33.375 inches) T = 512 100 0 100 0 100 0

T = 768 100 0 100 0 100 0

Table 4. Characterization of Correct Decisions
from Recorded Sensor Data (EvBot 7).

10



Figure 8: Experimental Setup.

Center Side Corner
Correct Incorrect Correct Incorrect Correct Incorrect

Half Range T = 256 100 0 100 0 100 0
(11.125 inches) T = 512 100 0 100 0 100 0

T = 768 100 0 100 0 100 0
Full Range T = 256 100 0 100 0 100 0
(22.25 inches) T = 512 0 100 100 0 100 0

T = 768 0 100 0 100 0 100
Far Range T = 256 100 0 0 100 0 100
(33.375 inches) T = 512 100 0 100 0 100 0

T = 768 100 0 100 0 100 0

Table 5. Characterization of Correct Decisions
from Recorded Sensor Data (EvBot 4).

To ensure that any variation in the sensor system is accounted for experimentally, two sets
of experiments were carried out using two separate robots, i.e., EvBot 4 and EvBot 7.
Whether or not there is a hit or a miss is determined by:

1. The position of the sensor within the environment (are there reflections off of walls?)

2. The threshold level used to determine whether or not an enemy is in the predefined
range (a higher threshold will miss enemies in range, a lower will identify enemies
out of range)

11



3. Variations between sensor systems.

The experiment proved that the percentage of correctness of hit or miss depends upon a
variety of factors. When the system is set up such that the threshold is mid-range then the
decision of hit or miss is predictable in cases where the sensor system is half-range and far-
range, these give 100% hit and 100% miss, respectively. At the distance associated with the
threshold, i.e., full-range, the percentage correctness obtained varies because of the varia-
tions in sound source, sensor, or ambient noise within the testbed. The experiments also
proved that the position in the environment also plays an important role in the correctness
of the results obtained, e.g., sound levels increase near a wall, due to sound reflection. This
was verified using the BK sound meter.

5 Discussion and Conclusions

We have shown that a simple Monte Carlo approach gives good results in the presence of
noise and partial information, and is comparable to the MCMC approach. Moreover, the
Monte Carlo calculations can be performed off-line (once the positions of the sensors are
known) and downloaded to them and a table lookup used to answer queries once the sensor
responses are known. Alternatively, the computation is distributed among the sensor nodes
if performed in real-time. Higher accuracy can be achieved by increasing the number of
trials (note that this can be done incrementally – e.g., run ten 1000 trial experiments, then
later run another ten, and keep averaging P (S | R).

One assumption that we make in running the Monte Carlo experiments is that if multiple
sensor nodes report the presence of an enemy agent, and if these sensor nodes have a non-
empty intersection, then we assume that there is just one enemy agent and it is placed in
the intersection area. We intend to explore the significance of better area estimates for
enemy location in overlapping sensor areas. This and other slight differences between the
MC and MCMC methods accounts for the differences in specific values in the common
experiments.

Our results indicate that it is also possible to get a good level of confidence by taking
separate singleton or pairs of sensor responses, and use the max probability of those to
answer the query. Moreover, it is possible, given the friendly agent’s location, to determine
sensor placements that decrease the number of responses needed to produce a high-quality
answer.

12



In future work, we intend to explore these issues in a 100-node sensor network testbed now
under construction; the EvBots will provide the mobile agent platforms for use as friendly
and enemy agents. Moreover, we are exploring the application of sensor networks to snow
and avalanche monitoring[7], and in this case the goal might be to surround (e.g., the signal
of a buried person) with mobile agents or people – thus, sometimes it may be of interest to
ensure that an object of interest is surrounded.

References

[1] R. Biswas, S. Thrun, and L. Guibas. A probabilistic approach to inference with limited infor-
mation in sensor networks. In LCSN, Berkeley, CA, April 2004.

[2] Y. Chen. Snets: Smart sensor networks. Master’s thesis, University of Utah, Salt Lake City,
Utah, December 2000.

[3] Y. Chen and T. C. Henderson. S-nets: Smart sensor networks. In Proc International Symp on
Experimental Robotics, pages 85–94, Hawaii, Dec 2000.

[4] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly resilient, energy efficient mul-
tipath routing in wireless sensor networks. Mobile Computing and Communications Review,
1(2), 2002.

[5] T. C. Henderson. Leadership protocol for s-nets. In Proc Multisensor Fusion and Integration,
pages 289–292, Baden-Baden, Germany, August 2001.

[6] T. C. Henderson, M. Dekhil, S. Morris, Y. Chen, and W. B. Thompson. Smart sensor snow.
IEEE Conference on Intelligent Robots and Intelligent Systems, October 1998.

[7] T. C. Henderson, E. Grant, K. Luthy, and J. Cintron. Snow monitoring with sensor networks.
In Proceedings IEEE Workshop on Embedded Networked Sensors, pages 558–559, Tampa,
FL, November 2004.

[8] T. C. Henderson, J.-C. Park, N. Smith, and R. Wright. From motes to java stamps: Smart
sensor network testbeds. In Proc of IROS 2003, Las Vegas, NV, October 2003. IEEE.

[9] J. Hill and D. Culler. A wireless embedded sensor architecture for system-level optimization.
Ece, UC Berkeley, October 2002.

[10] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor
netwroks for habitat monitoring. In WSNA 2002, Atlanta, GA, September 2002.

[11] L. Mattos. The EvBot-II: An enhanced evolutionary robotics platform equipped with inte-
grated sensing for control. Master’s thesis, North Carolina State University, Raleigh, NC,
May 2003.

[12] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS: Security protocols for
sensor networks. Wireless Networks, 8(5):521–534, Sept 2002.

[13] L. Zhang. Simple protocols, complex behavior. In Proc. IPAM Large-Scale Communication
Networks Workshop, March 2002.

[14] F. Zhao and L. Guibas. Preface. In Proc of IPSN 2003, pages v–vi, Palo Alto, CA, April 2003.
LNCS.

13



Appendix A: Matlab Code

-------------------------------------------------------
function prob = MC_apriori_prob(delx,dely,num_trials, num_enemies)
%
% MC_apriori_prob - A priori probability a point (in unit square) is
% surrounded
% On input:
% delx (float): step in x direction
% dely (float): step in y direction
% num_trials (int): number of Monte Carlo trials
% num_enemies (int): number of enemy agents to place
% (random,uniform)
% On output:
% prob (mxn matrix): probability (at each location) that point is
% surrounded by enemies (i.e., in their convex hull)
% Call:
% prob = MC_apriori_prob(0.1,0.1,1000,3);
% Author:
% T. Henderson
% U of U
% Jan 2005
%

num_rows = length(0:dely:1.0);
num_cols = length(0:delx:1.0);
prob = zeros(num_rows,num_cols);
first = 1;
col_index = 0;

% Compute on 1/8 of square
for x = 0:delx:0.5 % try randomly chosen

[x,0.5]
col_index = col_index+1;
row_index = num_rows+1;
for y = 0:dely:x

row_index = row_index-1;
count = 0;
if first==1

14



tic;
end
for t = 1:num_trials

pts = rand(num_enemies,2);
[Ke,Ae] = convhull(pts(:,1),pts(:,2));
[Kf,Af] = convhull([pts(:,1);x],[pts(:,2);y]);
if Af<=Ae % abs(Af-Ae)<eps

count = count+1;
end

end
if first==1

time1 = toc;
first = 0;
time_est = time1*(num_rows*num_cols/8)/60

end
prob(row_index,col_index) = count/num_trials;

end
end

% Use symmetries to get other 7/8ths of square
subp = prob((num_rows+1)/2:end,1:(num_cols+1)/2);
[num_rows_subp,num_cols_subp] = size(subp);

for ii = 1:num_rows_subp-1
for jj = 1:num_cols_subp-ii

subp(ii,jj) = subp(num_rows_subp-jj+1, num_cols_subp-ii+1);
end

end
subpul = imrotate(subp,-90);
subpur = imrotate(subp,180);
subplr = imrotate(subp,90);
proba = [subpul(1:num_rows_subp-1,1:num_cols_subp) ...

subpur(1:num_rows_subp-1,2:num_cols_subp);...
subp, subplr(:,2:num_cols_subp)];

prob = proba;

-------------------------------------------------------
function v = MC_bad_pt_set(pts,fixed_not_locs,radius)
%
% MC_bad_pt_set - determine if sample contains excluded point

15



%

[num_pts,dummy] = size(pts);
[num_locs,dummy] = size(fixed_not_locs);
v = 0;

for p = 1:num_pts
pt = [pts(p,1);pts(p,2)];
for loc = 1:num_locs

ctr = [fixed_not_locs(loc,1);fixed_not_locs(loc,2)];
if norm(ctr-pt)<=radius

v = 1;
return

end
end

end

-------------------------------------------------------
function prob = MC_complete_surround(LS,d,p,friendly_loc,...

num_enemies,radius,num_trials)
%
% MC_complete_surround - compute prob friendly agent surrounded
% On input:
% LS (nx2 array): sensor locations
% d (nx1 vector): Boolean sensor response (0: no enemy; 1: enemy)
% p (nx1 vector): probability sensor is correct
% friendly_loc (1x2 vector): location of friendly agent
% num_enemies (int): number of enemies
% radius (float): range of sensors
% num_trials (int): number of Monte Carlo trials
% On output:
% prob (float): probability that friendly agent is surrounded
% Call:
% p = MC_complete_surround([0.1,0.1;0.8,0.8],[1,1],[0.8,0.8],...

[0.5;0.5],5,0.12,10000);
% Author:
% T. Henderson
% U of U
% Spring 2005
%

16



[num_sensors,dummy] = size(LS);

Pa = zeros(2ˆnum_sensors,1);
MC_prob = zeros(2ˆnum_sensors,1);
num_cases = 2ˆnum_sensors;
for c = 0:num_cases-1

fixed_locs = [];
fixed_not_locs = [];
Pc = 1;
for bs = 1:num_sensors

b = num_sensors-bs+1;
if (bitget(c,b) == 1)

Pc = Pc*p(b);
if (d(b)==1)

fixed_locs = [fixed_locs; LS(b,1), LS(b,2)];
else

fixed_not_locs = [fixed_not_locs; LS(b,1), LS(b,2)];
end

else
Pc = Pc*(1-p(b));
if (d(b)==1)

fixed_not_locs = [fixed_not_locs; LS(b,1), LS(b,2)];
else

fixed_locs = [fixed_locs; LS(b,1), LS(b,2)];
end

end
end
MC_prob(c+1) = MC_fixed_surround(num_trials,friendly_loc,...

fixed_locs,fixed_not_locs,num_enemies,radius);
Pa(c+1) = Pc*MC_prob(c+1);

end
prob = sum(Pa);

-------------------------------------------------------
function assert = MC_find_assert(assert_raw,range)
%
% MC_find_assert - finds assert points for within range cliques
% On input:
% assert (nx2 array): set of points

17



% range (float): sensor range
% On output:
% assert (kx2 array): locations of reasonable locations for cliques
% Call:
% assert = MC_find_assert([0.1,0.1;0.2,0.2;0.2,0.1;0.8,0.8;...

0.8,0.9],0.2);
% Author:
% T. Henderson
% U of U
% Spring 2005
%

assert = [];
if isempty(assert_raw)

return
end
q = MC_find_cliques(assert_raw,range);
[num_cliques,num_pts] = size(q);
assert = zeros(num_cliques,2);

for c = 1:num_cliques
indexes = find(q(c,:));
x_val = mean([assert_raw(indexes,1)]);
y_val = mean([assert_raw(indexes,2)]);
assert(c,1) = x_val;
assert(c,2) = y_val;

end

-------------------------------------------------------
function cliques = MC_find_cliques(pts,range)
%
% MC_find_cliques - finds sets of points mutually within range
% On input:
% pts (nx2 array): set of points
% range (float): sensor range
% On output:
% cliques (kxn array): (by row) indexes of mutually within
% range points
% Call:
% q = MC_find_cliques([0.1,0.1;0.2,0.2;0.2,0.1;0.8,0.8;...

18



% 0.8,0.9],0.2);
% Author:
% T. Henderson
% U of U
% Spring 2005
%

[num_pts,dummy] = size(pts);
x_min = min([pts(:,1)]);
x_max = max([pts(:,1)]);
y_min = min([pts(:,2)]);
y_max = max([pts(:,2)]);

num_x = length(x_min:range/2:x_max);
num_y = length(y_min:range/2:y_max);
clique_array = zeros(num_y,num_x,num_pts);
cliques = [];

for p = 1:num_pts
x = pts(p,1);
y = pts(p,2);

row = (num_y-1)-(floor((num_y-1)*(1-(y-y_min)/(y_max-y_min))))+1;
col = floor((num_x-1)*(x-x_min)/(x_max-x_min))+1;
for rr = -2:2

r_nei = row+rr;
for cc = -2:2

c_nei = col+cc;
if (r_nei>0)&(r_nei<=num_y)&(c_nei>0)&(c_nei<=num_x)

clique_array(r_nei,c_nei,p) = 1;
end

end
end

end
for r = 1:num_y

for c = 1:num_x
v = reshape(clique_array(r,c,1:p),1,num_pts);
[num_cliques,dummy] = size(cliques);
if num_cliques==0

cliques = [v];
else

19



new_clique = 1;
for cl = 1:num_cliques

cur_clique = cliques(cl,:);
if v<=cur_clique

new_clique = 0;
end

end
if new_clique

cliques_tmp = cliques;
cliques = [v];
for cl = 1:num_cliques

cl_tmp = cliques_tmp(cl,:);
if sum(cl_tmp<=v)<num_pts

cliques = [cliques;cl_tmp];
end

end
end

end
end

end

-------------------------------------------------------
function MC_gen_fig2
%
% MC_gen_fig2 - generate the Biswas Figure 2 Layout
%

LF = [(2*16+9);19]/16;
LE = [(3+(4/16)) (1+(10/16));

(3+(1/16)) (11/16) ;
(9/16) (2+(14/16));
(1+(14/16)) (2+(5/16));
(3+(9/16)) (2+(5/16))];

x_base = (4*16+1)/16;
y_base = (3*16+9)/16;
base = [x_base;y_base];
LFs = LF./base;
basea = [base’;base’;base’;base’;base’];
LEs = LE./basea;
LS2 = [2+1/16; 2+5/16]./base;
LS36 = [2+13/16; 1+3/16]./base;

20



LS37 = [3+8/16; 1]./base;
LS41 = [2+15/16; 11/16]./base;
LS56 = [3+5/16; 2+5/16]./base;
LS68 = [7/16; 2+9/16]./base;

plot(0,0,’b.’,LS2(1),LS2(2),’r*’,LS36(1),LS36(2),’r*’,...
LS37(1),LS37(2),’r*’,LS41(1),LS41(2),’r*’,...

LS56(1),LS56(2),’r*’,LS68(1),LS68(2),’r*’,...
LEs(:,1),LEs(:,2),’co’,LFs(1),LFs(2),’g+’,1,1,’b.’);

text(0.82,0.44,’LE 0’);
text(0.73,0.14,’LE 1’);
text(0.65,0.19,’LS 41’);
text(0.7,0.37,’LS 36’);
text(0.89,0.24,’LS 37’);
text(0.59,0.34,’LF’);
text(0.08,0.83,’LE 2’);
text(0.09,0.67,’LS 68’);
text(0.43,0.62,’LE 3’);
text(0.51,0.68,’LS 2’);
text(0.75,0.65,’LS 56’);
text(0.88,0.68,’LE 4’);

-------------------------------------------------------
function MC_gen_fig3
%
% MC_gen_fig3 - generate the Biswas Figure 3 Layout
%

LF = [(2*16+1);27]/16;
LE = [13/16 (14/16);

(3+(3/16)) (10/16) ;
(3+(13/16)) 9/16;
(2+(9/16)) (2+(11/16));
7/16 (2+(11/16))];

x_base = (4*16+5)/16;
y_base = (3*16+9)/16;
base = [x_base;y_base];
LFs = LF./base;
basea = [base’;base’;base’;base’;base’];
LEs = LE./basea;

21



LS8 = [1; 11/16]./base;
LS35 = [11/16; 3]./base;
LS36 = [7/16; 2+12/16]./base;
LS46 = [3+11/16; 7/16]./base;
LS50 = [3+9/16; 9/16]./base;
LS58 = [2+7/16; 2+13/16]./base;
LS75 = [2+6/16; 2+9/16]./base;
LS86 = [15/16; 15/16]./base;

plot(0,0,’b.’,LS8(1),LS8(2),’r*’,LS35(1),LS35(2),’r*’,...
LS36(1),LS36(2),’r*’,LS46(1),LS46(2),’r*’,...

LS50(1),LS50(2),’r*’,LS58(1),LS58(2),’r*’,LS75(1),...
LS75(2),’r*’,LS86(1),LS86(2),’r*’,...
LEs(:,1),LEs(:,2),’co’,LFs(1),LFs(2),’g+’,1,1,’b.’);

text(0.08,0.2,’LE 0’);
text(0.18,0.14,’LS 8’);
text(0.25,0.26,’LS 86’);
text(0.08,0.7,’LE 4’);
text(0.04,0.8,’LS 36’);
text(0.2,0.9,’LS 35’);
text(0.4,0.5,’LF’);
text(0.45,0.65,’LS 75’);
text(0.55,0.85,’LS 58’);
text(0.63,0.77,’LE 3’);
text(0.63,0.17,’LE 1’);
text(0.92,0.17,’LE 2’);
text(0.79,0.22,’LS 50’);
text(0.83,0.07,’LS 46’);

-------------------------------------------------------
function MC_gen_fig4(num_trials)
%

LF = [(2*16+1);27]/16;
LE = [13/16 (14/16);

(3+(3/16)) (10/16) ;
(3+(13/16)) 9/16;
(2+(9/16)) (2+(11/16));
7/16 (2+(11/16))];

x_base = (4*16+5)/16;

22



y_base = (3*16+9)/16;
base = [x_base;y_base];
LFs = LF./base;
basea = [base’;base’;base’;base’;base’];
LEs = LE./basea;
LS8 = [1; 11/16]./base;
LS35 = [11/16; 3]./base;
LS36 = [7/16; 2+12/16]./base;
LS46 = [3+11/16; 7/16]./base;
LS50 = [3+9/16; 9/16]./base;
LS58 = [2+7/16; 2+13/16]./base;
LS75 = [2+6/16; 2+9/16]./base;
LS86 = [15/16; 15/16]./base;
radius = (6/16)/x_base;

val(1) = MC_complete_surround([LS8(1),LS8(2)],[1],[0.8],...
LFs,4,0.12,num_trials);

val(2) = MC_complete_surround([LS8(1),LS8(2);LS35(1),...
LS35(2)],[1,1],[0.8,0.8],LFs,4,0.12,num_trials);

val(3) = MC_complete_surround([LS8(1),LS8(2);LS35(1),...
LS35(2);LS36(1),LS36(2)],[1,1,1],[0.8,0.8,0.8],...
LFs,4,0.12,num_trials);

plot([0,1,2,3],[0.5,val(1),val(2),val(3)]);

-------------------------------------------------------
function table1 = MC_gen_table1(num_trials)
%
% MC_gen_table1 - generate Biswas Table 1 from Figure 2 Layout
%

table1 = zeros(6,1);
LF = [(2*16+9);19]/16;
LE = [(3+(4/16)) (1+(10/16));

(3+(1/16)) (11/16) ;
(9/16) (2+(14/16));
(1+(14/16)) (2+(5/16));
(3+(9/16)) (2+(5/16))];

x_base = (4*16+1)/16;
y_base = (3*16+9)/16;

23



base = [x_base;y_base];
LFs = LF./base;
basea = [base’;base’;base’;base’;base’];
LEs = LE./basea;
LS2 = [2+1/16; 2+5/16]./base;
LS36 = [2+13/16; 1+3/16]./base;
LS37 = [3+8/16; 1]./base;
LS41 = [2+15/16; 11/16]./base;
LS56 = [3+5/16; 2+5/16]./base;
LS68 = [7/16; 2+9/16]./base;
radius = (6/16)/x_base;

%table(1) = MC_complete_surround(num_trials,LFs,...
% [LS56(1),LS56(2);LS68(1),LS68(2)],[],5,radius);
table1(1) = MC_complete_surround([LS56(1),LS56(2);...

LS68(1),LS68(2)],[1,1],[0.99,0.99],...
LFs,5,0.12,num_trials);

table1(2) = MC_complete_surround([],[],[],LFs,5,...
0.12,num_trials);

table1(3) = MC_complete_surround([LS2(1),LS2(2);...
LS41(1),LS41(2)],[1,1],[0.99,0.99],...
LFs,5,0.12,num_trials);

%table(3) = MC_complete_surround(num_trials,LFs,...
[LS2(1),LS2(2);LS41(1),LS41(2)],[],5,radius);

table1(4) = MC_complete_surround([LS41(1),LS41(2)],...
[1],[0.99],LFs,5,0.12,num_trials);

%table(4) = MC_complete_surround(num_trials,LFs,...
% [LS41(1),LS41(2)],[],5,radius);
table1(5) = MC_complete_surround([LS41(1),LS41(2);...

LS56(1),LS56(2);LS68(1),LS68(2)],[1,1,1],...
[0.99,0.99,0.99],LFs,5,0.12,num_trials);

%table(5) = MC_complete_surround(num_trials,LFs,...
% [LS41(1), LS41(2); LS56(1),LS56(2);LS68(1),...
% LS68(2)],[],5,radius);
table1(6) = MC_complete_surround([LS36(1),LS36(2);...

LS37(1),LS37(2);LS41(1),LS41(2);...
LS56(1),LS56(2);LS68(1),LS68(2)],[0,0,1,1,1],...
[0.99,0.99,0.99,0.99,0.99],...
LFs,5,0.12,num_trials);

%table(6) = MC_complete_surround(num_trials,LFs,...
[LS41(1), LS41(2);LS56(1),LS56(2);LS68(1),LS68(2)],...

24



% [LS36(1), LS36(2); LS37(1), LS37(2)],5,radius);

-------------------------------------------------------
function table2 = MC_gen_table2(num_trials)
%
% MC_gen_table2 - generate Biswas Table 2 from Figure 2 Layout
%

table2 = zeros(6,1);
LF = [(2*16+1);27]/16;
LE = [13/16 (14/16);

(3+(3/16)) (10/16) ;
(3+(13/16)) 9/16;
(2+(9/16)) (2+(11/16));
7/16 (2+(11/16))];

x_base = (4*16+5)/16;
y_base = (3*16+9)/16;
base = [x_base;y_base];
LFs = LF./base;
basea = [base’;base’;base’;base’;base’];
LEs = LE./basea;
LS8 = [1; 11/16]./base;
LS35 = [11/16; 3]./base;
LS36 = [7/16; 2+12/16]./base;
LS46 = [3+11/16; 7/16]./base;
LS50 = [3+9/16; 9/16]./base;
LS58 = [2+7/16; 2+13/16]./base;
LS75 = [2+6/16; 2+9/16]./base;
LS86 = [15/16; 15/16]./base;
radius = (6/16)/x_base;

table2(1) = MC_complete_surround([],[],[],LFs,...
5,0.12,num_trials);

table2(2) = MC_complete_surround([LS35(1),LS35(2);...
LS50(1),LS50(2);LS58(1),LS58(2)],...

[1,1,1],[0.8,0.8,0.8],LFs,5,0.12,num_trials);
table2(3) = MC_complete_surround([LS8(1),LS8(2);...

LS36(1),LS36(2);LS58(1),LS58(2)],...
[1,1,1],[0.8,0.8,0.8],LFs,5,0.12,num_trials);

table2(4) = MC_complete_surround([LS8(1),LS8(2);...

25



LS36(1),LS36(2);LS46(1),LS46(2)],...
[1,1,1],[0.8,0.8,0.8],LFs,5,0.12,num_trials);

table2(5) = MC_complete_surround([LS8(1),LS8(2);...
LS35(1),LS35(2);LS50(1),LS50(2);LS58(1),LS58(2)],...
[1,1,1,1],[0.8,0.8,0.8,0.8],LFs,5,0.12,num_trials);

table2(6) = MC_complete_surround([LS8(1),LS8(2);...
LS35(1),LS35(2);LS36(1),LS36(2);LS46(1),LS46(2);...
LS50(1),LS50(2);LS58(1),LS58(2);LS75(1),LS75(2);...
LS86(1),LS86(2)],[1,1,1,1,1,1,1,1],...
[0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8],LFs,5,0.12,...
num_trials);

-------------------------------------------------------
function MC_test_converge
%
% Get probabilities for sequence to determine convergence
%

LF = [(2*16+1);27]/16;
LE = [13/16 (14/16);

(3+(3/16)) (10/16) ;
(3+(13/16)) 9/16;
(2+(9/16)) (2+(11/16));
7/16 (2+(11/16))];

x_base = (4*16+5)/16;
y_base = (3*16+9)/16;
base = [x_base;y_base];
LFs = LF./base;
basea = [base’;base’;base’;base’;base’];
LEs = LE./basea;
LS8 = [1; 11/16]./base;
LS35 = [11/16; 3]./base;
LS36 = [7/16; 2+12/16]./base;
LS46 = [3+11/16; 7/16]./base;
LS50 = [3+9/16; 9/16]./base;
LS58 = [2+7/16; 2+13/16]./base;
LS75 = [2+6/16; 2+9/16]./base;
LS86 = [15/16; 15/16]./base;
radius = (6/16)/x_base;

26



%vals(1) = MC_complete_surround([LS35(1),LS35(2);...
% LS50(1),LS50(2);LS58(1),LS58(2)],[1,1,1],...
% [0.8,0.8,0.8],LFs,5,0.12,10);
%vals(2) = MC_complete_surround([LS35(1),LS35(2);...
% LS50(1),LS50(2);LS58(1),LS58(2)],[1,1,1],...
% [0.8,0.8,0.8],LFs,5,0.12,100);
%vals(3) = MC_complete_surround([LS35(1),LS35(2);...
% LS50(1),LS50(2);LS58(1),LS58(2)],[1,1,1],...
% [0.8,0.8,0.8],LFs,5,0.12,1000);
%vals(4) = MC_complete_surround([LS35(1),LS35(2);...
% LS50(1),LS50(2);LS58(1),LS58(2)],[1,1,1],...
% [0.8,0.8,0.8],LFs,5,0.12,10000);
vals(1) = 0.7224;
vals(2) = 0.6507
vals(3) = 0.6804;
vals(4) = 0.6769;
%vals(5) = MC_complete_surround([LS35(1),LS35(2);...
% LS50(1),LS50(2);LS58(1),LS58(2)],[1,1,1],...
% [0.8,0.8,0.8],LFs,5,0.12,100000);

semilogx(1,0,’b.’,[10,100,1000,10000],vals,10ˆ5,1,’b.’);

27


