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Abstract

Current work on image understanding at the Uni-
versity of Utah is focused principally on using com-
puter vision and related sensing techniques to aid
in problems associated with the construction of ge-
ometric models from sensed data. Projects are
now underway in high-precision, constraint-based
model construction; sensor modeling for virtual en-
vironments; interpretation of sonar range data; and
calibrated image generation.

1 Overview

The current emphasis of image understanding research at the
University of Utah is on improved modeling techniques and
sensing strategies for recovering geometry information about
physical objects and environments. We are concentrating
largely on man-made structures. This allows the use of pow-
erful domain-specific knowledge to be used in the modeling
process. Man-made objects are designed for a purpose and ex-
hibit properties that reflect both that purpose and conventional
design and construction practices. Exploiting this information
can yield models that are more useful and more accurate than
would otherwise be possible.

Specific activities include:

e High-precision, constraint-based model construction.

— Model construction.
Domain-specific information can be used to in-
crease the geometric accuracy of models recon-
structed from sensed data.

— Quantifying modeling accuracy.
Meaningful measures of modeling accuracy require

domain-specific information about the relevance
and intent of geometric features.
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— Anapplication inreverse engineering of spare parts.
Geometric modeling reconstruction from sensed
data can be used to generate CAD models from ex-
isting parts, providing an important tool for DOD
maintenance and repair activities.

o Sensor Modeling for Virtual Environments.

Virtual environments for training and design require the
simulation of virtual sensors that behave like their phys-
ical counterparts.

e Sonar.

Inferring spatial structure from sonar arrays involving
wide field of view sensors requires sensor models quite
different from those normally associated with range im-
ages.

o Calibrated Image Generation

Images of objects with known shapes in known posi-
tions, taken with calibrated cameras, will be made avail-
able in order to provide test data for image understanding
systems performing classification, pose estimation, and
stereo surface reconstruction operations.

2 High-Precision, Constraint-Based Model
Construction from Sensed Position Data

The creation of geometric scene models is an essential com-
ponent in computer vision systems for tasks ranging from re-
connaissance to robot navigation. To date, only limited atten-
tion has been paid to the accuracy of the shape information
recovered from vision and range sensors. This has the effect
of limiting the usefulness of vision-based model construction
for applications in which geometric precision is critical to per-
formance.

Our emphasis is on the creation of accurate and useful ge-
ometric models from sensed data about the position of 3-D
surface points, though the methods we describe have appli-
cation to other sensing modalities as well. Geometric repre-
sentations and inference methods used by most image under-
standing systems are designed for generality. In contrast, we
approach the model generation problem with representations
and data fitting methods specific to the domain of problems
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for which the model is intended. This leads directly to signifi-
cant improvements in modeling accuracy. For systems which
are not fully automated, this approach also facilitates the cre-
ation of systems that are much more natural and easy to use
by end-users.

2.1 . Using geometric constraints to increase modeling
precision

Modeling accuracy depends on effective use of properties that
distinguish the geometry of interest from effects due to sens-
ing errors. Standard signal processing approaches can deal
with this problem only for simple and statistically well be-
haved signals and sensor noise. The sensors used to acquire
data with which to construct a geometric model are seldom so
well behaved. Compensating for this is the fact that the “sig-
nal” (i.e., the actual shape for which a model is desired) has a
great deal of domain-specific structure. Each application do-
main will have shapes that are common and shapes that are
unlikely or impossible. This is particularly true when the ob-
jects and environments being modeled are man-made.

Domain-specific geometric structure can be exploited most
easily in the modeling process if the domain-specific model-
ing primitives are utilized. When used to model man-made
structures, such representations will be far more natural to
practitioners in the domain than will more generic primitives.
In addition, most application areas involving geometric rep-
resentations have a rich, pre-existing set of domain-specific
tools which only operate with the appropriate representations.
There is another advantage to the use of domain-specific rep-
resentations that may be less obvious but is the key to obtain-
ing better precision. When fitting models to noisy sensor data,
the best noise immunity is usually obtained by using model-
ing primitives with the fewest degrees-of-freedom required to
describe the shapes of interest [Thompson et al., 1996a]. The
geometric primitives commonly used in image understand-
ing systems are either intrinsically unable to represent many
shapes accurately or are so general as to be able to represent
essentially any shape equally well. In the latter case, the rep-
resentation gives no help in pulling out the underlying shape,
since in and of themselves they provide no information to dis-
tinguish signal from noise.

When modeling man-made objects or environments, the
use of domain-specific geometric primitives gives additional
advantages (Figure 1). Man-made objects and environments
are designed by people to serve some purpose. For a given do-
main, the design process is almost always characterized by a
set of widely used common practices. While not all geometry
within the domain necessarily satisfies this set of pragmatic
constraints, most of it usually does. To take a simple exam-
ple, it would be foolish to model an indoor building environ-
ment without using the knowledge that most large surfaces are
likely to be flat and organized in a rectilinear manner. The ge-
ometric primitives used in design systems often reflect these
pragmatics. As a result, the introduction of pragmatic con-
straints into systems which recover models from sensed data
is facilitated by using the same primitives.

=

Constraints

=

Modeling accuracy

Figure 1: Constraintsreduce degrees-of-freedom and increase
modeling accuracy.

Domain-specific modeling primitives can lead to an even
more powerful type of constraint for many applications.
The shape of man-made objects is designed to fulfill a
specific intent. In fact, one of the most important themes
in the development of modern CAD systems is the use
of representations which combine geometry and intent
[Cunningham and Dixon, 1988, Shah, 1991]. In manufac-
tured parts, a hole in which a bearing assembly is to be
installed needs to be treated very differently from a portion
of metal removed in order to lighten the part. In an indoor
building environment, hallways and offices have somewhat
similar geometric properties but very different function. Au-
tomated recognition of design intent given only the finished
product is well beyond the state-of-the-art. Human users in an
application domain, however, can often make good guesses
as to intent. Interactive model generation systems can be
given this information, which will often provide additional
constraints on the underlying shapes being modeled.

2.2 Determining the similarity of geometric models

In order to evaluate the effectiveness of methods which cre-
ate geometric models of objects from sensed data, it is nec-
essary to be able to quantify the quality of the reconstructed
model. This requires a measure of how closely the recon-
structed model approximates the “true” geometry. Image un-
derstanding methods for surface reconstruction typically use
functional approximation, minimizing an L, or L., norm by
making relatively simple assumptions about the nature of the
possible surface shapes and corrupting sensor noise. Shape
comparisons using functional norms do not easily extend to
complex objects made up of multiple surface patches. Not
the least of the problems is that for two models to be com-
pared, they must first be represented in a common coordinate
system. Thus, the registration between two models is a cen-
tral part of the comparison process. Complex shapes, partic-
ularly those involving significant concavities, introduce dis-
continuities into the measurement space, further complicating
the computations.

Comparing geometric models only in terms of the closeness
of corresponding surface points ignores two issues critical to
evaluating methods for reconstructing models from sensed
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Figure 2: Meaningful measures of accuracy depend on se-
mantic information about the task.

data:
e What are meaningful ways to compare similarity?
e What is the “true” model being reconstructed?

When generating models of man-made objects, it is seldom
meaningful to evaluate precision independent of an under-
standing of the function of the objects and environments be-
ing modeled. Ata minimum, geometric accuracy will almost
always be more important over some portions of objects than
over others. Other shape properties such as surface roughness
are not well captured by norm-like measure of geometric tol-
erances. Whether or not such local shape properties should
be considered in quantifying the accuracy of a reconstructed
model can only be determined in the context of the purpose for
which the modeling is being done. Since man-made objects
are often naturally described in terms of hierarchical struc-
tures closely tied to design intent, some measures of model-
ing quality are only possible by considering these more com-
plex descriptions. In general, the more meaningful measures
of modeling precision require information about the seman-
tics of the model and the problem domain, not just the relevant
geometry [Thompson et al., 1996b] (Figure 2).

2.3 Applications in reverse engineering for support of
DOD maintenance and repair activities

We have demonstrated the usefulness of domain-specific
geometric modeling primitives in an application rel-
evant to the reverse engineering of mechanical parts
[Owen et al., 1994, Thompson et al., under review].  (For
related methods, see [Sobh et al., 1994a, Sobh et al., 1994b,
Sobh and Owen, 1995, Sobh ez al., 1995]). The Department
of Defense has a formidable problem maintaining a large
number of hardware systems. Spare parts inventories can
be exhausted well before de-commissioning of the relevant
pieces of equipment. Additional spares are often difficult or
impossible to obtain from the original suppliers of the equip-
ment. Complicating the problem, a substantial portion of
the contracts under which DOD hardware has been acquired
have failed to require documentation sufficient for another
supplier to replicate needed parts.

One solution to this problem is to create new parts based
on an analysis of existing parts. Reverse engineering tech-
niques can be used to create CAD models of a part based on
sensed data acquired using three-dimensional position digiti-
zation techniques. Part-to-CAD reverse engineering allows
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User interface)

Simulation Station

(NPSNET, ModSAF)

Feedback Information
and Reports

]

Figure 3: Simulation-based design cycle.

up-to-date NC fabrication plus easier modification of the de-
sign than would otherwise be possible. While commercial
systems exist to assist in this process, they are hard to use and
often fail to produce a CAD model of sufficient quality.

Our approach to reverse engineering uses manufacturing
design features [Drake and Sela, 1989] as geometric primi-
tives. As a result, we can generate models that can be used
in the extensive collection of feature-based tools that exist —
something not possible with any of the commercial reverse
engineering systems. In addition, we are able to utilize prag-
matic and functional constraints to significantly improve mod-
eling accuracy over what would otherwise be possible.

3 Sensor Modeling for Virtual Environments

Sensor modeling has been extensively studied for autonomous
and semi-autonomous systems which interact with the physi-
cal world. Sensor modeling is equally important in virtual re-
ality systems, though it has received far less attention in that
context. In a virtual reality system, a user interacts with a syn-
thetic environment via an immersive human-computer inter-
face. This interface requires real sensors to determine actions
of the users and virtual sensors to correctly present to the user
the effects of interacting with the simulated environment.

The uses of virtual environments for training purposes are
well known. Increasingly important is the use of virtual en-
vironments in simulation-based design, in which virtual re-
ality tools are used for modeling, testing and analyzing new
systems before attempting to build them. This is particularly
useful if creating the virtual world is cheaper or less hazardous
that implementing a prototype. Simulation-based design uses
standard design processes to “fabricate” a simulation. Users
interact with the simulation in the same way that they would
with a physical prototype, providing input on necessary re-
finements to the design (Figure 3).

Virtual environments for either training or simulation-
based design must behave in a manner that accurately mim-
ics the physical world being simulated. Figure 4 shows the
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Figure 4: Sensing modules for visual presentation.

processing modules involved in generating appropriate visual
displays. More than simple graphical rendering is involved.
The effectiveness of the simulation will often depend on ac-
curately recreating:

e Camera specifications. Geometry, resolution, distortion.

o Communications channel effects. Bandwidth and update
rate, noise.

o Environmental effects. Time of day, lighting, weather.

[Dekhil et al., 1996] discusses a system currently under con-
struction for easily specifying these properties and then using
them to quickly generate the appropriate simulation modules.

4 Sonar

Sonar sensors are frequently used to help guide mobile robots
in indoor environments. Arrays of these sensors are often
treated as if they were a range imaging device, albeit with a
low angular resolution compared to the resolution for range.
In fact, there are important differences between the imaging
model needed to analyze sonar arrays and that appropriate
for true range images. Individual sonar sensors have a much
wider field of view than is normally associated with a “pixel”
in a range or visual image. For example, the commonly used
Polaroid sensor returns the distance to the closest reflecting
point withina 22.5° wide cone.

Figure 5 shows a simple example of how this affects the
interpretation of the readings from elements in a sonar array.
The figure shows a view from above of range measurements
to a flat wall using a wide-beam and a narrow beam sensor.
In either case, there is a family of wall positions and orien-
tations consistent with a single measurement. Note, however,
that the family is different depending on which sensor is used.
The computation needed to determine the actual wall position
and orientation, given two wide field of view sensors of the
sort shown on the left in Figure 5 is described analytically in

Wide-beam sensor

Narrow-beam sensor

Figure 5: Sensing modules for visual presentation.

[Henderson et al., 1996b, Henderson et al., 1996a]. One im-
portant consequence of the analysis is an understanding of the
spatial relationship between two wide field of view sensors
needed to resolve positional ambiguities associated with flat
surfaces. The requirements for sensor positioning turn out to
be very different from those associated with narrow field of
View Sensors.

5 Calibrated Image Generation

Though often discussed, calibrated data with which to quan-
titatively evaluate the performance of general purpose com-
puter vision algorithms is still not widely available. The cre-
ation of imagery for this purpose requires more than just cam-
era calibration. Since the basic purpose of vision systems is to
create a description of the scene under view, evaluation nec-
essarily requires information about the “ground truth” nature
of the scene.

We are creating a data set consisting of imagery and suffi-
cient collateral information to support the evaluation of com-
puter vision methods for model-based and exemplar-based
object recognition and pose estimation and for depth recon-
struction from binocular stereo [Owen et al., 1996]. Standard
visual calibration methods are used to generate camera mod-
els [Faugeras, 1993]. Unique to this effort, most of the ob-
jects will be designed and manufactured in our own facility
[Thompson and Owen, 1994]. This means that we not only
know the true geometry, we can manipulate it in any way that
we want in order to test aspects of vision algorithms. In ad-
dition, we can make accurate replicas of each object so that
physical objects can be distributed to sites interested in eval-
uating active vision systems that can not be tested on pre-
acquired imagery. The parts making up this collection of ob-
jects are shown in Figure 6. Models for each object are gener-
ated directly from the CAD system used to design them, and
are available in a variety of formats.

Object pose is determined with a coordinate measuring ma-
chine (CMM), which is a precision contact position sensing
device. Objects are placed in the field of view of the cameras
in an arbitrary orientation. Known locations on each visible
object are measured using the CMM. Together with the CAD
model of the object, this is sufficient to specify orientation. Fi-
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Figure 8: Stereo image pair.
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fétgu re 6: Objects used to create the calibrated imagery data Figure 9: Intensity-coded range images corresponding to Fig-
’ ure 8

Figure 7: Calibrated imagery.
Figure 10: Depth map associated with right image in Figure 8




nally, the orientation is represented in the camera coordinate
systems by measuring the position of the optical camera cali-
bration target and solving for the appropriate transformation.

Figure 7 shows examples of imagery in the data set. The up-
per two frames are images of a single part in two different ori-
entations. The parts are made of machined aluminum. On the
left, the view is of a shiny metal part. The upper right image
shows the part after it has been painted with a talc like powder.
The data set includes both painted and unpainted versions of
each view. The lower left image in Figure 7 shows a “jumble”
of parts. To verify our calibration and pose measuring proce-
dures, in the lower left frame the model of one part has been
back projected onto the image to show that it lines up accu-
rately with the image of the same object.

To provide more imagery with which to evaluate stereo al-
gorithms, the data set includes stereo pairs and “true” depth
maps for objects in addition to those shown in Figure 6. Fig-
ures 8—10 show one example. The correct range images for
these stereo pairs are generated by using a laser scanner to
measure the 3—D position of a dense sampling of surface
points on the objects in the field of view. These 3-D points
are then back projected through the camera models for each
camera and a hidden surface algorithm is used to generate syn-
thetic range images.
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